
§1 O2 LICENSE 1

1. License.
Gened date: January 30, 2015
Copyright c© 1998-2015 Dave Bone

This Source Code Form is subject to the terms of the Mozilla Public License, v. 2.0. If a copy of the
MPL was not distributed with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

2 SUMMARY OF O2 — YACCO2’S NICKNAME O2 §2

2. Summary of O2 — Yacco2’s nickname.
The compiler / compiler’s formal name is Yac2o2 but call me O2. Yac2o2 can be morphed many ways; here
are some hints: sound of a cold, molecular contortions. Do your own expletives.

3. Component overview running O2.
I use a “.lex” extension to distinguish a grammar file. This is not hard coded. You can choose your own
memory mnemonics for any of my files. The “.T” file extension identifies the Terminal vocabulary. Its
components are described later in the document. The Lrk and Rc terminals are pre-assembled and reside in
the “/usr/local/yacco2/library/grammars” account. My original thought was to allow the compiler writer
to experiment with his own terminal definitions for all classes: LR constants, raw characters, errors, and
terminals. From experience, only the last 2 classes are local to each language being defined.

options
∑

xxx.lex grammars Terminal vocabulary

O2 xxx errors.logxxx tracings.log

xxx[,sym,tbl].cpp files T-Alphabet and xxx.fsc files yyy.fsc O2linker make file

O2linker

O2linker tables

CC

∑
dispatch threads table, grammars’s lr1 tables, each fsm and rhs procedure

∑
doc. files of xxx.[mp,w] for mpost, cweave

Please note, the “header” files are absent from the diagram due to space constraints. The salient ones
to note are:

1) the enumeration of the vocabulary’s symbols
2) headers for fsm, and the terminal classifications: lrk,error,rc,and T

Per compiled “xxx.lex” grammar, the 2 status files “xxx tracings.log” and “xxx errors.log” hold the text-only
compiled results lodged within the local grammar’s folder. “T-Alphabet” gets gened when the “-t” option
is inputted to gen the Terminal vocabulary. It is a file by defined order of all the terminals’s literal names
used as comments against the outputted lookahead tables to make sense of their compressed set definitions.
Its file name is built from the grammar’s “T-enumeration” construct using its filename and adding a “.fsc”
extension. Olinker

2 cross checks the number of terminals defined in the “no-of-T” value in each grammar’s
“fsc” file against this file. Out-of-sync values indicates that new terminals have been added to either the
“error” or “terminal” class terminals vocabulary without gening up the grammar with the “-t” and/or “-err”
option(s). The “yyy.fsc” file is the grammar writer’s handcrafted file containing references to these “xxx.fsc”
files and the T-Alphabet file for Olinker

2 to compile. Its name can be anything but i use the “.fsc” as a memory
jog. Please see Olinker

2 ’s documentation on its raison d’être and make file comments.

§4 O2 TRACING FACILITIES 3

4. Tracing facilities.
Some of the more important tracing facilities are as follows where their mnemonic replaces the “xx”:

TH — dynamic trace of the grammar’s parse stack when its “debug option is true
T — trace terminals fetched across all grammars
AR — trace arbitration when grammar’s debug switch is true
MSG — dynamic threading messages between the co-operatives

Please see O2’s library documentation concerning each tracing variable when set to 1 within your program by
the programmer: “yacco2::YACCO2 xx = 1;” starts their specific scribblings. There are other less impor-
tant trace variables not listed above. The turned on O2’s library trace facility will log to “xxx tracings.log’
file where ‘xxx’ represents the grammar being parsed without its extension. As the “xxx tracings.log” is
text-only content, this allows the use of a general text editor to browse its material. If the editor has indi-
gestion due to its volume, a script can be written to postprocess it for study by the “sed” / “grep” combo
or using just the “split” utility.

5. Grammar anatomy.
The grammar is composed of your traditional components: start rule, non-terminal vocabulary, terminal
vocabulary, and 2 additional parts: fsm and syntax directed code. “fsm” (short for finite state machine) is a
packaging agent. It houses all the grammar’s software generated parts along with the c++ syntax directed
code within the grammar associated with their directives. These directives are local to the grammar’s rules,
subrules, and possibly the grammar’s start-run-finish sequence that is handled within the fsm. “fsm” supplies
the grammar’s c++ namespace, class name, and filename prefix to output the components to.

6. Terminal vocabulary.
From the diagram below, the “enumeration” component is a packaging agent that receives the outputed enu-
meration definitions for each terminal class. The counting scheme uses the natural numbers starting from
0 listing the “lrk” constants, followed by each of the other components’s terminals. The last component
“terminals” is your regular terminal definitions that gets assembled from the lexical or syntactical passes,
and possibly out into etherland of abstraction. All vocabulary elements are tagged this way. It is the glue
to all the emitted tables. For the record, each grammar’s non-terminal vocabulary (rules) are enumerated
after the terminal enumeration count and are defined within the grammar’s fsm class definition. The rules’s
subrules are also enumerated and defined there. They are not dependent on the Terminal vocabulary.

enumeration lrk meta-terminal constants raw characters terminals errors

Terminal vocabulary

4 OVERVIEW OF GENERATING THE GRAMMAR’S PDF AND POSTSCRIPT(PS) DOCUMENTS O2 §7

7. Overview of generating the grammar’s pdf and postscript(ps) documents.
There are 2 generated documents using the “-p” option emitting “cweave” content and associated “mpost”
diagrams for compilation:

1) grammar with its syntax direct code,
emitted O2linker file, and gened lr1 state network

2) various cross references against the grammar, and lr1 state network
- symbols used from each rule’s subrules symbol string position
- additional information supporting the lr1 state network in the 1st document

• each lr1 state’s rules follow sets
• reducing states subrules with references to their contributors’ follow sets
• global lookahead sets with their yield used by the parse reduce operation

The below diagram shows the manufacturing of a grammar’s document.

xxx.mp for mpost

mpost

∑
railroad diagrams of grammar

xxx.w for cweave

cweave

xxx.tex pdftex

xxx.pdf

“a pdf reader”

Also for each “pdf” document generated there is a postscript document to remove the dependency of a
“pdf reader” and its “gui” interaction when wanting to spool the document for print. For example on
my Sun Solaris, the program “pdftops” takes a “pdf” document and creates an equivalent “ps” document.
Spooling it to a print would use the command line “lp xxx.ps”.

§8 O2 A SAMPLE O2 SCRIPT WHERE THE OPTIONS ARE DESCRIBED 5

8. A sample O2 script where the options are described.
O2’s input data template is [options] filename where options are optional as they have preconfigured values.
Here are the switches that can be inputted to O2 using the Unix approach to turn on the specific option.
Each option must be inputted with its own − sign.
Options: if they are not present, do not generate

1) -t — generate the Terminal vocabulary
2) -err — generate the Error vocabulary
3) -lrk — generate the lr k vocabulary: Deprecated not supported
4) -rc — generate the Raw characters vocabulary: Deprecated not supported
5) -p — generate the grammar’s documents

Points 1 and 2 are usually stable and do not need to be gened. Do so when these vocabularies have been
modified. Don’t forget to regen all the grammars and re-run O2linker to reprocess the “fsc” files if the
number of Terminals in the vocabularies has changed as all the Lookahead sets are now different along
with the enumeration scheme that ties them together. Points 3 and 4 cannot be used as they reside in
“/usr/local/yacco2/library/grammars” pregened. I included them as a memory jog to my experiments; if
u try to input these deprecated options u’ll get an error message. Other options were experimented with
but found boarderline marginal: gen namespace, gen the grammar, and turn on debug of grammar instead
of using the editor cycle to modify the grammar to be traced. Now namespace and grammar are always
generated, and hello editor. So out damn spot.

Here is a batch command file that runs on a Microsoft’s NT/XP desktop. The same can be done within
a “Unix” flavour script language like “Bash”. Though it does not illustrate a conditional test as to whether
the script should continue when the grammar is faulty, O2 returns a 0 to indicate a healthy grammar and a
1 to indicate a sick grammar: The gory details are in the error log.

1: rem file: o2.bat

2: rem compile O2 grammars

3: cd \yacco2\compiler\h2o\release

4: @echo ON

5:

6: o2 -p -t -err /yacco2/compiler/grammars/enumerate_grammar.lex

7: mpost enumerate_grammar.mp

8: cweave enumerate_grammar.w

9: pdftex enumerate_grammar

10:

The above example uses line numbers delimited by “:” at the start of each line for commentary purposes.
Line 3 sets the directory where O2 resides and repository for the temporary files from O2, “mpost” that
draws the grammar diagrams, while “cweave” generates the “xxx.tex” file for “pdftex” who completes the
document for an “Adobe” reader program: for example “xpdf” of open source or Adobe’s reader. “cweave”
is one of the programs by Donald E. Knuth and Silvio Levy from their book “The CWEB System of
Structured Documentation”. Go to the web site “www.tex.org” for more information on how to obtain
“CWEB”. The same comments apply to “mpost” written by John D. Hobby of ‘Bell Labs”. This is a remake
of “MetaFont”language / “MetaPost” program by Donald E. Knuth. These programs are grrrreat! More
people should be using them. The emitted grammar files get placed in the same directory of the inputted
grammar to O2.

Line 6 runs O2 with its inputted grammar file “/yacco2/compiler/grammars/enumerate grammar.lex”
and switches to gen up the Terminal and Error vocabularies and gen a printed set of documents. O2 also
generates the documentation files “enumerate grammar.mp” and “enumerate grammar.w” files. Lines 7–
9 are command lines to create the output document. In the example, “enumerate grammar.pdf” is the
final file document for printing. “enumerate grammar.xx” are figure files generated by mpost from file
“enumerate grammar.mp”. These files are referenced in the “enumerate grammar.w” file by cweave who
produces an “enumerate grammar.tex” file for program pdftex. All this to say that there can be many
generated files before the document is complete. Please note the other cross reference document is not
shown but follows the same run pattern.

6 SOME DEFINITIONS O2 §9

9. Some definitions.

Non-terminal:
This is your normal grammar definition. I interchange this term with “rule”. They are the same. Depending
on the context, i also use rule in the same sense of a grammar’s production. To refine the context, the term
“subrule” indicates one of a rule’s productions.

Subrule:
Equivalent to a grammar’s production. It is one of a rule’s right-hand-side string of symbols drawn from the
non-terminal or Terminal alphabets. The string can be empty indicating epsilon.

Please see the mavelous book “Formal Languages and Their Relationn to Automata” by Hopcroft and
Ullman for a complete discussion on grammars and their makeup. Excellent reading for a 1968 vintage on
automata.

Here are some basic definitions used by my lr1 generator.

First set:
Please see first set rules .lex grammar for a more thorough discussion. First set is the set of terminals that
begins a string of symbols. When the symbol is a rule, then all its subrules contribute to the first set.
This is a recursive definition as the rule’s subrules can also bring in other rules’ subrules string of symbols
that contribute to it. If the string’s start symbol is a rule and its epsilonable, then its right neighbour also
contributes. Again if its a rule and epsilonable its right neighbour is a contributor: ahh recursive definitions.

Follow set:
The rule’s first set of production strings to the right of a lr state’s configuration. Here is a simple arith-
metic grammar to illustrate follow sets for the “Closure-only” state where all production strings have their
configuration position at their very beginning illustrated by ”.”. I use a form of Dewey decimal notation to
reference the production’s configuration. For example “E.1.2” means the production of rule “E” referencing
subrule 1 of its second symbol is being refered to. In this example below the referenced symbol is +. How
follow sets are arrived at is discussed in “Overview of O2’s state generated components”.

Rule subrule’s symbols
S → .E ⊥
E → .E + T

→ .T
T → .T ∗ F

→ .F
F → .(E)

→ .id

Rule follow set R.SR.Pos of follow set with transitions
E ⊥ + ⊥ by S.1.2, + from E.1.2 ⊥ +
↑ E.2.2
T ∗ ∗ by T.1.2 ∗ ⊥ +
↑ T.2.2
F ∅ ∗ ⊥ +

Table of follow sets for the “Start state” of the above grammar

§9 O2 SOME DEFINITIONS 7

There are 3 subtleties that are watched for in the follow set calculation:
1) rule symbol — use its “first set”
2) epsilonable rule symbol — continue to next symbol in follow string for assessment
3) end of symbol string reached — transition

Point 3 requires some explanation. Its condition means that the rule’s right-hand-side has been consumed
(or is epsilon) so what’s it follow set? Nothing? No it’s the subrule’s rule that spawned it that provides
more follow set context. This context resides in the “closure” state of this rule. So now there is a transition
to this rule’s follow set. This is the transitive closure of spawning contexts. The Table of follow sets shows
these transitions with the ↑ symbol. Epsilon rules are chameleon in nature: they supply their first sets and
also disappear and so u must continue to the next symbol in the follow string to complete the follow set
while observing the end-of-string condition to follow its transitions.

8 CATALOGUE OF O2’S FILES O2 §10

10. Catalogue of O2’s files.
Cweb Documents:

1) Yac2o2 parse library
2) O2extern — external routines
3) Yac2o2stbl — symbol table

O2’s Input files to cweb :
1) o2 .w — master file that starts things off
2) intro .w — introduction
3) defs .w — basic definitions to gen lr1 network
4) prog .w — O2 cweb code
5) bug .w — confessions
6) o2 defs .w — details
7) includes .w — bring in those grammars for the parsing
8) o2externs .w — external routines

cweb generated files:
1) o2 .h — compiler definitions
2) o2 .cpp — O2 program
3) o2 defs .cpp — structure implementations
4) o2 externs .h — global definitions used across O2’s source code

O2’s generated files where xxx is the grammar’s name being compiled:
1) xxx .fsc — grammar’s first set confessions for Linker
2) xxx .h — grammar’s header file
3) xxx .cpp — automaton code
4) xxxsym .cpp — automaton symbols
5) xxxtbl .cpp — automaton’s state definitions

Yac2o2 library memorabilia:
1) yacco2 — library namespace
2) “/usr/local/yacco2/library” — yacco2’s library directory
3) < yacco2.h > — Yacco2’s library header file
4) “library directory/xxxx” - xxxx is the debug or release of the object library

Dependency files from Yac2o2 sub-systems:
yacco2 .h - basic definitions used by Yacco2
yacco2 T enumeration .h - terminal enumeration for Yacco2’s terminal grammar alphabet
yacco2 err symbols .h - error terminal definitions from Yacco2’s grammar alphabet
yacco2 characters .h - raw character definitions from Yacco2’s grammar alphabet
yacco2 k symbols .h - constant terminal definitions from Yacco2’s grammar alphabet
yacco2 terminals .h - regular terminal definitions from Yacco2’s grammar alphabet
∗. h - assorted grammar definitions from Yacco2 to parse
o2 externs .h - external support routines for O2

Grammars
pass3 .lex — lex and syntactic phase of grammar
la expr source .lex — lexical phase of lookahead expression
la expr .lex – syntactic phase of lookahead expression
enumerate T alphabet .lex – logic grammar to assign each T a number from 0..n
epsilon rules .lex – grammar determines epsilon per rule and pathological conditions
first set .lex – logic grammar to calculate each rule’s first set
prt fs of rules .lex – logic grammar to print each rule’s first set
enumerate grammar .lex – dump aid: enumerate grammar’s components

Globals
LR1_STATES — list of gened lr1 states
LR1_COMMON_STATES — common states map having same vectored into symbol
START_OF_RULES_ENUM — used in shift / reduce conflict evaluation

§10 O2 CATALOGUE OF O2’S FILES 9

Comments:
My external routines use the all upper case approach to names. I know it’s like shouting but it clues the
reader where the heck the routine comes from. I could have tempered the all caps approach to a capital
letter but i’m myopic and becoming visually golden in age. So my excuses to the reader for this tasteless
approach.

10 O2’S LANGUAGE O2 §11

11. O2’s language.
There are 3 languages that are actually parsed: 2 in preparation — command line and its contents, and the
grammar file. A grammar is divided into 4 parts:

a) Finite automaton definition — basic statements about the grammar
b) Parallel parse that defines a threading grammar
c) Terminal vocabulary: errors, lr k, raw characters, and terminals
d) Rule definitions
1: /*

2: FILE: eol.lex

3: Dates: 17 Juin 2003

4: Purpose: end-of-line recognizer

5: */

6: fsm

7: (fsm-id "eol.lex",fsm-filename eol,fsm-namespace NS_eol

8: ,fsm-class Ceol

9: ,fsm-version "1.0",fsm-date "17 Juin 2003",fsm-debug "false"

10: ,fsm-comments "end of line recognizer")

11: parallel-parser

12: (

13: parallel-thread-function

14: TH_eol

15: ***

16: parallel-la-boundary

17: eolr // - "x0a" more efficient to use |.|

18: ***

19:)

20: @"c:/yacco2/compiler/grammars/yacco2_include_files.lex"

21:

22: rules{

23: Reol AD AB(){

24: -> Rdelimiters {

25: rhs-op

26: CAbs_lr1_sym* sym = new T_eol;

27: sym->set_rc(*parser()->start_token(),*parser());

28: sym->set_line_no_and_pos_in_line(*parser()->start_token());

29: RSVP(sym)

30: ***

31: }

32: }

33:

34: Rdelimiters AD AB(){

35: -> "x0a"

36: -> "x0d" |.|

37: -> "x0d" "x0a"

38: }

39: }// end of rules

40:

The above source listing is an example of a threaded grammar. Starting each source line is a line number
suffixed by ‘:’ present only for discussion purposes. Line numbers 6–10 defines the fsm component. Lines
11–19 indicates that the grammar is a thread. Though the terminal vocabulary definitions are hidden by

§11 O2 O2’S LANGUAGE 11

line 20, it illustrates the file include feature of O2. Lines 22–39 are the rule definitions. Each grammar’s
section has a defining keyword like “fsm”, “parallel-parser”, “rules” that introduces the part being defined.

12. C macros.
Originally there were conditionally defined trace variables that controlled the inclusion of trace code. This was
a pain-in-the-seat so now they are global variables that test their values. I felt the slight speed bump merited
the facility without the combinatorics of libraries needed for distribution. YACCO2 define trace variables
macro defines these global variables used by O2’s tracing purposes. U can roll your own or just include the
macro in your code. These variables are dormant until their values are not zero. Without their inclusion, a
linker message of unresolved variable will be regurgitated: they must be present when using the O2 library.
It’s an easy way to define them within your program. Please see O2 library documentation for a discussion
on each trace variable. To activate a specific tracing, assignment a non zero value to the selected trace
variable: set it to 1. Here is their catalogue:

YACCO2_T__ — trace terminal when fetched
YACCO2_TLEX__ — trace macros of emitted grammar: rules and user emergency macros
YACCO2_MSG__ — trace thread messages
YACCO2_MU_TRACING__ — trace acquire / release of trace mutex
YACCO2_MU_TH_TBL__ — trace acquire / release mutex of thread table
YACCO2_MU_GRAMMAR__ — trace acquire / release each grammar’s mutex
YACCO2_TH__ — trace the parse stack: fsa and syntax directed activities
YACCO2_AR__ — trace arbitrator procedure
YACCO2_THP__ — trace thread performance

They are enrobed by namespace yacco2. To set the trace variable be sure the namespace is delared: either
explicitly as in:

yacco2 ::YACCO2_T__ = 1;
or implicitly by a “using namespace yacco2;” statement somewhere preceding the assignment:

using namespace yacco2;
...
YACCO2_T__ = 1;

Each traced output line identifies its type by the trace variable turned on. As tracing can be very very
volumnious, post evaluating the output thru a Bash type filter script makes the log output manageable. I
say this from experience as some editors blow up due to the size of the traced file. Names withheld to protect
the innocent.

12 EXTERNAL ROUTINES AND GLOBALS O2 §13

13. External routines and globals.
General routines to get things going:

1) get control file and put into O2’s holding file
2) parse the command line
3) format errors
4) O2’s parse phrases — pieces of syntactic structures

These are defined by including o2 externs .h. Item 4 is driven out of the pass3 .lex grammar. It demonstrates
a procedural approach similar to recursive descent parsing technique.

The globals are:
a) Error queue — global container of errors passed across all parsings
b) Switches from command line parse
c) Token containers for the parsing phases

〈External rtns and variables 13 〉 ≡
extern int RECURSION_INDEX__;
extern void COMMONIZE_LA_SETS();
extern int NO_LR1_STATES;
extern STATES SET typeVISITED_MERGE_STATES_IN_LA_CALC;
extern LR1 STATES typeLR1_COMMON_STATES;
extern CYCLIC USE TBL typeCYCLIC_USE_TABLE;
extern void Print dump state (state ∗ State);

This code is used in section 163.

§14 O2 MAIN LINE OF O2 13

14. Main line of O2.

〈 accrue O2 code 14 〉 ≡
YACCO2 define trace variables (); /∗Recursion count (); ∗/
int RECURSION_INDEX__(0);

yacco2 ::CHART_SW(’n’);
yacco2 ::CHARERR_SW(’n’);
yacco2 ::CHARPRT_SW(’n’);
yacco2 ::TOKEN_GAGGLEJUNK tokens ;
yacco2 ::TOKEN_GAGGLEP3 tokens ;
yacco2 ::TOKEN_GAGGLEError queue ;

char Big buf [BIG_BUFFER_32K];

T sym tbl report card report card ;
std ::string o2 file to compile ;
std ::string o2 fq fn noext ;
STBL T ITEMS typeSTBL_T_ITEMS;
STATES typeLR1_STATES;
LR1 STATES typeLR1_COMMON_STATES;

bool LR1_HEALTH(LR1_COMPATIBLE);
int NO_LR1_STATES(0);

STATES SET typeVISITED_MERGE_STATES_IN_LA_CALC;
CYCLIC USE TBL typeCYCLIC_USE_TABLE;

int main (int argc , char ∗argv [])
{

cout � yacco2 ::Lr1 VERSION � std ::endl ;
〈 setup O2 for parsing 17 〉;
〈 fetch command line info and parse the 3 languages 19 〉;
lrclog � yacco2 ::Lr1 VERSION � std ::endl ;
〈 are all phases parsed? 34 〉;
〈 epsilon and pathological assessment of Rules 29 〉;
〈dump aid: enumerate grammar’s components 28 〉;
〈determine if la expression present. Yes parse it 35 〉;
〈 get total number of subrules for elem space size check 31 〉;
〈 calculate rules first sets 32 〉;
〈 calculate Start rule called threads first sets 33 〉;
〈 generate grammar’s LR1 states 39 〉;
〈 is the grammar unhealthy? yes report the details and exit 40 〉;
〈determine each rule use count 37 〉;
〈 emit FSA, FSC, and Documents of grammar 130 〉; /∗ 〈print tree 132 〉; ∗/
/∗ 〈 shutdown 16 〉; ∗/

exit : lrclog � "Exiting O2" � std ::endl ;
return 0;
}

See also section 162.

This code is used in section 164.

14 SOME PROGRAMMING SECTIONS O2 §15

15. Some Programming sections.

16. Shutdown.
Prints out the thread table with their runtime activity, and calls each one of them to quitely remove
themselves as threads. Within Unix this is not needed as the winddown duties of the process removes
launched threads: That is why it is commented out. Uncommenting it provides the run statistics for the
compiler writer to view reality in terms of performance stats.

〈 shutdown 16 〉 ≡
lrclog � "Before thread shutdown" � std ::endl ;
yacco2 ::Parallel threads shutdown (pass3);
lrclog � "After thread shutdown" � std ::endl ;

This code is cited in section 14.

17. Setup O2 for parsing.

〈 setup O2 for parsing 17 〉 ≡
〈 load O2’s keywords into symbol table 18 〉;

This code is used in section 14.

18. Load O2’s keywords into symbol table.
Basic housekeeping. Originally a grammar recognized keywords by being in competition with the Identifier
thread. Keyword thread only ran if its first set matched the starting character making up an identifier and
keyword. Now it’s blended into Identifier using the symbol table lookup that returns not only the identifier
terminal but all other keyword entries put into the symbol table.

For now, only the keywords are cloned off as unique entities whilst all other entries are passed back from
their symbol table with its source co-ordinates being overriden.

〈 load O2’s keywords into symbol table 18 〉 ≡
LOAD_YACCO2_KEYWORDS_INTO_STBL();

This code is used in section 17.

19. Fetch command line info and parse the 3 languages.
The 3 separate languages to parse are:

1) fetching of the command line to place into a holding file
2) the command line in the holding file — grammar file name and options
3) the grammar file’s contents

Items 1 and 2 are handled by external routines where fetching of the command line is crude but all-purpose
whilst the command line language is specific to O2.

〈 fetch command line info and parse the 3 languages 19 〉 ≡
〈 get command line, parse it, and place contents into a holding file 20 〉;
〈parse command line data placed in holding file 22 〉;
〈parse the grammar 26 〉;

This code is used in section 14.

20. Get command line, parse it, and place contents into a holding file. It uses a generic external
routine to do this. The parse is very rudimentary. The command data is placed into a holding file provided
by Yacco2 holding file defined in the external library o2 externs .h. See cweb documents mentioned in the
introduction regarding other support libraries. If the result is okay, set up O2’s library files for tracing.

〈 get command line, parse it, and place contents into a holding file 20 〉 ≡
GET_CMD_LINE(argc , argv ,Yacco2 holding file ,Error queue);
〈 if error queue not empty then deal with posted errors 21 〉;

This code is used in section 19.

§21 O2 DO WE HAVE ERRORS? 15

21. Do we have errors?. Check that error queue for those errors. Note, DUMP_ERROR_QUEUE will also
flush out any launched threads for the good housekeeping or is it housetrained seal award? Trying to do my
best in the realm of short lived winddowns.

〈 if error queue not empty then deal with posted errors 21 〉 ≡
if (Error queue .empty () 6= true) {
DUMP_ERROR_QUEUE(Error queue);
return 1;
}

This code is used in sections 20, 22, 26, 34, 36, 118, 119, 120, 121, 122, 123, 124, and 125.

22. Parse command line data placed in holding file.

〈parse command line data placed in holding file 22 〉 ≡
YACCO2_PARSE_CMD_LINE(T_SW, ERR_SW, PRT_SW, o2 file to compile ,Error queue);
〈 if error queue not empty then deal with posted errors 21 〉;
〈display to user options selected 25 〉;
〈 extract fq name without extension 23 〉;
〈 set up logging files 24 〉;

This code is used in section 19.

23. Extract fully qualified file name to compile without its extension.
Used to access the generated first set control file for cweb documentation and O2’s tracings. Simple check,
if the grammar file name does not contain a “.extension” then use the complete file name.

〈 extract fq name without extension 23 〉 ≡
std ::string ::size typepp = o2 file to compile .rfind (’.’);
if (pp ≡ std ::string ::npos) {

o2 fq fn noext += o2 file to compile ;
}
else {

o2 fq fn noext += o2 file to compile .substr (0, pp);
}

This code is used in section 22.

24. Set up O2’s logging files local to the parsed grammar.
There are 2 stages. Stage 1 logs to “1lrerrors.log” and “1lrtracings” as the command line is being parsed
— o2 lcl opts and o2 lcl opt grammars. It has no knowledge of the grammar file to parse. Stage 2 passed
the command line parsing and the inputted grammar file name can be used to build the grammar’s local O2

tracing files. These log files are “xxx tracings.log” and “xxx errors.log” where the “xxx” is the grammar’s
base file name.

〈 set up logging files 24 〉 ≡
std ::string normal tracing (o2 fq fn noext .c str ());
normal tracing += "_tracings.log";
std ::string error logging (o2 fq fn noext .c str ());
error logging += "_errors.log";
yacco2 :: lrclog .close ();
yacco2 :: lrerrors .close ();
yacco2 :: lrclog .open (normal tracing .c str ());
yacco2 :: lrerrors .open (error logging .c str ());

This code is used in section 22.

16 DISPLAY TO USER OPTIONS SELECTED O2 §25

25. Display to user options selected.

〈display to user options selected 25 〉 ≡
lrclog � "Parse options selected:" � std ::endl ;
lrclog � " Gen T: " � T_SW;
lrclog � " Gen Err: " � ERR_SW;
lrclog � " Gen RC: " � PRT_SW;

This code is used in section 22.

26. Parse the grammar.
Due to the syntax directed code not having legitimate grammars to parse it, a character-at-a-time parsing
approach is used. This is a lexical and syntactic mix of parsing instead of your separate lexical, syntax parse
stages. Why? I’ll use a question as an answer. How do you recognize the ‘***’ directive to end a c++ syntax
directed code portion that is an unstructured sequence of characters? Well crawl at a character’s pace per
prefix accessment. This is why the bluring between lexical and syntatical boundaries. So walk-the-walk-
and-talk of a lexical parser using recursive descent (for its single call of fame containing a bottom-up parse)
tripped off by a bottom-up syntax directed code. What a mouthfull! Should mother use soap and a tooth
brush to punish the child? Who is this mother anyway?

Within the pass3 .lex grammar are procedure calls containing the parse phases. Each phase is called
from within the syntax-directed-code of the recognized keyword: “fsm”,“ rules”, etc. This demonstrates a
bottom-up / top-down approach to parsing. Options are what it’s all about. What’s your choice?

〈parse the grammar 26 〉 ≡ /∗ yacco2 ::YACCO2_TH__ = 1; ∗/ /∗ yacco2 ::YACCO2_MSG__ = 1; ∗/
using namespace NS pass3;

tok can < std :: ifstream > cmd line (o2 file to compile .c str ());
Cpass3 p3 fsm ;
Parser pass3 (p3 fsm ,&cmd line ,&P3 tokens , 0,&Error queue ,&JUNK tokens , 0);
pass3 .parse ();
〈 if error queue not empty then deal with posted errors 21 〉;
〈dump lexical and syntactic’s outputted tokens 27 〉;

This code is used in section 19.

27. Dump lexical and syntactic’s outputted tokens.

〈dump lexical and syntactic’s outputted tokens 27 〉 ≡
yacco2 ::TOKEN_GAGGLE_ITERi = P3 tokens .begin ();
yacco2 ::TOKEN_GAGGLE_ITERie = P3 tokens .end ();
lrclog � "Dump of P3 tokons" � endl ;
for (int yyy = 1; i 6= ie ; ++i) {

CAbs lr1 sym ∗ sym = ∗i;
if (sym ≡ yacco2 ::PTR LR1 eog) continue;
lrclog � yyy � ":: " � sym~ id � " file no: " � sym~ tok co ords .external file id �

" line no: " � sym~ tok co ords .line no � " pos: " � sym~ tok co ords .pos in line �
endl ;

++yyy ;
}

This code is used in section 26.

§28 O2 DUMP AID — ENUMERATE GRAMMAR’S COMPONENTS 17

28. Dump aid — Enumerate grammar’s components.
As a reference aid to a grammar’s components, each component has an enumerate value of “x.y.z” where x
stands for the rule number, y is its subrule number, and z is the component number. The grammar’s enumer-
ated elements are “rule-def”, “subrule-def”, and components “refered-rule”, “refered-T”, and “eosubrule”.
The “rules-phrase” is not enumerated as it just ties all the forests together. An enumerate example is “1”
standing for the Start rule. “1.2.2” goes to its 2nd subrule of component 2.

The grammar is read whereby all its forests are enumerated relative to one another.

〈dump aid: enumerate grammar’s components 28 〉 ≡
set<int> enumerate_filter;

enumerate filter .insert (T Enum ::T rule def);
enumerate filter .insert (T Enum ::T T subrule def);
enumerate filter .insert (T Enum ::T refered T);
enumerate filter .insert (T Enum ::T T eosubrule);
enumerate filter .insert (T Enum ::T refered rule);
enumerate filter .insert (T Enum ::T T called thread eosubrule);
enumerate filter .insert (T Enum ::T T null call thread eosubrule);

using namespace NS enumerate grammar;

tok can ast functor walk the plank mate ;
ast prefix enumerate grammar walk (∗rules tree ,&walk the plank mate ,&enumerate filter , ACCEPT_FILTER);
tok can < AST ∗> enumerate grammar can (enumerate grammar walk);
Cenumerate grammar enumerate grammar fsm ;
Parser enumerate grammar (enumerate grammar fsm ,&enumerate grammar can , 0, 0,&Error queue);
enumerate grammar .parse ();

This code is used in section 14.

18 EPSILON AND PATHOLOGICAL ASSESSMENT OF RULES O2 §29

29. Epsilon and Pathological assessment of Rules.
Epsilon condition:
Rule contains an empty symbol string in a subrule. The only subtlety is when a rule has a subrule(s) con-
taining all rules. If all the rules within that subrule are epsiloned, then this subrule is an epsilon and so turn
on its rule as epsilonable.

Pathological Rule assessment:
Does a rule derive a terminal string? The empty string is included in this assessment. epsilon rules grammar
tells the whole story.

Note:
The tree is walked using discrete levels: Rules and Subrules. The subrule’s elements are filtered out (not
included) for the discrete rule traversal but is added within the rule’s syntax directed code logic a subrule’s
element advancement. Element advancement bypasses the thread component expression. These are neat
facilities provided by O2 using the tok can tree traversal containers.

〈 epsilon and pathological assessment of Rules 29 〉 ≡
using namespace NS epsilon rules;

set<AST*> yes_pile;

set<AST*> no_pile;

list< pair<AST*,AST*> > maybe_list;

T rules phrase ∗ rules ph = O2_RULES_PHASE;
AST ∗ rules tree = rules ph~phrase tree ();
set<int> filter;

filter .insert (T Enum ::T T subrule def);
filter .insert (T Enum ::T rule def);
tok can ast functor just walk functr ;
ast prefix rule walk (∗rules tree ,&just walk functr ,&filter , ACCEPT_FILTER);
tok can < AST ∗> rules can (rule walk);
Cepsilon rules epsilon fsm ;
Parser epsilon rules (epsilon fsm ,&rules can , 0, 0,&Error queue);
epsilon rules .parse ();
〈Print pathological symptoms but continue 30 〉; /∗ 〈print tree 132 〉; ∗/

This code is used in section 14.

30. Print pathological symptoms but continue.

〈Print pathological symptoms but continue 30 〉 ≡
if (Error queue .empty () 6= true) {
DUMP_ERROR_QUEUE(Error queue);
Error queue .clear ();
return 1;
}

This code is used in section 29.

§31 O2 GET THE TOTAL NUMBER OF SUBRULES 19

31. Get the total number of subrules.
I’m lazy and don’t want to distribute the count as the individual rules are being parsed so do it via the
a tree walk on subrules. Why do it anyway? I’ve hardwired the elem space table size against a constant
Max no subrules . Why not allocate the table size dynamicly? Glad u asked as the malloc approach burped.
Maybe there’s mixed metaphores on malloc versus how the C++ new / delete allocation is done. Anyway
this works and is reasonable.

〈 get total number of subrules for elem space size check 31 〉 ≡
set<int> sr_filter;

sr filter .insert (T Enum ::T T subrule def);
ast prefix sr walk (∗rules tree ,&just walk functr ,&sr filter , ACCEPT_FILTER);
tok can < AST ∗> sr can (sr walk);
for (int xx (0); sr can [xx] 6= yacco2 ::PTR LR1 eog ; ++xx) ;
O2_T_ENUM_PHASE~ total no subrules (sr can .size ());
if (O2_T_ENUM_PHASE~ total no subrules () > Max no subrules) {

lrclog � "Grammar’s number of subrules: " � O2_T_ENUM_PHASE~ total no subrules () �
" exceeds the allocated space for table elem_space: " � Max no subrules � endl ;

lrclog � "This is a big grammar so please correct the grammar." � std ::endl ;
clog � "Grammar’s number of subrules: " � O2_T_ENUM_PHASE~ total no subrules () �

" exceeds the allocated space for table elem_space: " � Max no subrules � endl ;
clog � "This is a big grammar so please correct the grammar." � std ::endl ;
return 1;
}

This code is used in section 14.

32. Calculate each rule’s first set.
Lov the discrete logic of a grammar to code algorithms. See first set rules grammar as it’s really is simple in
its logic: i’m getting there from all corners of the coding world. Not any more as i’m pruning the overhead
so out my drafty thoughts and this grammar first set rules . Just iterate over the grammar tree for filtered
rule def nodes only.

〈 calculate rules first sets 32 〉 ≡
set<int> fs_filter;

fs filter .insert (T Enum ::T rule def);
ast prefix fs rule walk (∗rules tree ,&just walk functr ,&fs filter , ACCEPT_FILTER);
tok can < AST ∗> fs rules can (fs rule walk);
for (int xx (0); fs rules can [xx] 6= yacco2 ::PTR LR1 eog ; ++xx) {

rule_def* rd = (rule_def*)fs_rules_can[xx];

GEN_FS_OF_RULE(rd);
}

This code is used in section 14.

33. Calculate Start rule’s called threads first set list.
It calculates the “called threads” first set for the “to be emitted xxx.fsc” file. The neat wrinkle is the
epsilonable rule that requires same transience left-to-right moves thru the subrule expressions. This is
fodder to Olinker

2 that builds each thread’s first set from the “list-of-native-first-set-terminal” and “list-of-
transitive-threads” constructs. The final outcome of Olinker

2 is an optimized list of threads per terminal. The
calculation goes across the Start rule and its closured rules to determine the list of called threads. This list
can be ε . In the “Start rule” is the contents for “list-of-transitive-threads”.

〈 calculate Start rule called threads first sets 33 〉 ≡
rule def ∗ start rule def = (rule def ∗) fs rules can .operator[](0);
GEN_CALLED_THREADS_FS_OF_RULE(start rule def);

This code is used in section 14.

20 ARE ALL GRAMMAR PHASES PARSED? O2 §34

34. Are all Grammar phases parsed?.
As i parse the individual phrases by their keyword presence without using a grammar to sequence each phase,
now is the time to see if all the parts are present in the grammar. This is a simple iteration on the posted
O2_PHRASE_TBL to fetch their phrase terminals and to put them thru a post grammar sequencer.

I changed how the tokens are fetched from fill the container by iterating the O2 xxx phases to reading
the grammar’s tree. Why? Cuz i implicitly changed to on-the-fly enumeration of their values while they
were being parsed. If their order was changed then their appropriate enumerates are out-of-alignment. For
example if the raw character classification came before the “lrk” definitions, this would be catastrophic due
to the down stream semantics’ dependency on their correct enumerates.
A bird’s view of O2’s phases: indent shows node’s dependency

::1 grammar-phrase grammar-phrase file 2:0: line 24:4: sym*: 0122B598
::2 fsm-phrase fsm-phrase file 2:766: line 24:4: sym*: 01220BA0
::3 T-enum-phrase T-enum-phrase file 4:1069: line 32:14: sym*: 01272500
::4 lr1-k-phrase lr1-k-phrase file 5:1727: line 44:21: sym*: 011F0360
::5 rc-phrase rc-phrase file 6:303: line 13:15: sym*: 01270C98
::6 error-symbols-phrase error-symbols-phrase file 7:1026: line 34:14: sym*: 0257F388
::7 terminals-phrase terminals-phrase file 8:474: line 15:10: sym*: 011F1458
::8 rules-phrase rules-phrase file 2:1708: line 60:6: sym*: 02FB3AA8

Notice i walk the tree by ast prefix wbreadth only . This visits the start node “grammar-phrase” and only its
immediate children by the “breadth-only” qualifier.

〈 are all phases parsed? 34 〉 ≡
set<int> phase_order_filter;

phase order filter .insert (T Enum ::T T fsm phrase);
phase order filter .insert (T Enum ::T T enum phrase);
phase order filter .insert (T Enum ::T T lr1 k phrase);
phase order filter .insert (T Enum ::T T rc phrase);
phase order filter .insert (T Enum ::T T error symbols phrase);
phase order filter .insert (T Enum ::T T terminals phrase);
phase order filter .insert (T Enum ::T T rules phrase);
tok can ast functor orderly walk ;
ast prefix wbreadth only evaluate phase order (∗GRAMMAR_TREE,&orderly walk ,&phase order filter ,

ACCEPT_FILTER);
tok can < AST ∗> phrases can (evaluate phase order);

using namespace NS eval phrases;

Ceval phrases eval fsm ;
Parser eval phrases (eval fsm ,&phrases can , 0, 0,&Error queue , 0, 0);
eval phrases .parse ();
〈 if error queue not empty then deal with posted errors 21 〉;

This code is used in section 14.

§35 O2 THREAD’S END-OF-TOKEN STREAM: LOOKAHEAD EXPRESSION POST EVALUATION 21

35. Thread’s end-of-token stream: Lookahead expression post evaluation.
If the grammar contains the ‘parallel-parser’ construct, then it is considered a thread. As a refinement, this
construct allows one to fine-tune the lookahead boundaries of the grammar in its own contextual way. As
this construct is declared before the grammar’s vocabulary definitions — rules and terminals, the expression
must be kept in raw character token format with some lexems removed like comments. Only after all the
grammar has been recognized can the lookahead expression be parsed properly: the terms in the expression
must relate to T-in-stbl, rule-in-stbl, and the + or − expression operators.

Squirrelled away in the ‘parallel-parser’ terminal is the raw token stream of the lookahead expression. The
strategy used is to fetch the appropriate parsed phase token from the O2 phase table and then deal with its
locally defined pieces of information. Originally these parse phases were kept in the global symbol table but
now they are contained in its own table. Why? Well how do u guard against a grammar writer defining a
terminal whose key could be a synomyn to one of my internal parse phases? Regardless of how clever one is
to naming keys, separation between my internal tables and the global symbol table has a 100% assurance of
no conflict.

First set Criteria:
1) Element is a Terminal, use its calculated enumeration value
2) If the element is eolr, then use all calculated enumeration values
3) Element is a Rule, use its calculated First set terminals

Before the Lookahead first set can be calculated, the terminal vocabulary must be traversed and assigned
an enumeration value per terminal. The grammar’s rules must also have their first sets calculated before the
lookahead expression can be calculated.

The lookahead logic within its grammar(s) is two fold:
a) parse the lookahead expression for kosher syntax
b) calculate the lookahead’s first set from the expression

The error checks are for an ill-formed expressions, and for an empty first set calculation: for example, ‘a’ -
‘a’, or ‘b’ - ‘eolr’, and epsilon Rules used in the lookahead expression. This calculated first set is then used
down stream in the finite state automata (FSA) generation of the grammar.

〈determine if la expression present. Yes parse it 35 〉 ≡
if (O2_PP_PHASE 6= 0) {
〈parse la expression and calculate its first set 36 〉;
}

This code is used in section 14.

22 PARSE THE LA EXPRESSION AND CALCULATE ITS FIRST SET O2 §36

36. Parse the la expression and calculate its first set.

〈parse la expression and calculate its first set 36 〉 ≡
T parallel parser phrase ∗ pp ph = O2_PP_PHASE;
if (pp ph~ la bndry () ≡ 0) {

CAbs lr1 sym ∗ sym = new Err pp la boundary attribute not fnd ;
sym~set rc(∗pp ph);
Error queue .push back (∗sym);
〈 if error queue not empty then deal with posted errors 21 〉;
}
T parallel la boundary ∗ la bndry = pp ph~ la bndry ();
yacco2 ::TOKEN_GAGGLE ∗ la srce tok can = la bndry~ la supplier ();
yacco2 ::TOKEN_GAGGLEla tok can lex ;
yacco2 ::TOKEN_GAGGLEla expr tok can ;

using namespace NS la expr lexical;

Cla expr lexical la expr lex fsm ;
Parser la expr lex parse (la expr lex fsm , la srce tok can ,&la tok can lex , 0,&Error queue ,

&JUNK tokens , 0);
la expr lex parse .parse ();
〈 if error queue not empty then deal with posted errors 21 〉;
using namespace NS la expr;

Cla expr la expr fsm ;
Parser la expr parse (la expr fsm ,&la tok can lex ,&la expr tok can , 0,&Error queue ,&JUNK tokens , 0);
la expr parse .parse ();
〈 if error queue not empty then deal with posted errors 21 〉;

This code is used in section 35.

37. Determine rule use count: Optimization.
To improve performance, the rules (Productions) symbols are newed once and recycled when needed. To
ensure that there are enough recycled rules available, the gramar is traversed and their uses counted. If
recursion is present within the rule, this adds one more use. The grammar tree is traversed looking only for
“rule-def”, “subrule-def”, and “refered-rule” tokens.

〈determine each rule use count 37 〉 ≡
lrclog � "Evaluate rules count" � endl ;

using namespace NS rules use cnt;

set<int> rules_use_cnt_filter;

rules use cnt filter .insert (T Enum ::T T subrule def);
rules use cnt filter .insert (T Enum ::T rule def);
rules use cnt filter .insert (T Enum ::T refered rule);
tok can ast functor rules use walk functr ;
ast prefix rules use walk (∗GRAMMAR_TREE,&rules use walk functr ,&rules use cnt filter , ACCEPT_FILTER);
tok can < AST ∗> rules use can (rules use walk);
Crules use cnt rules use cnt fsm ;
Parser rules use cnt (rules use cnt fsm ,&rules use can , 0, 0,&Error queue);
rules use cnt .parse ();

This code is used in section 14.

§38 O2 GENERATE GRAMMAR’S LR1 STATES 23

38. Generate grammar’s LR1 states.
The global lr states list LR1_STATES is added to dynamicly as each closure state/vector gens their states.
LR1_HEALTH is the diagnostic of the parsed grammar.

39. Driver generating lr1 states.
Goes thru the lr state list looking for closure states to gen. Note: a closure state gens its transitive states.
A part from the “closure only” state (start state), all other states contain 2 contexts: transitive core items,
and possibly added to closured items. As the list is read, it evaluates the possible state for gening by seeing
if there are closured items needing to be gened. There are 3 possible outcomes to this evaluation:

1) items not gened: goto of item is nil.
2) items completed due to right boundedness from a previous gen closure state / vector context.
3) partially gened items due to common prefix of a previous closure state/vector context.

Point 1 + 3 need gening. Point 1 is your regular generation context. Point 3 requires walking thru its right
side symbols to where its goto state needs gening (nil). From there its gening proceeds as normal within its
own closure state/vector context.

During each state closure part/vectors pass, lr kosherness is tested within each closure state/vector gening
context. A non lr(1) verdict is returned immediately within the gening closure state/vector context. The
balance of the closure state/vectors to gen are not completed.

〈 generate grammar’s LR1 states 39 〉 ≡
AST ∗ start rule def t = AST ::get 1st son (∗rules tree);
state ∗ gening state = new state (start rule def t);
gen context gening context (0,−1);
STATES ITER typesi = LR1_STATES.begin ();
STATES ITER typesie = LR1_STATES.end ();
/∗ list added to dynamicly as each gening context created ∗/

for (; si 6= sie ; ++si) {
gening state = ∗si ;
gening context .for closure state = gening state ;
gening context .gen vector = −1;
lrclog � "lr state driver considered state: " � gening context .for closure state ~state no �

" for vector: " � gening context .gen vector � endl ;
LR1_HEALTH = gening state~gen transitive states for closure context (gening context , ∗gening state ,

∗gening state);
if (LR1_HEALTH ≡ NOT_LR1_COMPATIBLE) {
〈 is the grammar unhealthy? yes report the details and exit 40 〉;

}
} /∗ 〈print dump state 135 〉; ∗/
〈 commonize la sets 41 〉; /∗ please put back at sign if u want to trace ∗/
/∗ 〈print dump state 135 〉; ∗/ /∗ 〈print dump common states 134 〉; ∗/

This code is used in section 14.

24 IS THE GRAMMAR UNHEALTHY? YES REPORT THE DETAILS AND EXIT O2 §40

40. Is the grammar unhealthy? yes report the details and exit.

〈 is the grammar unhealthy? yes report the details and exit 40 〉 ≡
if (LR1_HEALTH ≡ NOT_LR1_COMPATIBLE) {

yacco2 :: lrclog � "===>Please check Grammar dump file: " � normal tracing .c str () �
" for Not LR1 details" � endl ;

std ::cout � "===>Please check Grammar dump file: " � normal tracing .c str () �
" for Not LR1 details" � endl ;

yacco2 :: lrclog � "Not LR1 −−− check state conflict list of state: " �
gening state~state no � " for details" � endl ;

〈print dump state 135 〉;
〈print dump common states 134 〉;
return 1;
}

This code is used in sections 14 and 39.

41. Commonize LA Sets — Combine common sets as a space saver.
Go thru the lr states looking for reduced subrules. Their lookahead sets have already been calculated so
by set equality determine common la sets by reading thru the registry for its soul mate. This common
reference to same sets minimizes space in the emitted lr state tables. The index number per set in the
COMMON_LA_SETS registry will be used as part of each generated la set’s name. This is why the found index
number is deposited per reduced subrule. When the state tables get emitted, this index number + 1 is used
in the gened lookahead’s name as i prefer its name to be relative to 1.

〈 commonize la sets 41 〉 ≡
COMMONIZE_LA_SETS();

This code is used in section 39.

§42 O2 OVERVIEW OF O2’S STATE GENERATED COMPONENTS 25

42. Overview of O2’s state generated components.
O2 generates the components making up the automaton and the first set language for O2Linker to compile.
These files are the header definition of the grammar, the “first set” file for O2Linker, and the implementations
of the automata (fsm), it’s symbols, and the fsm’s states.

Depending on the switches inputted, O2 can generate the Terminal vocubulary defined for the grammar
environment: the individual terminal classifications of errors, lr constants, raw characters, and Terminals.
As a global reference to all defined terminals, an enumeration scheme is emitted.

26 LR1 DEFINITIONS O2 §43

43. LR1 definitions.

State

Vectors map Follow set map Entry symbol Conflict states list

vectors map[eno]: symbol’s enumerate

• state’s element list
• state element ↑
• grammar tree node ↑
• closure state ↑
• go to state ↑
• previous state ↑
• reduced state ↑
• previous state element

• next state element
• LA set ↑
• Common LA set index

follow set map[eno]: rule’s enumerate

• follow set element ↑
• rule no • rule def tree ↑
• state element ↑ • it’s state ↑
• follow set of T−in−stbl ↑
• transitions: follow set element ↑
• merges:

Let’s review what makes up a state:
1) subrules’s specific element — state’s to gen vectors
2) rules’s follow set
3) state’s entry symbol — Start state has no entry symbol
4) state’s list of conflict states

A state is a set of productions (subrules) where each production’s current symbol being worked on is some
position along its string. A state from the arithmetic grammar discussed earlier could be represented by the
following example where the “.” indicates the position within the production’s string being worked on in
the state:

S → E . ⊥
E → E . + T

The above state has 2 productions where each symbol being worked on is in position 2 of their respective
strings. These are items in the state having their production configuration of subrule ⊗ string position.
Sometimes I shall call each entry a state element rather than an item. A rule’s follow set gets created
when it is present in point 1: ie, the state’s element is a rule and its follow set is the string to its right that
generates teminals. Please see at the beginning of this document the “follow set” definition. Point 3’s entry
symbol identifies the symbol used to gen the state and to quickly help in determining whether two states are
equivalent for potential state merging. Point 4 is a requirement to support merging of states from 2 different
closured-part state networks. It supplies the lr1 states that have reduce / reduce or shift conditions that
require the lr1 compatibility check. When there is a proposed merger from 2 different closured-part contexts,
it is the union of their follow sets that gives the reducing subrules their lookahead sets. Consequently the
lr1 conflict states of the “merged into context” must be evaluated for lr1 compatibility.

Parts of a state:
1) Closured
2) Transitive

A closured part are all the state’s items whose elements start their strings. They have been brought into
the state by the “closure” operation caused by a state’s element being a rule. A transitive part are those
productions whose elements are to the right of the start element. Items used to generate a new state are
called “core items”.

§43 O2 LR1 DEFINITIONS 27

State generation:
All states are generated from a closured part of a state. Its productions are walked along their strings
producing transitive states until their strings are completely consumed. This holds for the “Start state”
that starts things off by generating all it transitive children. Thereafter each transitive state is visited and
assessed for its closured components that then generates its own transitive states. This goes on until all the
generated states have been visited.

Contexts:
1) follow sets
2) production’s reduced lookahead set

A production’s reduction occurs when all its string has been recognized. For it to reduce, it depends on
the context of its follow set within its birthing closured state: This is the lr1 compatibility context that is
refered to as lookahead. When there is no conflict of interest between competing productions (reduces with
possibly shifts) within the state, this becomes a lr(0) situation. Without regard for the lookahead context
this now shifts the error detection to the state that must deal with the lookahead as the current terminal
for shifting. This strategy is used when state merges takes place. Instead of exploding the number of states
sensitive to only its own lookahead context, mergers combine the follow set contexts as long as there is no
state incompatibilities created. 2 or more competing reducing productions requires their follow set contexts
to resolve the reducing conflict: reduce / reduce or reduce / shift. Shifts of symbols are local to the reducing
state.

Of course lookaheads are context sensitive according to each productions birthing states. In LR(1) terms,
the lookahead is deterministic and provided by the follow sets having only 1 symbol string as lookahead.

Follow set and right bounded condition:
This condition is where a rule is the last symbol in its production string. Its closured productions inherit
the follow set of the production string(s) that closured it. These follow sets are found in the gening closured
state environment. Consequently right bounded closured productions must be gened in case it could produce
a conflict state. Why? Merges taking place above this to-be-gened production from a different closured state
generation could produce a conflict as the merger is not aware that one of its transitive states has a future
conflict condition dependent on these merged follow set contexts.
As an example please see David Spector from “SIGPLAN VOL 23 DEC/88” where my gened “lr1 sp5.lex”
grammar illustrates this condition.

Epsilon rules and right bounded condition:
If the last symbol is a rule and is epsilonable, then the right bounded condition moves left inwards from the
end of the symbol string to the next right-to-left symbol. Now if that symbol is a rule it is considered a right
bounded requiring generation within the current closured state environment. This is a recursive definition:
right bounded condition gens closures having the right bounded condition that also requires immediate gen-
eration. When it comes time to gen the closured-part state of the right bounded components, they will have
been already gened and their conflict states entered against their gening closured-part state environment.

Significance of right bounded condition:
It demands that its future closured state generation be associated with the generating closured state that
created it. Restated: It must be generated prematurely by its spawning closured state. This way any of its
transitive states that have the lr1 conflict condition will get placed in the conflict state list of the generating
closured state so that a proposed merger relative to the original closured state is aware of the potential
conflict and checked accordingly.

Some synonyms:
“Closure-only” state:
A state where all its state elements are configurations with their start symbol. This is your one and only
Start state.

28 LR1 DEFINITIONS O2 §43

“Transitive” state:
A state where at least one state element is not the starting symbol of a production’s string.

“Closured-only-part” of a state:
All state’s elements whose symbols start the subrule string. Synonym: “closured state”.

“Closured-only-subrules” of a state:
Productions’s symbol strings brought into the state by the closure operation caused by a state’s element being
a rule. The “closured-only” part are those subrules birthed within this state to generate all its “closured-
only” subrules transitive states.

“Conflict state”:
A state having at least 2 items where at least one of the productions is reducing.

Building a state core:
There are only 2 contexts that provide the generation fodder for a state:

1) Start (closure-only) state — Start rule’s grammar tree definition
2) Transitive states — generated from a closured state

The “closured-part” of a state generates all its transitive states from its closure subrules regardless of the
type of state — Start or transitive. Point 1 starts things off. It generates all its transitive states. Point 2
deals with transitive states from point 1 that have closured-only residues that need generating. Of course
these newly generated transitive states could be merged into the existing lr1 state network if they meet the
lr1 compatibility criteria. Eventually the newly added transitive states will be assessed for their “closured-
part” generation.

Some Merge points:
First, only conflict states are tested. They are supplied by their associated closured generating state. When a
merge takes place, the state being absorbed by the older closured network deposits its follow set info against
the merged into state.

Second, the conflict states of the “merged into” state network must also be added to the gening closured
state’s conflict state list. Why? If the state was not merged, eventually all its gened states would have the
equivalent conflict states as the proposed merger. The only refinement to this is conflict states should only
be added that are eventually generated from the “merged into” state. Now if future mergers are proposed
into this newly closured state’s network, the conflict states of the absorbing network will also be there for
the testing.

In summary, Lr1 state generation is discrete in its generation passes. Pass one: generate all the states
for the start state from its “closured-only” subrules. Pass two and greater deals with “closured-only” parts
of transitive states that have not been completely gened. Remember a subrule is associated with its birth
state that brought it into existance. These transitive states are of previous passes. Each transitive pass looks
for the next transitive state to generate until all its lr state network have been built. The “transitive state
pass” generates all its “closured-only” subrules independently of the past generations.

Now the state implementation bedevils this definition as does Goethic churches — one usually does not
see the infrastructure required to build it unless the project ran out of money and stands unfinished but
open to its engineering secrets. So here’s the scaffolding for my sanity. A note on the following type defs
sections: to make “cweave” behave in formatting its the document — a slight ahem until i debug / correct
“cweave”. The cause is templates that came after the original program was written.

§44 O2 GEN CONTEXT DEFINITION/IMPLEMENTATION 29

44. gen context definition/implementation.
The context identifying the closure state and vector combo gening its states. This context is needed to
prevent same closure state merges whose vectors are different but generate common states having different
follow sets. If merged the contributing contexts could make it non lr1. See David Spector’s paper “Efficicent
Full Lr1 Parser Generators”: G2 example. The context is maintained per state that gened it and per state’s
subrules vectors: state element .

〈Structure implementations 44 〉 ≡
gen context ::gen context (state ∗ S,Voc ENO Ve): for closure state (S), gen vector (Ve)
{ }

See also sections 46, 48, 50, 52, 53, 54, 55, 57, 58, 60, 62, 63, 66, 67, 68, 69, 70, 72, 73, 74, 75, 76, 78, 79, 81, 82, 87, 88, 89, 91,

92, 93, 98, 99, 100, 101, 104, 105, 113, and 115.

This code is used in section 141.

45. state element definition/implementation.
Basic building block of a state’s set of subrules’ string symbols. Laced throughout state element are linkages
between the past, present, and future of its lr1 state generation. This is the scaffolding to build the state
network. sr def element is for tracing purposes only. I could have gone the long way by getting the
tree node’s content and then fetch its definition but this makes life easier when truth telling takes place —
terminal-def or rule-def.

The la set only gets created at the end-of-string point. It’s a fast way to scratch-pad potential merges
and the lr1 breathalyzer test.

46. state element implementation.

〈Structure implementations 44 〉 +≡
state element ::state element (AST ∗ Elem):

cs vector combo gening it (0,−1), sr element (Elem), sr def element (0), its enum id (−1),
subrule def (0), closure state (0), goto state (0), previous state (0), reduced state (0), self state (0),
previous state element (0),next state element (0), la set (0), common la set idx (−1)

{
〈determine entry symbol 47 〉;
}

30 STATE ELEMENT IMPLEMENTATION O2 §47

47. Determine entry symbol.
Eases tracing of lr states easier instead of just displaying its enumerated value.

〈determine entry symbol 47 〉 ≡
CAbs lr1 sym ∗ sym = AST ::content (∗Elem);
Voc ENO id = sym~enumerated id ;
switch (id) {
case T Enum ::T refered rule :
{
〈 get cast referenced rule 108 〉;
rule def ∗ rd = rr~ its rule def ();
sr def element = rd ;
its enum id = rd~enum id ();
break;

}
case T Enum ::T T eosubrule :
{
〈 get cast referenced eosubrule 110 〉;
sr def element = eos ;
its enum id = eos~enumerated id ;
la set = new LA SET type ();
break;

}
case T Enum ::T T null call thread eosubrule :
{
〈 get cast referenced null called thread eosubrule 111 〉;
sr def element = eos ;
its enum id = eos~enumerated id ;
break;

}
case T Enum ::T T called thread eosubrule :
{
〈 get cast referenced called thread eosubrule 112 〉;
sr def element = eos ;
its enum id = eos~enumerated id ;
break;

}
case T Enum ::T refered T :
{
〈 get cast referenced T 109 〉;
T terminal def ∗ td = rt~ its t def ();
sr def element = td ;
its enum id = td~enum id ();
break;

}
}

This code is used in section 46.

§48 O2 ∼STATE ELEMENT 31

48. ∼state element .

〈Structure implementations 44 〉 +≡
state element ::∼state element ()
{

if (la set 6= 0) delete la set ;
}

49. Lookahead Comments.
Please see the la express grammar as to how it calculates the thread’s end-of-parse stream lookahead. The
“eolr” metaterminal is discussed in length as to what it represents and how it is exploded when lookahead
expressions are used in a thread grammar “parallel-la-boundary” construct.

50. add fs setA to LA.
Substitute “parallel-reduce-operator for “parallel-operator” to eliminate the ambiguity between look ahead
for reduction purposes versus calling thread for shift purposes.

〈Structure implementations 44 〉 +≡
void state element ::add fs setA to LA(follow element & Fe ,LA SET type & La to fill in)
{

FOLLOW SETS ITER type i = Fe .follow set .begin ();
FOLLOW SETS ITER type ie = Fe .follow set .end ();
for (; i 6= ie ; ++i) {

LA SET ITER type j = La to fill in .find (∗i);
if (j ≡ La to fill in .end ()) {

T in stbl ∗ t sym = ∗i;
〈 is there back to back thread calls? 51 〉;

}
}
}

51. Is there back to back thread call?.
Before the thread call reduce was made lr(0), it used the |r|meta terminal to reduce the first thread call
as the |||operator within a state was ambiguous in the 2 contexts — run the thread or reduce the called
thread.

〈 is there back to back thread calls? 51 〉 ≡
if (t sym~ t def ()~enum id () 6= LR1_PARALLEL_OPERATOR) {

La to fill in .insert (t sym);
}
else {

using namespace yacco2 stbl;

T sym tbl report card report card ;
find sym in stbl (report card , ∗LR1_REDUCE_OPERATOR_LITERAL);
T_in_stbl* td = (T_in_stbl*)report_card.tbl_entry_−>symbol_;

La to fill in .insert (td);
}

This code is used in section 50.

32 CALC LA — FILL THE REDUCED ELEMENT’S LA SET BY WALKING FOLLOW SET GRAPH O2 §52

52. calc la — fill the reduced element’s la set by walking follow set graph.
Fill in the lookahead set for a reduced subrule by walking its follow sets. I protect against merges vs right
bounded transitions that could cycle by VISITED_MERGE_STATES_IN_LA_CALC. The gened la is checked
empty so indicate as bad.

〈Structure implementations 44 〉 +≡
bool state element ::calc la (state element & La to fill in)
{

if (La to fill in .la set ≡ Λ) {
return false ; /∗ no set to fill;so not lr1 ∗/

}
if (La to fill in .reduced state 6= La to fill in .self state) return true ;
VISITED_MERGE_STATES_IN_LA_CALC.clear ();
La to fill in .la set ~clear ();
state ∗ cs = La to fill in .closure state ;
CAbs lr1 sym ∗ sym = AST ::content (∗La to fill in .sr element);
T_ENOid = sym~enumerated id ;
switch (id) {
case T Enum ::T T eosubrule :
{
〈 get cast referenced eosubrule 110 〉;
rule def ∗ rd = eos~ its rule def ();
RULE_ENOr id = rd~enum id ();
S FOLLOW SETS ITER type i = cs~state s follow set map .find (r id);
follow element ∗ fe = i~second ;
add fs setA to LA(∗fe , ∗La to fill in .la set);
if (fe~ transitions .empty () 6= true) {

fill la from transition (La to fill in , fe~ transitions);
}
if (fe~merges .empty () 6= true) {

fill la from merge (La to fill in , fe~merges , r id);
}
break;

}
case T Enum ::T T null call thread eosubrule :
{

break;
}

case T Enum ::T T called thread eosubrule :
{

break;
}

}
if (La to fill in .la set ~empty () ≡ true) {

return false ; /∗ not lr1 as cant have an empty la set ∗/
}
else {

return true ; /∗ la set ok ∗/
}
}

§53 O2 FILL LA FROM MERGE 33

53. fill la from merge .

〈Structure implementations 44 〉 +≡
void state element ::fill la from merge (state element & La to fill in ,MERGES type & Merge ,

RULE_ENORule no)
{

MERGES ITER type i = Merge .begin ();
MERGES ITER type ie = Merge .end ();
for (; i 6= ie ; ++i) {

state ∗ cs = ∗i;
STATES SET ITER type ii = VISITED_MERGE_STATES_IN_LA_CALC.find (cs);
if (ii 6= VISITED_MERGE_STATES_IN_LA_CALC.end ()) return;
VISITED_MERGE_STATES_IN_LA_CALC.insert (cs);
S FOLLOW SETS ITER type i = cs~state s follow set map .find (Rule no);
follow element ∗ fe = i~second ;
add fs setA to LA(∗fe , ∗La to fill in .la set);
if (fe~ transitions .empty () 6= true) {

fill la from transition (La to fill in , fe~ transitions);
}
if (fe~merges .empty () 6= true) {

fill la from merge (La to fill in , fe~merges , fe~rule no);
}

}
}

54. fill la from transition .

〈Structure implementations 44 〉 +≡
void state element ::fill la from transition (state element &La to fill in ,TRANSITIONS type &Transition)
{

TRANSITIONS ITER type i = Transition .begin ();
TRANSITIONS ITER type ie = Transition .end ();
for (; i 6= ie ; ++i) {

follow element ∗ fe = ∗i;
add fs setA to LA(∗fe , ∗La to fill in .la set);
if (fe~ transitions .empty () 6= true) {

fill la from transition (La to fill in , fe~ transitions);
}
if (fe~merges .empty () 6= true) {

fill la from merge (La to fill in , fe~merges , fe~rule no);
}

}
}

55. find state element s rule no .
Used for state merging to calculate a reducing subrule’s lookahead set.

〈Structure implementations 44 〉 +≡
RULE_ENOstate element ::find state element s rule no()
{

return subrule def ~ its rule def ()~enum id ();
}

34 FOLLOW SET DEFINITION FOR A RULE O2 §56

56. Follow set definition for a rule.
The input set of strings for the rule’s follow set are provided by the state’s S VECTORS type that is a map
of 3 generic enumerate types — “rule-defs”, “T-defs”, and “eosubrule” variants. Of particular interest in this
map are the “rule-def”s. The state element s associated with the rule are the GPS into each subrule’s symbol
string. One can view this as the state’s contributors list to generate both its lr states and the referenced
rules’ follow sets for this state. Now these input follow set strings are the strings to its right of its GPS. This
is supplied thru the symbol’s grammar next brother tree node.

57. Follow set implementation.

〈Structure implementations 44 〉 +≡
AST ∗ follow element ::rule def t ()
{

return rule def t ;
}
state ∗ follow element :: its state ()
{

return its state ;
}

follow element :: follow element (state ∗ State): rule no (−1), rule def t (0), its state (State)
{ }

follow element :: follow element (RULE_ENORule no , state element & State elem , AST & Rule def t):
rule no (Rule no), rule def t (&Rule def t), its state (State elem .closure state)

{ }
void follow element ::add follow set contributor (AST ∗ SR element)
{

sr elements .push back (SR element);
}

58. add follow set transition .
Find eosubule’s lhs rule. This gives the “rule no” to fetch its follow set element from its closure state’s follow
set map. Remember, epsilon stays within its closured state whilst a reducing subrule needs to go back to
the start of its symbol string for its spawning rule and hence its follow set.

〈Structure implementations 44 〉 +≡
void follow element ::add follow set transition (state element & State elem ,T eosubrule & Eos)
{

rule def ∗ rd = Eos .its rule def ();
RULE_ENOeno = rd~enum id ();
S FOLLOW SETS ITER type fsi = State elem .closure state ~state s follow set map .find (eno);
if (fsi ≡ State elem .closure state ~state s follow set map .end ()) {

return;
}
follow element ∗ fe = fsi~second ;
〈 left recursion on rule check — out damn spot 59 〉;
transitions .push back (fe);
}

§59 O2 ADD FOLLOW SET TRANSITION 35

59. Left recursion on rule check.
Don’t want to cycle on the same state spot: S1.A transitions on S1.A caused by a grammar’s rule having
left rule recursion.

〈 left recursion on rule check — out damn spot 59 〉 ≡
if ((rule no ≡ eno) ∧ (its state ~state no ≡ State elem .closure state ~state no)) return;

This code is used in section 58.

60. Add the terminal to the follow set.

〈Structure implementations 44 〉 +≡
void follow element ::add T to follow set (AST ∗ Refered T)
{
〈 get refered-t 61 〉;
follow set .insert (t~ t in stbl ());
}

61. Get refered-t.

〈 get refered-t 61 〉 ≡
refered_T* t = (refered_T*)AST::content(*Refered_T);

This code is used in section 60.

62. remove merge closure info .

〈Structure implementations 44 〉 +≡
void follow element ::remove merge closure info()
{

merges .pop front ();
}

63. add merge closure info .
Watch for rule having subrules that are merged with common closure state. U should only have 1 such state
in list so throw out duplicates.

〈Structure implementations 44 〉 +≡
void follow element ::add merge closure info(state & To merge closure state)
{

state ∗ tm = &To merge closure state ;
MERGES ITER type i = merges .begin ();
MERGES ITER type ie = merges .end ();
for (; i 6= ie ; ++i) {

state ∗ s = ∗i;
if (s ≡ tm) return;

}
merges .push front (&To merge closure state);
}

36 STATE DEFINITION/IMPLEMENTATION O2 §64

64. State definition/implementation.
vectored into by elem is the goto element from the spawning state that enters this state. The “xxx-def”
symbol is provided by vectored into by elem sym that is used for tracing purposes. It is one of the elements
in determining whether 2 states are equal. I use the symbol’s defining enumerate value which was enumerated
across all the Grammar’s vocabulary: Rules and Terminals. START_STATE_ENUMERATE symbol representing
-1 is used to accommodate a “closure only” state where there is no symbol entering the start state as a
Grammar’s vocabulary enumeration begins at 0.

closure rule list provides referenced rules in the state to complete the state’s elements. follow rule list
is a fast way to deal with building follow sets for the state as it is a list of rule numbers that are keys into
state s to vector that indirectly supplies the follow string contexts.

To support rules recycling optimization, a quasi closure state for any rule of the grammar has been added.
Why the addition? Recycling of rules requires a use count derived from recursion and subrules references to
the rule. My first attempt was wrong as i did not take into account that a rhs subrule could have a referenced
rule that could be indirectly referenced by (derived by) a suffixed referenced rule. So i need to derive the
state containing the closured items and them analyse its content to see whether indirect referencing is taking
place. So create ctor of state with no tree and a closure only derives method.

65. State’s map of “to vector” elements.
S VECTORS type is the state’s map of “to vector” elements of “rule-ref”, “T-ref”, and eosubrule . These
elements produce the “goto” state eminating out of the lr1 state. This is a white lie as the eosubrule eminates
nothing. It represents either the epsilon condition if its the first element of a subrule or a fully consumed
subrule: its string of symbols has been consumed and so to be reduced. “rule-ref”, “T-ref” are proxies to
their definitions whereby their enumerated values are unique.

The second part of the map is the list of same state elements having identical enumerated keys. These
vectors are the fodder to generate the next set of states eminating from this state and all the “closured-only
part” states progeny. The list is sorted by the AST address inside the state’s emlement so that state equiv-
alences can be determined. U might raise the point: doesn’t it matter what order the elements are placed
inside the state to generate the lr1 state network: FIFO? NO! Let’s review why.

1) “closured only” state composed of 1st position only subrules’ elements.
2) this state’s follow sets are static: first set from strings to rt of refered rules.
3) only the closured-only subrules are fully generated at the same time.
4) transitive states only continue gening their subrules from the closured state.
5) the resulting lr1 states are evaluated for lr1 conflicts.
6) apply the logic above to gened states having incomplete gened closured-only parts.

It is point 2 that is interesting: the birthing closured states of its reducing subrules supplies their lookahead.
This means the closured state is generated completely before an assessment needs to take place. The lr1
assessment determines whether the gened states are lr(1) compatible. This check goes only against states
that have reducing subrules so that the reduce / reduce and shift / reduce conditions can be verified.

How is the lr1 condition evaluated? Easy, the reducing subrule’s rule within its birthing closured state
contains its follow set: ie its lookahead terminals. All it takes is to make sure that the intersection of all
the reducing subrules’ follow sets is empty and that the state’s shift terminals are not in any of the reducing
subrules’ follow sets. This shift set can be considered an invisible follow set that is applied at the same time
to the other reducing follow sets. Keeping a list of conflicting states within the “closure-only or part” state
when a state merge is proposed allows one to apply this lr1 condition for compatibility against the potential
merged follow sets. Remember a gened state is produced out of its closured state. Thus mergers mean use
the follow sets of each closure state. The “state to merge into” already has it list of lr1 conflict states in its
associated gening closured state that need checking before Mr. Goodwrench nods.

Key: element’s enumerate: “rule-def”, “T-def”, and “eosubrule”
Elements in list: state’s elements that contain a grammar’s tree node address

§66 O2 STATE IMPLEMENTATION 37

66. State implementation.

〈Structure implementations 44 〉 +≡

67. state (AST ∗ Start rule t).

〈Structure implementations 44 〉 +≡
state ::state (AST ∗ Start rule t): cs vector combo gening it (0,−1),

vectored into by elem (START_STATE_ENUMERATE), vectored into by elem sym (0), state no (0),
closure state birthing it (0), state type (0), arbitrator name (0)

{
create start state (∗Start rule t);
add state to gbl lr1 state tbls (this);
}

68. state(): for closure only state of derives.

〈Structure implementations 44 〉 +≡
state ::state ()
: cs vector combo gening it (0,−1), vectored into by elem (START_STATE_ENUMERATE),

vectored into by elem sym (0), state no (0), closure state birthing it (0), state type (0),
arbitrator name (0) { }

69. state (AST & Vectored into id t) — Create transitive state.

〈Structure implementations 44 〉 +≡
state ::state (Voc ENO Eno ,CAbs lr1 sym ∗ Entry sym): cs vector combo gening it (0,−1),

vectored into by elem (Eno), vectored into by elem sym (Entry sym), state no (0),
closure state birthing it (0), state type (0), arbitrator name (0)

{ }

70. closure only derives — Create a closure only derives state.
Gen a derives only state for a rule so that the rule’s recycle count is correct for indirect references. Used by
rules use cnt .lex grammar.

〈Structure implementations 44 〉 +≡
void state ::closure only derives (AST ∗ Rule tree)
{

gen context gening context (0,−1);
add rule s subrules to state (∗Rule tree , gening context , ∗this);
add closure rules subrules to state (gening context , ∗this);
}

38 GENERATE STATES O2 §71

71. Generate states.

72. add element to state vector .
The state s vector [enumerate of element] is positive except when its “eosubrule”. Why? Cuz i’m (re)cursing
on this terminal in 2 ways: as an end-of-subrule condition for a production and in grammars that are
referencing it: is this devine? So when it’s a real end-of-string situation i make the key negative. When
it’s a “refered-T” then use its contained “terminal-def” positive image that could be the containment of
“eosubrule”.

The element list is sorted on its AST address. Why the order? This makes sure that 2 elements having
been brought into the state by different order will equate when state merges are proposed.

〈Structure implementations 44 〉 +≡
void state ::add element to state vector (Voc ENO Elem id , state element & Elem)
{

S VECTORS ITER type i = state s vector .find (Elem id);
if (i ≡ state s vector .end ()) {

state s vector [Elem id] = S VECTOR ELEMS type ();
i = state s vector .find (Elem id);

}
S VECTOR ELEMS type & el = i~second ;
if (el .empty () ≡ true) {

el .push back (&Elem);
return;

}
S VECTOR ELEMS ITER type j = el .begin ();
S VECTOR ELEMS ITER type je = el .end ();
for (; j 6= je ; ++j) {

state element ∗ se = ∗j;
if (Elem .sr element < se~sr element) {

el .insert (j,&Elem);
return;

}
}
el .push back (&Elem);
}

§73 O2 ADD CLOSURE RULES SUBRULES TO STATE 39

73. add closure rules subrules to state .
Why the closure rule list .end () in the loop? As i’m adding items to it while iterating thru it, i play it safe
by testing each cycle for the end-of-container condition via the function call rather than a local variable set
before the iteration.

〈Structure implementations 44 〉 +≡
void state ::add closure rules subrules to state (gen context & Possible gen context , state & Closure state)
{

CLOSURE RULES typeprocessed rules set ;
loop until empty : ;

if (closure rule list .empty () ≡ true) return;
CLOSURE RULES ITER type i = closure rule list .begin ();
if (processed rules set .find (∗i) 6= processed rules set .end ()) {

closure rule list .erase (∗i);
goto loop until empty ;

}
processed rules set .insert (∗i);
rule def ∗ rd = (∗i)~r def ();
AST ∗ t = rd~rule s tree ();
add rule s subrules to state (∗t,Possible gen context ,Closure state);
goto loop until empty ;
}

74. add rule to closure list .

〈Structure implementations 44 〉 +≡
void state ::add rule to closure list (rule in stbl ∗ Rule in stbl)
{

CLOSURE RULES ITER type i = closure rule list .find (Rule in stbl);
if (i ≡ closure rule list .end ()) {

closure rule list .insert (Rule in stbl);
derives closure rule list .insert (Rule in stbl);
rule def ∗ rd = Rule in stbl~r def ();
if (rd~closure rules making up first set ()~empty () ≡ true) return;
CLOSURE RULES type ∗ cr = rd~closure rules making up first set ();
CLOSURE RULES ITER type j = cr~begin ();
CLOSURE RULES ITER type je = cr~end ();
for (; j 6= je ; ++j) {

rule in stbl ∗ ris = ∗j;
i = closure rule list .find (ris);
if (i ≡ closure rule list .end ()) {

derives closure rule list .insert (ris);
closure rule list .insert (ris);
}

}
}
}

40 ADD RULE S SUBRULES TO STATE O2 §75

75. add rule s subrules to state .
Add rule’s productions to state due to closured operation.

A wrinkle: if the possible gen context has a gen vector of -1, this means the state’s closure elements are
not right bounded and are not assiciated with generating context and so its gen context will be out its own
state and own vector.

〈Structure implementations 44 〉 +≡
void state ::add rule s subrules to state (AST & Start Rule def t , gen context & Possible gen context ,

state & Closure state associate with)
{
AST ∗ subrules t = AST ::get 1st son (Start Rule def t);
AST ∗ first element t (0);
CAbs lr1 sym ∗ first element (0);
Voc ENO id (START_STATE_ENUMERATE);
Voc ENO cs id (START_STATE_ENUMERATE);
for (; subrules t 6= 0; subrules t = AST ::brother (∗subrules t)) {

T_subrule_def* srd = (T_subrule_def*)AST::content(*subrules_t);

first element t = AST ::get 1st son (∗subrules t);
first element = AST ::content (∗first element t);
state element ∗ se = new state element (first element t);
se~subrule def = srd ;
se~self state = this;
se~closure state = this;
se~closured state gening it = &Closure state associate with ;
id = first element~enumerated id ;
switch (id) {
case T Enum ::T refered rule :
{

refered_rule* rr = (refered_rule*)first_element;

rule def ∗ rd = rr~ its rule def ();
rule in stbl ∗ ris = rr~Rule in stbl ();
RULE_ENOr id = rd~enum id ();
cs id = r id ;
se~cs vector combo gening it .gen vector = r id ;
add element to state vector (r id , ∗se);
add rule to follow list (r id);
add rule to closure list (ris);
break;
}

case T Enum ::T T eosubrule :
{
T_ENOt id = T Enum ::T T eosubrule ;
cs id = t id ;
se~reduced state = this;
se~cs vector combo gening it .gen vector = t id ;
add element to state vector (−t id , ∗se);
break;
}

case T Enum ::T T null call thread eosubrule :
{
T_ENOt id = T Enum ::T T null call thread eosubrule ;
cs id = t id ;
se~reduced state = this;

§75 O2 ADD RULE S SUBRULES TO STATE 41

se~cs vector combo gening it .gen vector = t id ;
add element to state vector (−t id , ∗se);
break;
}

case T Enum ::T T called thread eosubrule :
{
T_ENOt id = T Enum ::T T called thread eosubrule ;
cs id = t id ;
se~reduced state = this;
se~cs vector combo gening it .gen vector = t id ;
add element to state vector (−t id , ∗se);
break;
}

case T Enum ::T refered T :
{

refered_T* rt = (refered_T*)first_element;

T terminal def ∗ td = rt~ its t def ();
T_ENOt id = td~enum id ();
cs id = t id ;
se~cs vector combo gening it .gen vector = t id ;
add element to state vector (t id , ∗se);
break;
}

}
if (Possible gen context .gen vector 6= −1) {

se~cs vector combo gening it = Possible gen context ;
}
else {

se~cs vector combo gening it .for closure state = this;
se~cs vector combo gening it .gen vector = cs id ;

}
}
}

42 CRT CORE ITEMS OF STATE O2 §76

76. crt core items of state .
Add subrules to the new state being created. The iterators walk the vector list of the spawning state.

Right bounded check:
1) Rx → α. Ra t
2) Ry → β. Ra
3) Rz → . Ra Rb

The period indicates where within the string of the production the current vector is. Point 1 is not right
bounded due to t representing a terminal. Point 2 is right bounded as the follow set of its Ra hits the end-
of-string condition and so must transition back along to Ry’s follow sets. Point 3 could be right bounded
if Rb is epsilonable. Cuz of point 2, the newly generated state’s closure rules will be associated with the
current closure state generation.

〈Structure implementations 44 〉 +≡
bool state ::crt core items of state (S VECTOR ELEMS ITER type & Iter begin ,

S VECTOR ELEMS ITER type & Iter end , gen context & Gening context)
{

bool rt bnded (false);

AST ∗ to element t (0);
CAbs lr1 sym ∗ to element (0);
Voc ENO id (START_STATE_ENUMERATE);
for (; Iter begin 6= Iter end ; ++Iter begin) {

state element ∗ from se = ∗Iter begin ;
to element t = AST ::brother (∗from se~sr element);

bool se rt bnded condition = is str rt bnded (to element t);

if (se rt bnded condition ≡ true) rt bnded = se rt bnded condition ;
to element = AST ::content (∗to element t);
switch (to element~enumerated id) {
case T Enum ::T T null call thread eosubrule :
{ /∗bypass ∗/

to element t = AST ::brother (∗to element t);
se rt bnded condition = is str rt bnded (to element t);
if (se rt bnded condition ≡ true) rt bnded = se rt bnded condition ;
to element = AST ::content (∗to element t);
break;
}

case T Enum ::T T called thread eosubrule :
{ /∗bypass ∗/

to element t = AST ::brother (∗to element t);
se rt bnded condition = is str rt bnded (to element t);
if (se rt bnded condition ≡ true) rt bnded = se rt bnded condition ;
to element = AST ::content (∗to element t);
break;
}

}
state element ∗ se = new state element (to element t);
se~subrule def = from se~subrule def ;
se~self state = this;
se~closure state = from se~closure state ;
se~closured state gening it = Gening context .for closure state ;
/∗ se~cs vector combo gening it = from se~cs vector combo gening it ; ∗/

se~cs vector combo gening it = Gening context ;

§76 O2 CRT CORE ITEMS OF STATE 43

if (se rt bnded condition ≡ true) {
if (from se~closured state gening it 6= Gening context .for closure state) {

/∗ common prefix syndrome: keep it pure: same as from se ∗/
se~cs vector combo gening it = from se~cs vector combo gening it ;
se~closured state gening it = from se~closured state gening it ;
}
else {

se~cs vector combo gening it = Gening context ;
se~closured state gening it = Gening context .for closure state ;
}

}
from se~goto state = se~self state ;
se~previous state = from se~self state ;
from se~next state element = se ;
se~previous state element = from se ;
id = to element~enumerated id ;
〈 add subrule’s element to the being gened state’s vector 77 〉;

}
return rt bnded ;
}

44 ADD SUBRULE’S ELEMENT TO THE BEING GENED STATE’S VECTOR O2 §77

77. Add subrule’s element to the being gened state’s vector.

〈 add subrule’s element to the being gened state’s vector 77 〉 ≡
switch (id) {
case T Enum ::T refered rule :
{

refered_rule* rr = (refered_rule*)to_element;

rule def ∗ rd = rr~ its rule def ();
rule in stbl ∗ ris = rr~Rule in stbl ();
RULE_ENOr id = rd~enum id ();
add element to state vector (r id , ∗se);
add rule to follow list (r id);
add rule to closure list (ris);
break;

}
case T Enum ::T T eosubrule :
{
T_ENOt id = T Enum ::T T eosubrule ;
add element to state vector (−t id , ∗se);
break;

}
case T Enum ::T T null call thread eosubrule :
{
T_ENOt id = T Enum ::T T null call thread eosubrule ;
add element to state vector (−t id , ∗se);
break;

}
case T Enum ::T T called thread eosubrule :
{
T_ENOt id = T Enum ::T T called thread eosubrule ;
add element to state vector (−t id , ∗se);
break;

}
case T Enum ::T refered T :
{

refered_T* rt = (refered_T*)to_element;

T terminal def ∗ td = rt~ its t def ();
T_ENOt id = td~enum id ();
add element to state vector (t id , ∗se);
break;

}
}

This code is used in section 76.

§78 O2 CREATE START STATE — CREATE START STATE 45

78. create start state — Create start state.

〈Structure implementations 44 〉 +≡
void state ::create start state (AST & Start rule t)
{

gen context gening context (0,−1);
add rule s subrules to state (Start rule t , gening context , ∗this);
add closure rules subrules to state (gening context , ∗this);
crt start rule s follow set (Start rule t);
create follow sets of state ();
this~state type = determine reduced state type (this); /∗Print dump state (this); ∗/
}

79. gen transitive states for closure context .
Loop thru the state’s closure/vector where the subrule’s start position is the first symbol. The loop depends
on the gening closure state/vector. When a state is constructed, the closured rules are associated with either:

1) itself state/vector
2) a right bounded rule context that associates with the gening context creating the state

〈Structure implementations 44 〉 +≡
bool state ::gen transitive states for closure context
(gen context & For gening context , state & For closure state , state & State)
{
〈 Increment and printout Recursion counter 137 〉;
lrclog � "gen_transitive_states_for_closure_context for closure state: " �

For gening context .for closure state ~state no � endl ;
S VECTORS ITER type i = State .state s vector .begin ();
S VECTORS ITER type ie = State .state s vector .end ();
for (; i 6= ie ; ++i) { /∗ read state’s goto symbols ∗/

Voc ENO eno = i~first ;
〈unchain my reduce states if end-of-subrule and continue to next item 80 〉;
For gening context .gen vector = eno ;
〈Printout Recursion counter 139 〉;
lrclog � " for vector: " � For gening context .gen vector � endl ;

bool continue gening = gen a state (For gening context ,For closure state ,State , i);

if (continue gening ≡ NOT_LR1_COMPATIBLE) {
〈Decrement Recursion counter 140 〉;
return NOT_LR1_COMPATIBLE;

}
}
〈Decrement Recursion counter 140 〉;
return LR1_COMPATIBLE; /∗ gened states ok ∗/
}

46 UNCHAIN MY REDUCED STATES IF END-OF-SUBRULE AND CONTINUE TO NEXT ITEM O2 §80

80. Unchain my reduced states if end-of-subrule and continue to next item.
Rip thru the subrule’s symbols depositing its reduced state as eyeball info.

〈unchain my reduce states if end-of-subrule and continue to next item 80 〉 ≡
if (eno ≡ −T Enum ::T T eosubrule) {

S VECTOR ELEMS typeelem list = i~second ;
S VECTOR ELEMS ITER type j = elem list .begin ();
S VECTOR ELEMS ITER type je = elem list .end ();
for (; j 6= je ; ++j) {

state element ∗ se = ∗j;
se~reduced state = se~self state ;
state ∗ reduced state = se~self state ;
while (se~previous state element 6= 0) {

se~previous state element ~reduced state = reduced state ;
se = se~previous state element ;

}
}
continue; /∗ eosubrule: onto next vector to gen in closure state’s vector loop ∗/
}

This code is used in sections 79 and 81.

81. gen transitive states balance for closure vector .

〈Structure implementations 44 〉 +≡
bool state ::gen transitive states balance for closure vector
(gen context & Gen context , state & For closure state , state & Goto state)
{
〈 Increment and printout Recursion counter 137 〉;
lrclog � "gen_transitive_states_balance_for_closure_vector for <" �

Gen context .for closure state ~state no � "," � Gen context .gen vector �
"> goto state: " � Goto state .state no � endl ;

S VECTORS ITER type i = Goto state .state s vector .begin ();
S VECTORS ITER type ie = Goto state .state s vector .end ();
for (; i 6= ie ; ++i) { /∗ read state’s goto symbols ∗/

Voc ENO eno = i~first ;
〈unchain my reduce states if end-of-subrule and continue to next item 80 〉;
bool continue gening = gen a state (Gen context ,For closure state ,Goto state , i);

if (continue gening ≡ NOT_LR1_COMPATIBLE) {
〈Decrement Recursion counter 140 〉;
return NOT_LR1_COMPATIBLE; /∗ stop gening as not lr1 ∗/

}
}
〈Decrement Recursion counter 140 〉;
return LR1_COMPATIBLE;
}

§82 O2 GEN A STATE 47

82. gen a state .
The only wrinkle is when a previous closured state has dragged along a common prefix subrule that is not
part of its productions being gened. Call this a premature production generation: the production could be
partially gened up to where the common prefix differs or the production completely gened as its right-hand-
side string of symbols was contained in the other closure state gened productions. When this premature
production’s closure state is finally generating all its productions, common conflict states from a past closure
generation that include premature gened productions must also be assessed for state conflicts. There is a
commonality between the conflict states per gened closure states due to their productions that contributed
to this conflict state list and so these common states must be added to the premature closure state’s conflict
state list. The premature gened production could be reducing whilst its common production that dragged it
along could be shifting or reducing. The reverse could also be happening: the being gened production could
be reducing while the premature production shifting. Thus a proposed merge into a state of this closure
state must also have these common conflict states assessed for lr1ness.

A good example of this is situation is Deremer and Pennello’s paper on “Efficient computation of lalr(1)
lookahead sets” ACM Transactions on Programming Language and Systems: Vol. 4 no. 4 October 1982
Page 632. Please see my gened grammar “lalr dp1.lex” illustrating this.

Pathological grammar condition:
Not lr1 grammar where the gening closure state network is not lr1. So must flag the gen a state with a
returned result: continue or stop.

To stop infinite looping within its own closure state / vector being gened, make sure new state being
added is lr1 compatible! Instead of analysing the gened network for lr1 compatibility after it is built, do a
compatibilty test while it is being built. This stops the infinite looping context!

There are 2 not lr1 compatibilty contexts:
1) can a state be merged into another closure state’s network
2) can not merge and its is not a kosher lr(1) grammar

Point 1) tests the merge for incompatibility and rejects the merge. This does not mean that the grammar is
incompatible but that the merged contexts make it incompatible. Point 2) is a state within its own closure
state/vector environment which is not okay.

〈Structure implementations 44 〉 +≡
bool state ::gen a state (gen context & For gening context , state & For closure state ,

state & Requesting state ,S VECTORS ITER type & Elem iter)
{
〈 Increment and printout Recursion counter 137 〉;
lrclog � "gen_a_state for <" � For gening context .for closure state ~state no � "," �

For gening context .gen vector � "> requesting state: " � Requesting state .state no � endl ;
gen context associated rt bnded cs (0,−1);
Voc ENO eno = Elem iter~first ;
S VECTOR ELEMS typeelem list = Elem iter~second ;
S VECTOR ELEMS ITER type i = elem list .begin ();
S VECTOR ELEMS ITER type ie = elem list .end ();

bool compatible (false);

for (; i 6= ie ; ++i) { /∗ read symbol’s element list to gen ∗/
state element ∗ se = ∗i;
〈 is state’s element associated with gened closure state? no bypass 83 〉;
〈 common prefix gened goto state? yes deal with its goto state 84 〉;
〈 create a new state 85 〉;
〈 can new state be merged into state network? yes erase its existance and exit 86 〉;
add state to gbl lr1 state tbls (s);
〈Printout Recursion counter 139 〉;

48 GEN A STATE O2 §82

lrclog � "gen_a_state for <" � For gening context .for closure state ~state no � "," �
For gening context .gen vector � "> requesting state: " � Requesting state .state no �
" NEW STATE CREATED: " � s~state no � endl ;

add state to conflict states list if (For gening context , ∗s);
compatible = is state lr1 compatible (∗s); /∗ is new state to be added lr1 compatible? ∗/
if (compatible ≡ NOT_LR1_COMPATIBLE) { /∗ added ∗/
〈Decrement Recursion counter 140 〉;
return NOT_LR1_COMPATIBLE;
/∗ stop gening: note state added before test as if not lr1 reports properly why ∗/

} /∗Print dump state (s); ∗/
s~state type = determine reduced state type (s);

bool gen ok = gen transitive states balance for closure vector (For gening context ,For closure state ,
∗s);

〈Decrement Recursion counter 140 〉;
return gen ok ; /∗ state gened so finished going thru element list ∗/

}
〈Decrement Recursion counter 140 〉;
return LR1_COMPATIBLE;
}

83. Is element vector associated with the current closure state being gened?.

〈 is state’s element associated with gened closure state? no bypass 83 〉 ≡
if (((se~cs vector combo gening it .for closure state ≡ For gening context .for closure state) ∧

(se~cs vector combo gening it .gen vector ≡ For gening context .gen vector)) 6= true) {
〈Printout Recursion counter 139 〉;
lrclog � "gen_a_state Bypass subrule as its gening <" �

se~cs vector combo gening it .for closure state ~state no � "," �
se~cs vector combo gening it .gen vector � "> different then gening <" �
For gening context .for closure state ~state no � "," � For gening context .gen vector � ">" �
endl ;

continue;
}

This code is used in section 82.

84. Is element gened from common prefix of an earlier closure state gen?.

〈 common prefix gened goto state? yes deal with its goto state 84 〉 ≡
if (se~goto state 6= 0) {
〈Printout Recursion counter 139 〉;
lrclog � "gen_a_state subrule COMMON PREFIX state gened by a differen\

t gening context. <" � se~cs vector combo gening it .for closure state ~state no � "," �
se~cs vector combo gening it .gen vector � "> goto state: " � se~goto state ~state no � endl ;

add state to conflict states list if (For gening context , ∗se~goto state);

bool gen ok = gen transitive states balance for closure vector (For gening context ,For closure state ,
∗se~goto state);

〈Decrement Recursion counter 140 〉;
return gen ok ;
}

This code is used in section 82.

§85 O2 CREATE A NEW STATE 49

85. Create a new state.

〈 create a new state 85 〉 ≡
state ∗ s = new state (eno , se~sr def element);
s~closure state birthing it = For gening context .for closure state ;
s~cs vector combo gening it = For gening context ;
S VECTOR ELEMS ITER type j = elem list .begin ();
S VECTOR ELEMS ITER type je = elem list .end ();

bool rt bnded = s~crt core items of state (j, je ,For gening context);

if (rt bnded ≡ true) {
associated rt bnded cs = For gening context ;
}
else {

associated rt bnded cs .for closure state = 0;
associated rt bnded cs .gen vector = −1;
}
s~add closure rules subrules to state (associated rt bnded cs , ∗s);
s~create follow sets of state ();

This code is cited in section 146.

This code is used in section 82.

86. Can new state be merged into state network? Yes then exit.
Watch for indicator to stop gening the states caused by “not lr1 compatibile” while gening the closure state
network.

〈 can new state be merged into state network? yes erase its existance and exit 86 〉 ≡
int compatibility result = find 2 states compatible and merge (∗s);
switch (compatibility result) {
case MERGED:
{

delete s;
〈Decrement Recursion counter 140 〉;
return true ; /∗ keep gening ∗/

}
case ABORT_GENING_STATES:
{
〈Decrement Recursion counter 140 〉;
return NOT_LR1_COMPATIBLE; /∗ stop gening ∗/

}
case NOT_MERGED:
{

break; /∗ continue the gen a state logic by fall through ∗/
}
}

This code is used in section 82.

50 DETERMINE REDUCED STATE TYPE O2 §87

87. determine reduced state type .
Determines the “lrness” of the state: no conflict — shift(s) or reduce(s) only, conflict: shift / reduce, multiple
reduces, shift(s) with mutiple reduces.

〈Structure implementations 44 〉 +≡
int state ::determine reduced state type (state ∗ S)
{ /∗ rtned 0 so, 1 ro, 2 s/r, 3 r2 , 4 s/r2 ∗/

using namespace NS yacco2 T enum;
int no reduces (0);
int no reduce types (0);

S VECTORS ITER typesvi = S~state s vector .begin ();
S VECTORS ITER typesvie = S~state s vector .end ();
S VECTORS ITER type tvi = S~state s vector .find (−T Enum ::T T eosubrule);
if (tvi 6= svie) {

no reduces += tvi~second .size ();
++no reduce types ;

}
tvi = S~state s vector .find (−T Enum ::T T called thread eosubrule);
if (tvi 6= svie) {

no reduces += tvi~second .size ();
++no reduce types ;

}
tvi = S~state s vector .find (−T Enum ::T T null call thread eosubrule);
if (tvi 6= svie) {

no reduces += tvi~second .size ();
++no reduce types ;

}
if (no reduces > 1) no reduces = 3;
if (S~state s vector .size () > no reduce types) { /∗ shift present ∗/

if (no reduce types > 0) { /∗ combo ∗/
++no reduces ; /∗ combo shift / reduce ∗/

}
}
return no reduces ;
}

88. add state to gbl lr1 state tbls .

〈Structure implementations 44 〉 +≡
void state ::add state to gbl lr1 state tbls (state ∗ State)
{

++NO_LR1_STATES;
State~state no = NO_LR1_STATES;
LR1_STATES.push back (State);
Voc ENO eno = State~vectored into by elem ;
LR1 STATES ITER type i = LR1_COMMON_STATES.find (eno);
if (i ≡ LR1_COMMON_STATES.end ()) {
LR1_COMMON_STATES[eno] = STATES type ();
i = LR1_COMMON_STATES.find (eno);

}
i~second .push back (State);
}

§89 O2 ADD STATE TO CONFLICT STATES LIST IF 51

89. add state to conflict states list if .
If newly created state has “eosubrule” in its vector map, there are 2 possibilities that make it a conflict state:

1) reduce / reduce — more than 1 production whose string is consumned
2) shift / reduce — one reduce with a shift

〈Structure implementations 44 〉 +≡
void state ::add state to conflict states list if (gen context & Gening context , state & State)
{

S VECTORS ITER type i = State .state s vector .find (−T Enum ::T T eosubrule);
if (i 6= State .state s vector .end ()) goto reduce fnd ;
return;

reduce fnd : ;
if (i~second .size () > 1) { /∗ reduce / reduce ∗/

Gening context .for closure state ~state s conflict state list .push back (&State);
return;

}
if (State .state s vector .size () < 2) return;
Gening context .for closure state ~state s conflict state list .push back (&State);
}

52 GENERAL ROUTINES ON STATE COMPATIBILITIES O2 §90

90. General routines on state compatibilities.

§91 O2 DETERMINING IF 2 STATES ARE EQUIVALENT? 53

91. Determining if 2 states are equivalent?.
As an aid to quickly determine whether 2 states are equal, each state except the “closure-state” has an
element going into it: proxies “rule-ref” or “T-ref” are references to their definitions. They are general
classifications of the items whose contents refer to the specific definition. “eosubrule” is excluded from this
as it does not generate any states. Why use the definitions? I need a unique identifier and this only comes
from the definition. The “closure-only” (start) state has no entry.

State equivalence is arrived at by:
1) the “entered into” element generating each state must be identical
2) State’s A “to vector” map must be the same size as B
3) A’s “to vector” ’s keys must be the same as B
4) A’s “to vector” ’s state element list’s contents must be the same as B

Point 4: why the state’s element list ordered? One can have a state whereby its elements order are not the
same but the “to vector” result is. Give me a real example as i’m a doubter.

Rule subrule’s symbols
Rab → a b
Rac → a c
Rad → Rab

→ Rac
Rae → Rac

→ Rab
Rad or Rae inside other productions should allow the merge of Rab, Rac.

Constraints:
1) state’s vector is a map ordered by Voc ENO
2) state elements list ordered by tree address

〈Structure implementations 44 〉 +≡
bool state ::are states equivalent (state & Merge into state , state & To merge state)
{

if (Merge into state .vectored into by elem 6= To merge state .vectored into by elem) {
return false ;

}
if (Merge into state .state s vector .size () 6= To merge state .state s vector .size ()) {

return false ;
}
S VECTORS ITER type i = Merge into state .state s vector .begin ();
S VECTORS ITER type ie = Merge into state .state s vector .end ();
S VECTORS ITER type j = To merge state .state s vector .begin ();
S VECTORS ITER type je = To merge state .state s vector .end ();
for (; i 6= ie ; ++i, ++j) {

Voc ENO ieno = i~first ;
Voc ENO jeno = j~first ;
if (ieno 6= jeno) {

return false ;
}
if (i~second .size () 6= j~second .size ()) {

return false ;
}
S VECTOR ELEMS ITER type l = i~second .begin ();
S VECTOR ELEMS ITER type le = i~second .end ();
S VECTOR ELEMS ITER typem = j~second .begin ();
S VECTOR ELEMS ITER typeme = j~second .end ();

54 DETERMINING IF 2 STATES ARE EQUIVALENT? O2 §91

for (; l 6= le ; ++l, ++m) {
state element ∗ ls = ∗l;
state element ∗ms = ∗m;
if (ls~sr element 6= ms~sr element) {

return false ;
}

}
}
return true ;
}

§92 O2 IS STATE LR1 COMPATIBLE 55

92. is state lr1 compatible .
0) check if it’s a s/r or r/r type state no exit as compatible
1) Fill in its lookahead per reducing subrule
1.5) make sure that its reducing set is not empty! or not lr1 compatible
2) calculate state’s T shift set
3) do a set intersection on all these sets

The resulting set must be empty to be LR1 compatible. To be more efficient i use a T count as i do not
have to report on what type of non compatibility produced it nor between whom: reduce / reduce or shift
/reduce. The cost is to read each set while being gened and add up each item’s referenced count: not the
combinatorics between each set.

Add check on eolr presence: Eg, eolr in la expression only, it is not exploded. This leads to the bug that
a shift/reduce is incompatible. Somehow i must have optimized this out from la expr grammar. So if there
are 2 or more reduces taking place and eolr is present -¿ not lr1. Same goes for shift/reduce condition.

〈Structure implementations 44 〉 +≡
bool state :: is state lr1 compatible (state & State to eval)
{

T COUNT type t cnt (START_OF_RULES_ENUM);
for (int x = 0; x < START_OF_RULES_ENUM; ++x) t cnt [x] = 0;
S VECTORS ITER type i;
i = State to eval .state s vector .find (−T Enum ::T T eosubrule);
if (i 6= State to eval .state s vector .end ()) {

goto assess state ;
}
i = State to eval .state s vector .find (−T Enum ::T T called thread eosubrule);
if (i 6= State to eval .state s vector .end ()) {

goto assess state ;
}
i = State to eval .state s vector .find (−T Enum ::T T null call thread eosubrule);
if (i 6= State to eval .state s vector .end ()) {

goto assess state ;
}
return LR1_COMPATIBLE;

assess state :
int no reduces = 0;

S VECTOR ELEMS ITER type j = i~second .begin ();
S VECTOR ELEMS ITER type je = i~second .end ();

bool T not meta (false);

for (; j 6= je ; ++j) { /∗ fill in lookahead per reducing subrule ∗/
++no reduces ;
state element ∗ se = ∗j;
if (se~calc la (∗se) ≡ false) {

return NOT_LR1_COMPATIBLE;
}
LA SET ITER typek = se~ la set ~begin ();
LA SET ITER typeke = se~ la set ~end ();
for (; k 6= ke ; ++k) {

T in stbl ∗ tintbl = ∗k;
T_ENOteno = tintbl~ t def ()~enum id (); /∗ T of new alphabet ∗/
if (teno ≤ END_OF_LR1_DEFS) {

if (teno ≡ LR1_EOG) {
T not meta = true ;

56 IS STATE LR1 COMPATIBLE O2 §92

}
}
else {

T not meta = true ;
}
++t cnt [teno];
if (t cnt [teno] > 1) return NOT_LR1_COMPATIBLE;

}
}
if (no reduces > 1) { /∗ reduces ¿ 1 where eolr super set to others ∗/

if (T not meta ≡ true) {
if (t cnt [LR1_EOLR] > 0) return NOT_LR1_COMPATIBLE;

}
} /∗ shift / reduce evaluation ∗/ /∗ shift type not of meta Tes |?|, |+|etc ∗/
S VECTORS ITER type l = State to eval .state s vector .begin ();
S VECTORS ITER type le = State to eval .state s vector .end ();
for (; l 6= le ; ++l) { /∗ T shift set of state ∗/

Voc ENO t = l~first ;
if (t ≡ −T Enum ::T T eosubrule) continue;
if (t ≡ −T Enum ::T T null call thread eosubrule) continue;
if (t ≡ −T Enum ::T T called thread eosubrule) continue;
if (t ≡ T Enum ::T refered rule) continue;
S VECTOR ELEMS ITER typem = l~second .begin ();
state element ∗ se = ∗m;
CAbs lr1 sym ∗ sym = AST ::content (∗se~sr element);
T_ENOtid = sym~enumerated id ;
switch (tid) {
case T Enum ::T refered T :
{
〈 get cast referenced T 109 〉;
T in stbl ∗ tintbl = rt~ t in stbl ();
T_ENOteno = tintbl~ t def ()~enum id (); /∗ T of new alphabet ∗/
if (teno ≤ END_OF_LR1_DEFS) {

if (teno 6= LR1_EOG) {
continue; /∗ bypass the meta Tes ∗/

}
}
++t cnt [teno];
if (t cnt [teno] > 1) return NOT_LR1_COMPATIBLE;
if (teno > END_OF_LR1_DEFS) { /∗ specific shift against eolr usuage ∗/

if (t cnt [LR1_EOLR] > 0) return NOT_LR1_COMPATIBLE;
}
}

}
}
return LR1_COMPATIBLE;
}

§93 O2 ARE 2 STATES COMPATIBLE YES MERGE 57

93. are 2 states compatible yes merge .
Is it LR1 compatible? If To merge into state ’s closured-generating state has no conflict states then it’s
straight sailing. To determine if the mariage is compatible, the conflict states must be checked with the new
follow set info supplied by State for merging birthing “closured context”. Let’s review the LR1 conditions:

1) a conflict state has at least a reduce / reduce or reduce / shift condition
2) reduced lookaheads must be regened with the new closured follow set context

Point 2’s “new closured follow set” context comes from the closured states of State for merging ’s productions.
To do the check i must merge the new follow set contexts of To merge into state ’s birth state per transitive
production. Why? These are the potential follow set contexts where each production was born. Now generate
the lookahead for each conflict state’s reduces and then see whether all the conflict states are kosher. An
incompatibility just requires rolling back the new follow set context from each of the proposed production’s
birthing states of To merge into state .

A kosher merge requires that the spawning state must unlink each of its spawned productions to the new
state’s “goto” and “reduce” links and latch into the merged state’s productions linkages.

A caveat: infinite states gened when a merge into its own closure state network is not lr(1).
Spector’s /usr/local/yacco2/qa/lr1 sp2.lex grammar illustrates when the closure state 2’s start gening
vector:x produces its own states. Now state 2’s brethern vector: y gets gened and has the potential to
merge into one of x’s states but the potential merge is not lr(1). Cuz state’s 2 two closure state’s vectors are
different(x,y), this means that their gened states can be separate as long as the lr(1) constraint is respected.
So y’s states are separate from vectored:x and not merged into x’s states due to lr(1) constraint. So continue
gening closure state 2’s y’s states. If down the road gening y’s states are not lr(1) then abort the generation
and issue such a message. The not lr(1) condition is specific to the closure state’s gening vector and not due
to a merge into another’s state network that is kosher.

What happens when a closure state’s vector is gened and one of its states is not lr(1) whether being merged
into or not within itsself states network? /usr/local/yacc2/qa/knu1 sick.lex grammar illustrates this
situation. Have a read of its pdf document, as it talks about the situation and how it came about. This
situation is a legitimate non lr(1) grammar and so put on the brakes to generating its states. Another
example is: lr1 sp6.lex where the start rule has a subrule (production) and it is epsilonable. Ditto on the
reading.

So the terminating condition is:
1) not lr(1) within its own closure state’s vector generated states

〈Structure implementations 44 〉 +≡
int state ::are 2 states compatible yes merge (state & To merge into state , state & State for merging)
{

state ∗ cs To merge into = To merge into state .closure state birthing it ;
state ∗ cs for merging = State for merging .closure state birthing it ;
〈 add potential follow set context per production 94 〉;
bool compatible (false);

if (cs To merge into~state s conflict state list .empty () ≡ true) goto merged ;
lr1 test :
{

S CONFLICT STATES ITER typek = cs To merge into~state s conflict state list .begin ();
S CONFLICT STATES ITER typeke = cs To merge into~state s conflict state list .end ();
for (; k 6= ke ; ++k) { /∗ evaluate lr1 compatibility ∗/

state ∗ s = ∗k;
compatible = s~ is state lr1 compatible (∗s);
if (compatible ≡ NOT_LR1_COMPATIBLE) goto unwind merge ;

}

58 ARE 2 STATES COMPATIBLE YES MERGE O2 §93

}
merged :
{
〈 relink spawning state of merged state 95 〉;
return MERGED;

}
unwind merge :
{
unwind : ;
〈unwind potential merge 97 〉;
return NOT_MERGED;

}
return NOT_MERGED;
}

94. Add potential follow set context per production.
Only work with the core items.

〈 add potential follow set context per production 94 〉 ≡
RULE NOS SET typerules to add ;
S VECTORS ITER typesfmi = To merge into state .state s vector .begin ();
S VECTORS ITER typesfmie = To merge into state .state s vector .end ();
S VECTORS ITER typemsfmi = State for merging .state s vector .begin ();
for (; sfmi 6= sfmie ; ++sfmi , ++msfmi) {

S VECTOR ELEMS ITER typerri = sfmi~second .begin ();
S VECTOR ELEMS ITER typemrri = msfmi~second .begin ();
S VECTOR ELEMS ITER typerrie = sfmi~second .end ();
for (; rri 6= rrie ; ++rri , ++mrri) {

state element ∗ re = ∗rri ;
state element ∗mre = ∗mrri ;
if (re~closure state ≡ re~self state) continue; /∗ not a core item ∗/
RULE_ENOruleno = re~find state element s rule no();
S FOLLOW SETS ITER type j = re~closure state ~state s follow set map .find (ruleno);
follow element ∗ fe = j~second ;
RULE NOS SET ITER typerni = rules to add .find (ruleno);
if (rni ≡ rules to add .end ()) {

fe~add merge closure info(∗mre~closure state);
rules to add .insert (ruleno);

}
}
}

This code is used in section 93.

§95 O2 RELINK SPAWNING STATE OF MERGED STATE 59

95. Relink spawning state of merged state.

〈 relink spawning state of merged state 95 〉 ≡
S VECTORS ITER typeri = State for merging .state s vector .begin ();
S VECTORS ITER typerie = State for merging .state s vector .end ();
S VECTORS ITER typesi = To merge into state .state s vector .begin ();
for (; ri 6= rie ; ++ri , ++si) {

S VECTOR ELEMS ITER typerri = ri~second .begin ();
S VECTOR ELEMS ITER typerrie = ri~second .end ();
S VECTOR ELEMS ITER typessi = si~second .begin ();
for (; rri 6= rrie ; ++rri , ++ssi) {

state element ∗ re = ∗rri ;
state element ∗ se = ∗ssi ;
if (re~previous state element ≡ 0) continue;
state element ∗ prev re = re~previous state element ;
prev re~goto state = se~self state ;
prev re~reduced state = se~reduced state ;
prev re~next state element = se ; /∗ walk thru the rhs backwards laying those reduce eggs ∗/
for (prev re = prev re~previous state element ; prev re 6= 0; prev re = prev re~previous state element)
{ /∗ deposit reducing state ∗/
prev re~reduced state = se~reduced state ;

}
}
}
〈 add conflict states to to merge network 96 〉;

This code is used in section 93.

96. Add conflict states to merge network.
For now add all the conflict states until i refine a map of states that derives each specific conflict state.

If the merged state is part of the current network being gened then bypass. Why? The conflict states are
already registered that appliy to this merged state cuz its part of this closured generating state containing
the conflist state list.

〈 add conflict states to to merge network 96 〉 ≡
if (cs for merging~cs vector combo gening it .for closure state 6=

cs To merge into~cs vector combo gening it .for closure state) {
S CONFLICT STATES ITER typek = cs To merge into~state s conflict state list .begin ();
S CONFLICT STATES ITER typeke = cs To merge into~state s conflict state list .end ();
for (; k 6= ke ; ++k) {

state ∗ s = ∗k;
cs for merging~state s conflict state list .push back (s);

}
}

This code is used in section 95.

60 UNWIND POTENTIAL MERGE O2 §97

97. Unwind potential merge.

〈unwind potential merge 97 〉 ≡
RULE NOS SET typerules to add ;
S VECTORS ITER typesfmi = To merge into state .state s vector .begin ();
S VECTORS ITER typesfmie = To merge into state .state s vector .end ();
for (; sfmi 6= sfmie ; ++sfmi) {

S VECTOR ELEMS ITER typerri = sfmi~second .begin ();
S VECTOR ELEMS ITER typerrie = sfmi~second .end ();
for (; rri 6= rrie ; ++rri) {

state element ∗ re = ∗rri ;
if (re~closure state ≡ re~self state) continue; /∗ not a core item ∗/
RULE_ENOruleno = re~find state element s rule no();
S FOLLOW SETS ITER type j = re~closure state ~state s follow set map .find (ruleno);
follow element ∗ fe = j~second ;
RULE NOS SET ITER typerni = rules to add .find (ruleno);
if (rni ≡ rules to add .end ()) {

fe~remove merge closure info();
rules to add .insert (ruleno);

}
}
}

This code is used in section 93.

98. find 2 states compatible and merge .
Read the LR1_COMMON_STATES table looking for states with the same enumerate and same state core items.

〈Structure implementations 44 〉 +≡
int state ::find 2 states compatible and merge (state & State for merging)
{

Voc ENO eno = State for merging .vectored into by elem ;
LR1 STATES ITER type i = LR1_COMMON_STATES.find (eno);
if (i ≡ LR1_COMMON_STATES.end ()) {

return NOT_MERGED;
}
STATES ITER type j = i~second .begin ();
STATES ITER type je = i~second .end ();
for (; j 6= je ; ++j) {

state ∗ s = ∗j;
bool equivalent = are states equivalent (State for merging , ∗s);
if (equivalent ≡ false) continue;

int compatible = are 2 states compatible yes merge (∗s,State for merging);

if (compatible ≡ LR1_COMPATIBLE) return MERGED;
if (compatible ≡ ABORT_GENING_STATES) return ABORT_GENING_STATES;

}
return NOT_MERGED;
}

§99 O2 ARE GENED STATES LR1 COMPATIBLE 61

99. are gened states lr1 compatible .
Read gening state’s conflict states for lr1 health check.

〈Structure implementations 44 〉 +≡
bool state ::are gened states lr1 compatible ()
{

S CONFLICT STATES ITER type i = state s conflict state list .begin ();
S CONFLICT STATES ITER type ie = state s conflict state list .end ();
if (i ≡ ie) return LR1_COMPATIBLE;
for (; i 6= ie ; ++i) {

state ∗ s = ∗i;
if (is state lr1 compatible (∗s) ≡ NOT_LR1_COMPATIBLE) return NOT_LR1_COMPATIBLE;

}
return LR1_COMPATIBLE;
}

100. is str rt bnded .
Determine if the production’s lookahead transitions thru other closured state’s follow sets.
Read the production’s string positioned by it’s passed parameter. The right bounded condition is whether
the last symbol in the string is a rule before the “eosubrule”. This demands that the closure productions
caused by this rule within the state must also be generated as part of the being gened closure state.

A subtle condition arises when the string’s balance of symbols contains only rules that are all epsilonable.
This moves the right bounded condition into the interior of the production currently positioned. Why?
Epsilon is a window that allows one to see past its contents into the next adjacent symbol. This is inductive
as it moves right thru all the epsilon rules to the end-of-string. Thus each rule’s follow set strings transitizes
rightward along the production’s string to its end and then up the follow sets of its spawning closure rule’s
environment.

Please note, the thread call variants do not support right-bounded expressions. U’ll never have a rule
following the thread call prase — this is a parsing error.

〈Structure implementations 44 〉 +≡
bool state :: is str rt bnded (AST ∗ Str)
{
AST ∗ rstr t = AST ::brother (∗Str); /∗ get next node ∗/
if (rstr t ≡ 0) return false ; /∗ eosubule passed in for verification ∗/
CAbs lr1 sym ∗ sym = AST ::content (∗rstr t);
Voc ENO id = sym~enumerated id ;
if (id ≡ T Enum ::T T eosubrule) {

CAbs lr1 sym ∗ rsym = AST ::content (∗Str);
if (rsym~enumerated id ≡ T Enum ::T refered rule) {

return true ;
}

}
return is str epsilonable (rstr t);
}

62 IS STR EPSILONABLE O2 §101

101. is str epsilonable .
The symbol string passed is one to the right of the current item within the state called the “follow string”.
From this point within the production string, the balance of the symbols must be composed of “refered-rule”
having the epsilon attribute. Remember: the grammar is internally represented by a tree where each node
of a production contains a “refered-rule”, “refered-T”, or an “eosubrule”. Thread calls is not applicable. It
is never epsilonable.

〈Structure implementations 44 〉 +≡
bool state :: is str epsilonable (AST ∗ Str)
{
AST ∗ str t = Str ;
for (; str t 6= 0; str t = AST ::brother (∗str t)) {

CAbs lr1 sym ∗ sym = AST ::content (∗str t);
Voc ENO id = sym~enumerated id ;
〈 is str’s element epsilon 102 〉;

}
return true ;
}

102. Is str’s element epsilon?.
The tree node’s symbol must be a rule or “eosubrule”. “eosubrule” indicates either the empty string (epsilon)
where it is the only symbol within the production or the end of the production’s string of symbols.

〈 is str’s element epsilon 102 〉 ≡
switch (id) {
case T Enum ::T refered rule :
{
〈 get cast referenced rule 108 〉;
rule def ∗ rd = rr~ its rule def ();
if (rd~epsilon () 6= true) return false ;
break;

}
case T Enum ::T T eosubrule :
{

return true ;
}

case T Enum ::T refered T :
{

return false ;
}
}

This code is used in section 101.

§103 O2 FOLLOW SET ROUTINES 63

103. Follow set routines.

104. add rule to follow list .

〈Structure implementations 44 〉 +≡
void state ::add rule to follow list (RULE_ENORefered rule)
{

FOLLOW RULES ITER type i = follow rule list .find (Refered rule);
if (i ≡ follow rule list .end ()) {

follow rule list .insert (Refered rule);
}
}

105. create follow sets of state .
The list contains the rule’s enumerate value. This is used to get the state s vector [ruleno] context that
makes up the state. It supplies the context in the subrule(s) where it resides. The follow set is calculated
from the symbol string(s) to the right of these subrule context.

〈Structure implementations 44 〉 +≡
void state ::create follow sets of state ()
{

if (follow rule list .empty () ≡ true) return;
RULE_ENOeno(−1);
FOLLOW RULES ITER type i = follow rule list .begin ();
FOLLOW RULES ITER type ie = follow rule list .end ();
for (; i 6= ie ; ++i) { /∗ create initial follow set map entries ∗/

follow element ∗ fe = new follow element (this);
eno = ∗i;
fe~rule no = eno ;
state s follow set map [eno] = fe ;

}
i = follow rule list .begin ();
for (; i 6= ie ; ++i) { /∗ read rules ∗/

eno = ∗i;
S VECTORS ITER type j = state s vector .find (eno);
S FOLLOW SETS ITER type fsi = state s follow set map .find (eno);
follow element ∗ fe = fsi~second ;
S VECTOR ELEMS ITER typek = j~second .begin ();
S VECTOR ELEMS ITER typeke = j~second .end ();
for (; k 6= ke ; ++k) { /∗ read subrule context ∗/

state element ∗ se = ∗k;
〈 get subrule’s referenced rule in follow string 107 〉;
AST ∗ follow str t = AST ::brother (∗se~sr element);

deal with follow str sym : ;
fe~rule def t = rr~ its rule def ()~rule s tree ();
fe~add follow set contributor (follow str t);
CAbs lr1 sym ∗ sym = AST ::content (∗follow str t);
Voc ENO id = sym~enumerated id ;
〈deal with current follow string element 106 〉;

}
}
}

64 CREATE FOLLOW SETS OF STATE O2 §106

106.

〈deal with current follow string element 106 〉 ≡
switch (id) {
case T Enum ::T refered rule :
{
〈 get cast referenced rule 108 〉;
rule def ∗ rd = rr~ its rule def ();
if (rd~first set ()~empty () 6= true) {

FIRST SET ITER typea = rd~first set ()~begin ();
FIRST SET ITER typeae = rd~first set ()~end ();
for (; a 6= ae ; ++a) {

T in stbl ∗ t = ∗a;
if (fe~ follow set .find (t) ≡ fe~ follow set .end ()) {

fe~ follow set .insert (t);
}
}

}
if (rd~epsilon () ≡ true) { /∗ next follow str symbol ∗/

follow str t = AST ::brother (∗follow str t);
goto deal with follow str sym ;

}
break;

}
case T Enum ::T T eosubrule :
{
〈 get cast referenced eosubrule 110 〉;
fe~add follow set transition (∗se , ∗eos);
break;

}
case T Enum ::T T null call thread eosubrule :
{

break;
}

case T Enum ::T T called thread eosubrule :
{

break;
}

case T Enum ::T refered T :
{
〈 get cast referenced T 109 〉;
fe~ follow set .insert (rt~ t in stbl ());
break;

}
}

This code is used in section 105.

107.

〈 get subrule’s referenced rule in follow string 107 〉 ≡
refered_rule* rr = (refered_rule*)AST::content(*se−>sr_element_);

This code is used in section 105.

§108 O2 CREATE FOLLOW SETS OF STATE 65

108.

〈 get cast referenced rule 108 〉 ≡
refered_rule* rr = (refered_rule*)sym;

This code is used in sections 47, 102, and 106.

109.

〈 get cast referenced T 109 〉 ≡
refered_T* rt = (refered_T*)sym;

This code is used in sections 47, 92, and 106.

110.

〈 get cast referenced eosubrule 110 〉 ≡
T_eosubrule* eos = (T_eosubrule*)sym;

This code is used in sections 47, 52, and 106.

111.

〈 get cast referenced null called thread eosubrule 111 〉 ≡
T_null_call_thread_eosubrule* eos = (T_null_call_thread_eosubrule*)sym;

This code is used in section 47.

112.

〈 get cast referenced called thread eosubrule 112 〉 ≡
T_called_thread_eosubrule* eos = (T_called_thread_eosubrule*)sym;

This code is used in section 47.

66 CRT START RULE S FOLLOW SET O2 §113

113. crt start rule s follow set .
What is the follow set for the Start rule and should there be one anyway? There is only the empty string
so what’s it follow string? Empty? Here’s the scoop. A monolithic grammar force an “eolr” terminal. This
covers the end-of-the grammar process and homogenizes it in the same manner as threaded grammars. For
the thread grammar use its calculated “parallel-la-boundary” expression. This is its follow set. The second
question raised allows the Start rule’s productions to reduce as accepted.

〈Structure implementations 44 〉 +≡
void state ::crt start rule s follow set (AST & Start rule)
{

CAbs lr1 sym ∗ sym = AST ::content (Start rule);
rule_def* rd = (rule_def*)sym; ;
RULE_ENOrno = rd~enum id ();
follow element ∗ fe = new follow element (this);
fe~rule no = rno ;
state s follow set map [rno] = fe ;
fe~rule def t = rd~rule s tree ();
if (O2_PP_PHASE ≡ 0) { /∗ monolithic: use eolr not eog ∗/

fe~ follow set .insert (STBL_T_ITEMS[LR1_EOLR]);
}
else { /∗ thread: use calculate lookahead expression ∗/

T parallel parser phrase ∗ pp ph = O2_PP_PHASE;
T parallel la boundary ∗ la = pp ph~ la bndry ();
LA SET ITER type i = la~ la first set ()~begin ();
LA SET ITER type ie = la~ la first set ()~end ();
for (; i 6= ie ; ++i) {

T in stbl ∗ t = ∗i;
FOLLOW SETS ITER type j = fe~ follow set .find (t);
if (j ≡ fe~ follow set .end ()) {

fe~ follow set .insert (t);
}

}
}
}

§114 O2 FOR TRACING FACILITIES 67

114. For tracing facilities.

115. entry symbol literal .

〈Structure implementations 44 〉 +≡
const char ∗state ::entry symbol literal ()
{

if (vectored into by elem sym ≡ 0) return " No symbol";
〈 return entry symbol literal 116 〉;
}

116. Return entry symbol literal.
Eases tracing of lr states easier instead of just displaying its enumerated value.

〈 return entry symbol literal 116 〉 ≡
Voc ENO id = vectored into by elem sym ~enumerated id ;
CAbs lr1 sym ∗ sym = vectored into by elem sym ;
switch (id) {
case T Enum ::T rule def :
{

rule_def* rd = (rule_def*)sym;

return rd~rule name ()~c str ();
}

case T Enum ::T T eosubrule :
{

return "eos";
break;

}
case T Enum ::T T null call thread eosubrule :
{

return "null−eos";
break;

}
case T Enum ::T T called thread eosubrule :
{

return "called−thd−eos";
break;

}
case T Enum ::T T terminal def :
{

T_terminal_def* td = (T_terminal_def*)sym;

return td~ t name ()~c str ();
}

default:
{ /∗ cuz apple’s latest compiler: symantic analysis error-never reached ∗/

return "null−eos";
break;

}
}

This code is used in section 115.

68 EMIT FSA, FSC, AND DOCUMENTS OF GRAMMAR O2 §117

117. Emit FSA, FSC, and Documents of grammar.
Finally. This is a hodge/podge of routines to emit the “cpp” code, “first set control” file for O2linker, and
various documents to be run thru the “mpost, cweave, and pdftex’ stages. A caution, under my Sun Solaris
system, the “Adobe 3rd party Readers” like “gpdf and xpdf” occassionally throw tantrums. I’ll look into
these after finishing O2.

118. Output enumeration header file.

〈 output enumeration header file 118 〉 ≡
lrclog � "Output enumeration header file " � endl ;
OP_ENUMERATION_HEADER(Error queue);
〈 if error queue not empty then deal with posted errors 21 〉;

This code is used in section 130.

119. Output Errors file.

〈 output Errors files 119 〉 ≡
if (ERR_SW ≡ ’y’) {

lrclog � "Output Errors vocabulary files " � endl ;
OP_ERRORS_HEADER(Error queue);
OP_ERRORS_CPP(Error queue);
〈 if error queue not empty then deal with posted errors 21 〉;
}

This code is used in section 130.

120. Output User Terminals files.

〈 output User Terminals files 120 〉 ≡
if (T_SW ≡ ’y’) {

lrclog � "Output User Terminal vocabulary files " � endl ;
OP_USER_T_HEADER(Error queue);
OP_USER_T_CPP(Error queue);
〈 if error queue not empty then deal with posted errors 21 〉;
}

This code is used in section 130.

121. Output grammar header file.

〈 output grammar header file 121 〉 ≡
lrclog � "Output grammar header file " � endl ;
OP_GRAMMAR_HEADER(Error queue);
〈 if error queue not empty then deal with posted errors 21 〉;

This code is used in section 130.

122. Output grammar cpp file.

〈 output grammar cpp file 122 〉 ≡
lrclog � "Output grammar cpp file " � endl ;
OP_GRAMMAR_CPP(Error queue);
〈 if error queue not empty then deal with posted errors 21 〉;

This code is used in section 130.

§123 O2 OUTPUT GRAMMAR SYM FILE 69

123. Output grammar sym file.

〈 output grammar sym file 123 〉 ≡
lrclog � "Output grammar sym file " � endl ;
OP_GRAMMAR_SYM(Error queue);
〈 if error queue not empty then deal with posted errors 21 〉;

This code is used in section 130.

124. Output grammar tbl file.

〈 output grammar tbl file 124 〉 ≡
lrclog � "Output grammar tbl file " � endl ;
OP_GRAMMAR_TBL(Error queue);
〈 if error queue not empty then deal with posted errors 21 〉;

This code is used in section 130.

125. Output T-alphabet file.

〈 output T-alphabet file 125 〉 ≡
if (T_SW ≡ ’y’ ∨ ERR_SW ≡ ’y’) {

lrclog � "Output User Terminal vocabulary files " � endl ;
OP T Alphabet (Error queue);
〈 if error queue not empty then deal with posted errors 21 〉;
}

This code is used in section 130.

126. Documents — Grammar’s Cweb and Mpost diagrams, and Cross references.

〈 emit documents 126 〉 ≡
if (PRT_SW ≡ ’y’) {〈 emit Cweb and Mpost files 127 〉〈print out xref docs 128 〉}

This code is used in section 130.

70 EMIT CWEB AND MPOST DIAGRAMS O2 §127

127. Emit Cweb and Mpost diagrams.
This is my attempt at producing grammar reports by mpost diagrams and cweave . Of course, this is recursive
in that cweb uses cweave to generate code with a simple attempt at grammar’s railroad diagrams. To do
this, a new comment type was created — “/@” – “@/” to include the cweb directives declaring how the
document’s formatting will look like with its table of contents. The comment is a play on cweave ’s directives.
They can be sprinkled thru out the grammar except within the syntax-directed code constructs as u know,
this is a character at a time lex crawler with little knowledge of c++ syntax apart from comments, literals,
and strings. Once u become familiar with cweave , u’ll never go back to base comments — aka c++. The
files emitted take on the file naming format of:

1) grammar name without its extension “.lex” for the filename body
2) “.mp” mpost extension
3) “.w”cweb extension

As an example, a grammar of “eol.lex” would produce the mpost file ’eol.mp’ and cweb file ‘eol.w’. These
files are run thru mpost and cweave followed by pdftex to produce the ’pdf’ grammar document. mpost
generates from ’eol.mp’ its figure files with numeric extensions like ’eol.1’ that are referenced in the cweb file
‘eol.w’ using the convertMPtoPDF macro.

〈 emit Cweb and Mpost files 127 〉 ≡
using namespace yacco2;
using namespace NS yacco2 k symbols;
using namespace NS mpost output;

lrclog � "Emit grammar’s railroad diagrams for Mpost" � endl ;
set < int > cweb k filter ;

cweb k filter .insert (T Enum ::T T cweb comment);
tok can ast functor mpost just walk functr ;
ast prefix mpost rule walk (∗GRAMMAR_TREE,&mpost just walk functr ,&cweb k filter , BYPASS_FILTER);
tok can < AST ∗> mpost rules can (mpost rule walk);
Cmpost output mpost fsm ;
T fsm phrase ∗ fsm ph = O2_FSM_PHASE;
mpost fsm .grammar filename prefix += fsm ph~filename id ()~ identifier ()~c str ();
mpost fsm .fq filename noext += o2 fq fn noext .c str ();
Parser mpost rules (mpost fsm ,&mpost rules can , 0, 0,&Error queue);
mpost rules .parse ();

This code is used in section 126.

§128 O2 PRINT OUT XREF DOCS 71

128. Print out xref docs.
1) cross reference of used symbols: grammar’s vocabulary
2) grammar’s rules first sets

〈print out xref docs 128 〉 ≡
using namespace NS prt xrefs docs;

yacco2 :: lrclog � "−−−−− Print xref docs −−−−−" � std ::endl ;
set<int> prt_xrefs_docs_filter;

prt xrefs docs filter .insert (T Enum ::T rule def);
prt xrefs docs filter .insert (T Enum ::T T subrule def);
prt xrefs docs filter .insert (T Enum ::T refered T);
prt xrefs docs filter .insert (T Enum ::T refered rule);
prt xrefs docs filter .insert (T Enum ::T T called thread eosubrule);
prt xrefs docs filter .insert (T Enum ::T T null call thread eosubrule);
prt xrefs docs filter .insert (T Enum ::T T eosubrule);
tok can ast functor xrefs docs walk functr ;
ast prefix prt xrefs docs walk (∗rules tree ,&xrefs docs walk functr ,&prt xrefs docs filter , ACCEPT_FILTER);
tok can < AST ∗> prt xrefs docs can (prt xrefs docs walk);
Cprt xrefs docs prt xrefs docs fsm ;
prt xrefs docs fsm .grammar filename prefix += mpost fsm .grammar filename prefix ;
prt xrefs docs fsm .fq filename noext += o2 fq fn noext .c str ();
Parser prt xrefs docs (prt xrefs docs fsm ,&prt xrefs docs can , 0, 0,&Error queue);
prt xrefs docs .parse ();

This code is used in section 126.

129. Emit FSC file.
Let the linker know what’s happening with the grammar’s first set for the linker.

〈 emit fsc file 129 〉 ≡
OP_FSC_FILE(Error queue);

This code is used in section 130.

130. Driver to emit FSA, FSC, and Documents of grammar.

〈 emit FSA, FSC, and Documents of grammar 130 〉 ≡ /∗ 〈print grammar tree 133 〉; ∗/
〈 output enumeration header file 118 〉;
〈 output Errors files 119 〉;
〈 output User Terminals files 120 〉;
〈 output T-alphabet file 125 〉;
〈 output grammar header file 121 〉;
〈 output grammar cpp file 122 〉;
〈 output grammar sym file 123 〉;
〈 output grammar tbl file 124 〉;
〈 emit fsc file 129 〉;
〈 emit documents 126 〉;

This code is used in section 14.

72 PRINT ROUTINES O2 §131

131. Print routines.

132. Print tree structure of rules.

〈print tree 132 〉 ≡
yacco2 :: lrclog � "Tree dump of grammar" � std ::endl ;
prt ast functor prt functr (&PRINT_RULES_TREE_STRUCTURE);
ast prefix pre (∗GRAMMAR_TREE,&prt functr);
while (pre .base stk .cur stk rec() 6= 0) {

pre .exec();
}

This code is cited in sections 14 and 29.

133. Print grammar tree.

〈print grammar tree 133 〉 ≡
yacco2 :: lrclog � "Grammar Tree dump" � std ::endl ;
prt ast functor prt grammar functr (&PRINT_GRAMMAR_TREE);
ast prefix prefix grammar (∗GRAMMAR_TREE,&prt grammar functr);
tok can < AST ∗> pt can (prefix grammar);

int n(−1);

for (; pt can [++n] 6= NS yacco2 k symbols ::PTR LR1 eog ;) ;

This code is cited in section 130.

§134 O2 PRINT DUMP COMMON STATES 73

134. Print dump common states.

〈print dump common states 134 〉 ≡
LR1 STATES ITER typeci = LR1_COMMON_STATES.begin ();
LR1 STATES ITER typecie = LR1_COMMON_STATES.end ();
yacco2 :: lrclog � "Common States dump" � std ::endl ;

int cstate no(0);

for (; ci 6= cie ; ++ci) {
++cstate no ;
STATES ITER typesi = ci~second .begin ();
STATES ITER typesie = ci~second .end ();

bool pre = false ;

for (; si 6= sie ; ++si) {
state ∗ cstate = ∗si ;
if (pre ≡ false) {

pre = true ;
yacco2 :: lrclog � cstate no � "::Common State: " � cstate~vectored into by elem ;
if (cstate~vectored into by elem sym ≡ 0) {

yacco2 :: lrclog � " Entry Symbol: No symbol" � std ::endl ;
}
else {

yacco2 :: lrclog � " Entry Symbol: " � cstate~entry symbol literal ()� std ::endl ;
}

}
yacco2 :: lrclog � "\tstate no: " � cstate~state no � std ::endl ;

}
yacco2 :: lrclog � std ::endl ;
}

This code is cited in section 39.

This code is used in section 40.

135. Print dump state.

〈print dump state 135 〉 ≡
const char ∗literal name ;

yacco2 :: lrclog � std ::endl ;
yacco2 :: lrclog � "State dump" � std ::endl ;
si = LR1_STATES.begin ();
sie = LR1_STATES.end ();
for (; si 6= sie ; ++si) {

state ∗ cur state = ∗si ;
Print dump state (cur state);
}

This code is cited in section 39.

This code is used in section 40.

136. Some tracing facilities.

74 INCREMENT AND PRINTOUT RECURSION COUNTER O2 §137

137. Increment and printout Recursion counter.

〈 Increment and printout Recursion counter 137 〉 ≡
〈 Increment Recursion counter 138 〉;
〈Printout Recursion counter 139 〉;

This code is used in sections 79, 81, and 82.

138. Increment Recursion counter.

〈 Increment Recursion counter 138 〉 ≡
++RECURSION_INDEX__;

This code is used in section 137.

139. Printout Recursion counter.

〈Printout Recursion counter 139 〉 ≡
for (int y (1); y ≤ RECURSION_INDEX__; ++y) lrclog � ’.’;

This code is used in sections 79, 82, 83, 84, and 137.

140. Decrement Recursion counter.

〈Decrement Recursion counter 140 〉 ≡
−−RECURSION_INDEX__;

This code is used in sections 79, 81, 82, 84, and 86.

§141 O2 WRITE OUT O2 DEFS .CPP STRUCTURE IMPLEMENTATIONS 75

141. Write out o2 defs .cpp Structure implementations.

〈 o2_defs.cpp 141 〉 ≡
#include "o2.h"

〈Structure implementations 44 〉;

76 BUGS — UGH O2 §142

142. Bugs — ugh.
What are they good for? Abolutely nothing! Though i paraphrase the song, my entomology teaches and
exposes my myopic shortcomings. Ahh... the forest versus the trees of relativist processes attending to
correctness.

143. Microsoft compiler Corrupted memory heap.
Well here’s the scoop: IT IS THEIR TEMPLATE HANDLING of a globally defined set: The following code
shows the bug:

1: std::set<state*> VISITED_MERGE_STATES_IN_LA_CALC;

2: int main(int argc,char*argv[]){

3: VISITED_MERGE_STATES_IN_LA_CALC.clear();}

4: if(VISITED_MERGE_STATES_IN_LA_CALC.empty() == true){

5: cout << "===========its empty" << endl;

6: }

7: return 0;

8: }

9:

Debug displays the dtor winddown of the tree when the program is exiting that gives its access violation. It
is walking the tree when it thinks there is something to delete — bad initialization values for their iterators
within their container. There are other heap variants but ... Now the real stupidity: screen shots for MS
to deal with and trying to send the “feedback” to MS out of Visual Studio 2005 caused another Visual
Studio bug: it experience technical difficulties ... did not register the problem with them — but i had their
acknowledgement reference number that i emailed with their assurance that they would within 3 days (whose
days business?) acknowledge receipt of the to-be-investigated problem. Well u got it i’m still waiting. From
the above code i have no pre-initialization code before it enters the mainline but i’ll not display their screen
shot as this is wasting my time.

Again it’s a sad statement regarding how they deal with problems and lag time before product fixes: just
read their approach to voting on bugs before fixing them, all other software companies call it a “Bug Report”
or a variant there of but not MS — their euphemism is Customer Feedback ... stop gagging Dave, and why is
it 2 years between compiler releases to correct bugs, and have u tried obtaining their Beta compiler release?
There is no fix until MS fixes it in possibly their next release. Until then at least it reguritates at the end of
the program and my patience for the deliverance day.

Early July 2006.

§144 O2 COMMENT NO 2: APPLE BUG – PROBLEM ID: 4403453 UNRESOLVED LINKAGES 77

144. Comment no 2: Apple bug – Problem Id: 4403453 unresolved linkages.
Open source has it’s warts whereby i was testing how Apple deals with problems when they go thru a middle
man like gnu.org for their C++ compiler and linker. At least they have a “Bug Reporter” and dialogue of
receipt and “how’s it going” followups. Unfortunately they flunked in their Californian way to getting the
problem fixed and in not answering how i could get their lodged reference number when they passed the
problem to the gnu.org. My beef is how i can track my problem(s) within the open source community thru
the middleman and see how fast they correct the problem? Voting does not count here. This problem is
still being sat on by Apple when their last followup was “how’s it going?” (only 10 months o/s). It only
confirmed my skepticism about this community and my middleman and how they pass on the problem. I
have not reached the next step in how gnu.org deals with the fielded problem. Going to gnu.org shows a
genuine honesty towards publishing problems. Microsoft is not of the same ilk. If they were GM would
people buy their cars particularly when there are the Naders who keep them accountable? What would it
cost in litigation towards tarnished goods / services by MS?

Another beef:
Proof of bug demonstrated with logged outputs etc does not seem to be adequate in Apple’s engineers’
minds? Boy i can’t wait for the day when the software manufacturer can under restricted access enter my
computer and see / diagnose problems without the crap of whittle down code size, demonstrate the bug in
at most 1 line of code platitudes. At least Apple is a bit more earnest in frontline manners... but i’m still
waiting on this problem particularly when their engineer flubbed the initial response back to me.

Alas what can i do? I’m currently looking at Sun and their development team to deliver a better comn-
piler with faster logistics in dealing with bugs. I’m more optimistic as my people used the “Oregon Pascal”
compiler for 16 years. Even though the company folded in the early nineties some of their excellent compiler
engineers are working for Sun. So let’s see when my Sun AMD desktop running Solaris 10 and 3 years soft-
ware support with Sun comes in so that i can peddle-to-the-metal my program against this new backdrop.
So far all portings have drawn problems be it interpretations of the C++ compiler standard by the compiler
writers with their implementations, past failings by C++ compilers to handle properly class itor lists with
1998 work arounds, template tantrums to this day and i’m not meta templating, and threading issues. I
guess i’m just stubborn in what i think will be good for the software world: as i just keep on hanging on
as the song goes... I’m slowly regressing towards C only cuz C++ has that ++ complexity with ++ bugs.
The beguiling part of C++ is templates dealing with common containers that makes the withdrawal process
more painful...

9 Jan 2006.

145. Sun Microsystems compiler . Excellent!.
Well so far the O2 port is going well. Their performance tools are great. Their compiler works as it should.
Their development IDE is close to Microsoft in facilities. The only speed bump is in the “file mount” when
it occassionally gets lost in not finding things even when the mounted account has been refreshed. Also their
text editor can’t handle very large text files like tracings. The odd time “Sunstudio” goes in tail-chasing:
must exit out and sign back in but... Overall rating between a 1 - 10 dada 11 that binary for well done even
with the droppings as what is probably happening (my musings) in their messaging / interupt facility drops
those claques — that french for hits.

23 March 2007.
PS: won’t be going back to Microsoft. They are too arrogent without the personalized client support. Sun’s
problem reporting / case followup is just excellent. With just posted black quarter results and the flop of
Vista buy-in i hope this bodes well for Sun who are trying very hard to be Open and frank. Keep it going
Sun!

78 INCOMPLETE GENING OF STATE’S CORE ITEMS DUE TO COMMON PREFIX O2 §146

146. Incomplete gening of state’s core items due to common prefix.
The state being gened is determined by the elements associated to the closure state being formed. If there
is a common prefix making up the state whereby the elements come from different closure states, still all
the elements must go into the goto state being gened. As i walked the vector list, the elements that were of
different closure state were skipped. This was the filtering that took place when the State was being assessed
for closure items generation. The first item found for generation also became the starting point within the
list to gen from. Remember the “goto symbol” vector is a list of elements to gen. Solution: any element in
the “goto symbol” vector meets the filter criteria, then the complete list must be used: not from the point
found within the list. Like any mistake — just dumb! It was not conceptual but an implementation slippage.
〈 create a new state 85 〉 adjusted as the element list’s “begin and end” j and je variables are present due to
Apple’s compiler’s indigestion. Again quality assurance on Open Source can be exasperating at the compiler
level! Sun’s compiler is greeeeat!

July 2007.

147. Missing reduced state deposit on prefix elements leading up to the merged state.
Only went back 1 element to deposit the reduced state: Missing reduce deposits for the balance of elements
thru to the beginning of the subrule. Man there are times when u missed the boat Dave. No its links!

July 2007.

148. 3rd party AdobeReader annoyances.
xpdf and gpdf programs ain’t doing too well on my Sun Solaris Operating system. As i output pdf docu-
ments and these programs either core dump or display partial info, this ain’t good. So i have split up the
documents generated so that one can take what is wanted, and hopefully i’ll be able to get a more recent
version that works as Adobe seems to be avoiding proprietary Ops — particularly Sun. BTW, the generated
documents work properly on my Apple iBook laptop.

Sept. 2007.

§149 O2 MISSING T(S) IN LOOKAHEAD SET DUE TO MERGES 79

149. Missing T(s) in lookahead set due to merges.
The problem was i use a list of closure states of merges that are state contexts for the follow set calculation.
Remember, closure states provide the follow set contexts. If 2 subrules of a rule are merged into the same
“closure state” context: u now have duplicate states in the “merged into” list. So i test on membership
before adding to the list. Here’s the melted down rogue grammar where “Ra” has the 2 subrules:

1: /* FILE: 1test.lex

2: dates: 17 Apr 2001

3: Purpose: see why merge does not work

4: */

5: fsm

6: (fsm-id "test.lex",fsm-filename test,fsm-namespace NS_test

7: ,fsm-class Cpas_keyword

8: ,fsm-version "1.0",fsm-date "17 Apr 2001",fsm-debug "true"

9: ,fsm-comments "Merge proplempascal Keyword recognizer")

10: parallel-parser

11: (

12: parallel-thread-function

13: TH_test

14: ***

15: parallel-la-boundary

16: eolr

17: ***

18:)

19: @"/pascalxlator/pas_include_files.T"

20: rules{

21: Rtest AD AB(){

22: -> Rtest_indiv

23: }

24:

25: Rtest_indiv AD AB(){

26: -> Ra Rc

27: -> Rr Ra Rm

28: -> RE Ra Rt

29: }

30:

31: Ra AD AB(){-> "a" -> "A"} Rc AD AB(){-> "c" } Rr AD AB(){-> "r" }

32: RE AD AB(){-> "e" } Rt AD AB(){-> "t" } Rm AD AB(){-> "m" }

33: }// end of rules

34:

Ra’s lookahead set is “c,m,t” but it was missing “m” caused by the duplicate closure state. Why u ask does
duplicates cause a problem? i tested visited states to guard agaist cycles so stop going thru the balance of
the list!

Nov. 2007.

80 NOT TESTING START STATE FOR LRNESS O2 §150

150. Not testing Start State for LRness.
The symtoms: the quality assurance non lr1 grammar caused O2 to loop when gening its states and more
states ... The cause came from the epsilon rule in the state state not having its reduce state set to self.
When gening the calc la for the reduced subrule, it exited due to the sanity check on state address must
be the same as the reduce state address. So there was no lookahead set for the reducing and consequently
no proper santity checks of outcome. Well why did u not thrown an error? Don’t know what my thought
process was at time so enough of the conjecture. The TS path7 .lex grammar did it. So let’s hear it for QA.

Jul. 2008.

151. Run run run run run away.
The symtoms: gening of states keeps going into a right recursion loop that never ends until “death do us
part” with memory. The current closure state network being gened did not detect on self one of its states
being “not lr1” compatible. Please see / yacco2 / qa/knu1 sick .lex grammar to test this out. This bug
came about when i was gening up some of the grammars from Knuth’s paper — “On the translation of
laguages from left to right” In “Information and Control”, volume 8 of 6, pages 607–639, 1965. The first
grammar got mistyped where RB was replaced with RA which made it not lr1. Not too swift Dave — ahh
the Occam of self reflections. But the detection of it strengthens O2. O2 stops gening the lr states, announces
the bad news, and reguritates its states configurations to show where the nonlr1ness was found.

Oct. 2008.

152. Ditto to above — random monkeys throwing coconuts.
The symtoms: occassionally not completing the gening of states for a specific closure network. Due to the
introduction of gening a state returning a status, i forgot to return “a default true” when the vector loop
was completed. This loop is normally not completed “the normal for loop” way but a “bypass this vector
for the gening” as it is associated with another closure state network continues with the next vector in the
for loop. So random results returned was caused by whatever was in the memory at the time. So it’s not
the sky falling only Dave’s memory lapses, myopic vission, and not paying attention to the simple code.

Oct. 2008.

153. Random VMS monkeys throwing spurious end-of-lines into streaming text.
The symtoms: in VMS the outputted C++ source files contains spurious carriage returns. Man u should see
what it does to the C++ compiler when trying to compile these grammar programs where variable names are
sliced-and-diced, struct defintions malformed, and keywords being morphed. When the VMS C++ compiler
hits the streaming text’s buffer-end it takes the initiative to insert an end-of-line (carrage return). How
calvalier!
The work-around: Use lots and lots of “std::endl()” to flush out the text buffer instead of text ending with
“n”. Not efficient but hey do u think HP will fix this when their C++ compiler is probably contracted
out? Researching this problem they suggested this work-around as the smell is still lingering and the latest
compiler dittos the same tune. Ditto workaround to Olinker

2 ’s output that manages the global thread list
and their “first sets”.

Dec. 2008.

§154 O2 TAKE 2: RANDOM VMS MONKEYS THROWING SPURIOUS END-OF-LINES 81

154. Take 2: Random VMS monkeys throwing spurious end-of-lines.
The problem is how VMS opens a file. If it is transfered using “ftp” onto the Alpha as default text, then the
file attributes are variable length with carriage return. This is the fault. By getting “o2” working and deleting
all the “cpp” type files, they get gened as “stream-lf” file and not as a file of variable length with carriage
return. This was discovered when “o2linker” was taking 60 to 100 x longer to output the “yacco2 fsc.fsc” file
from its input: “yacco2.fsc” file. When the old “yacco2 fsc.cpp” file was removed, VMS operating system
did not default to the previous version with its attributes but created it as a “stream-lf” type file provided
by “ofstream” type. This stopped the heavy seeking on writing out the file as it was probably doing this per
character. Now the file is generated in less that a second rather than 60 plus seconds.

This led to looking at the last problem of random “end-of-line” inserts being injected into the source file
when on its file buffer boundary: when it flushes the buffer out to the disk. Low and behold, both gener-
ating of Tes and Error definitions now work with “stream-lf” file attributes and no suprious end-of-line
injections. Yipee.

Dec. 2009.

155. Other takes on VMS port: cxxlink.
When linking the last problem was unresolved symbols: cxxdemangle on these symbols showed that they
were all template based. Required was making sure the various respositories were also present per library:
“yacco2”, and “o2grammars”. Without this, some of the templates from “o2” were undefined due to
incomplete instantiation. For the 2 libraries, it is their type definitions used within the templates that
are required. Here is cxxlink’s /reportitory parameter for “o2” link to resolve their references:

/repository=([yacco2.compiler.o2.cxx repository]-
,[yacco2.compiler.grammars.cxx repository]-
,[yacco2.library.cxx repository])-

This allows VMS’s cxxlink to recompile these partially instantiated templates. The 1st repository is
read/write while the others are read-only: u must follow the order as “o2” is still being compiled and
its repository will be completed by the cxxlink reguritation of source templates back to cxx compiler.

The order of the libraries inputted are not multipassed by cxxlink for unresolved symbols. This occurred
with yacco2’s symbol table “add sym to stbl” routine that is in the “o2grammars” library. Originally the
inputted libraries was “yacco2” followed by “o2grammars”. I needed to have the “o2grammars/lib” first in
the list of libraries instead of “yacco2/lib”.

A final adjustment was “how much stack space” to reserve both per thread and for the process that the
threads ran under. Parameter “stack=1024” for the process like “o2” and “o2linker”. “pthread” allocation
is 106 in bytes in the “yacco2 compile symbols.h” file:

VMS PTHREAD STACK SIZE 1024*4*256
It was a bit of a hit-and-trial-by-fire to get it going. All told now “o2” is ported onto VMS and it works.

Dec. 2009.

82 EVIL CON NUMBRA THOSE OPTIMIZATIONS: LR1 COMPATIBILITY CHECK O2 §156

156. Evil con numbra those optimizations: lr1 compatibility check.
Background to my stupidities in is state lr1 compatible :
A thread grammar’s la expression has only “eolr” in it. So it is not exploded into all the other Tes if alone.
Now the lr1 compatibility check expected that the reducing la had exploded it. So ... Before it was working
but with the explosion or is my implosion?

To respect the optimization, 2 checks are done:
If there are 2 reduces taking place and “eolr” is present then not lr1. On the shift / reduce check, if “eolr”
is present then ca boom.

Jan. 2010.

157. |+| versus “eolr” Evil con numbra duo: lr1 compatibility check.
See previous stupidity. With above eolr vs |+| which also means all-the-terminals. So u are shifting on all
Tes and trying to reduce on all Tes. I lean to the shift-in-the-wild until the use |+| facility is turned off.
This is a non lr(1) extension. Leave alone and default to |+| over “eolr”.

2 lr(1) compatability checks are done:
If there are 2 reduces taking place and “eolr” is present then not lr1. Shift / reduce check: if shift not one
of the “lr1 k terminals” and the eolr is present its ca boom.

Feb. 2010.

158. Closure state/vector context infinitely gening states when 1 of its own states not lr(1).
Originally detected improperly which made a legitimate grammar declared as not lr1.
The short of it is to test the states while being gened for lr1 compatibility. The loop was caused when
the gening closure state/vector was within itself and not lr1 which kept adding to the states to be gened.
gen a state and gen transitive states for closure part of state now handle the situation properly. The gening
closure context is passed to them with these functions returning “continue gening” or “stop” status back to
their callers. The bad state is added to the gening states network so that the appropriate state reducing
context is reported to the user as not lr1 for fixing. Also the gening of the grammar’s start state loop within
the main program handles the compatibility issue while gening rather than do a post lr1 evaluation.

Rewrote the “lr states driver” and included tracing to lrclog with the lr state decisions made using the
closure/vector gening contexts regarding states its gens, merging of states, and non lr1ness discovery be it
against proposed state merges, and ugh a non lr1 grammar. This log allows one to review decisions made
by O2 to discover faulty grammars, or faulty gened grammars. Of course its a faster way for me the author
to correct implementation foibles. It also helps u when the grammar is wonkie and u want to see where the
ambiguous context is for the correcting.

Oct. 2014.

§159 O2 IMPROVEMENT: ARBITRATION-CODE PROCEDURE NAME ADDED TO GRAMMAR DOC 83

159. Improvement: arbitration-code procedure name added to grammar doc.
Where did i indicate the arbritration code used or not by each ||| state? Nada. So mpost output .lex
grammar now emits such indicator when present to the grammar’s document within the lr state net-
work, o2 types .w and o2 defs .w were adjusted to add the arbitration name string in the state definition.
o2 externs .w sets the state’s arbitration name when found in the state where one of its threading subrule(s)
has arbitration-code. At least now the grammar writer can post assess when arbitration is happening.

Oct. 2014

84 CWEB’S WRITING OUT OF O2 PROGRAM O2 §160

160. Cweb’s writing out of O2 program.

161. Include files.
To start things off, there are the Standard Template Library (STL) containers, Yac2o2’s parse library
definitions, and the specific grammar definitions to parse the grammar.

〈 Include files 161 〉 ≡
#include "globals.h"

#include "yacco2_stbl.h"

using namespace yacco2 stbl;
#include "o2_lcl_opts.h"

#include "o2_lcl_opt.h"

#include "pass3.h"

#include "o2_types.h"

#include "la_expr_lexical.h"

#include "la_expr.h"

#include "enumerate_T_alphabet.h"

#include "epsilon_rules.h"

#include "mpost_output.h"

#include "prt_xrefs_docs.h"

#include "eval_phrases.h"

#include "enumerate_grammar.h"

#include "rules_use_cnt.h"

This code is used in section 163.

162. Accrue O2 code.

〈 accrue O2 code 14 〉 +≡ /∗ accrue code ∗/

163. Create header file for O2 environment.
Note, the “include search” directories for the c++ compiler has to be supplied to the compiler environment
used. This must include Yac2o2’s library.

〈 o2.h 163 〉 ≡
〈Preprocessor definitions 〉

#ifndef o2
#define o2 1
〈 Include files 161 〉;
〈External rtns and variables 13 〉;

#endif

§164 O2 O2 IMPLEMENTATION 85

164. O2 implementation.
Start the code output to o2 .cpp by appending its include file.

〈 o2.cpp 164 〉 ≡
#include "o2.h"

〈 accrue O2 code 14 〉;

86 INDEX O2 §165

165. Index.

ABORT_GENING_STATES: 86, 98.
ACCEPT_FILTER: 28, 29, 31, 32, 34, 37, 128.
add closure rules subrules to state : 70, 73, 78, 85.
add element to state vector : 72, 75, 77.
add follow set contributor : 57, 105.
add follow set transition : 58, 106.
add fs setA to LA: 50, 52, 53, 54.
add merge closure info : 63, 94.
add rule s subrules to state : 70, 73, 75, 78.
add rule to closure list : 74, 75, 77.
add rule to follow list : 75, 77, 104.
add state to conflict states list if : 82, 84, 89.
add state to gbl lr1 state tbls : 67, 82, 88.
add T to follow set : 60.
ae : 106.
arbitration name : 159.
arbitrator name : 67, 68, 69.
are gened states lr1 compatible : 99.
are states equivalent : 91, 98.
are 2 states compatible yes merge : 93, 98.
argc : 14, 20.
argv : 14, 20.
assess state : 92.
associated rt bnded cs : 82, 85.
AST: 28, 29, 31, 32, 34, 37, 39, 46, 47, 52, 57,

60, 67, 69, 70, 73, 75, 76, 78, 92, 100, 101,
105, 106, 113, 127, 128, 133.

ast prefix : 28, 29, 31, 32, 37, 127, 128, 132, 133.
ast prefix wbreadth only : 34.
base stk : 132.
begin : 27, 39, 50, 53, 54, 63, 72, 73, 74, 79, 80,

81, 82, 85, 87, 91, 92, 93, 94, 95, 96, 97, 98,
99, 105, 106, 113, 134, 135.

Big buf : 14.
BIG_BUFFER_32K: 14.
brother : 75, 76, 100, 101, 105, 106.
bug : 10.
BYPASS_FILTER: 127.
c str : 24, 26, 40, 116, 127, 128.
CAbs lr1 sym : 27, 36, 47, 52, 69, 75, 76, 92,

100, 101, 105, 113, 116.
calc la : 52, 92, 150.
Cenumerate grammar : 28.
Cepsilon rules : 29.
Ceval phrases : 34.
CHAR: 14.
ci : 134.
cie : 134.
Cla expr : 36.
Cla expr lexical : 36.
clear : 30, 52.

clog : 31.
close : 24.
closure only derives : 64, 70.
closure rule list : 64, 73, 74.
CLOSURE RULES ITER type : 73, 74.
closure rules making up first set : 74.
CLOSURE RULES type : 73, 74.
Closure state : 73.
closure state : 46, 52, 57, 58, 59, 75, 76, 94, 97.
Closure state associate with : 75.
closure state birthing it : 67, 68, 69, 85, 93.
closured state gening it : 75, 76.
cmd line : 26.
Cmpost output : 127.
common la set idx : 46.
COMMON_LA_SETS: 41.
COMMONIZE_LA_SETS: 13, 41.
compatibility result : 86.
compatible : 82, 93, 98.
compiler : 143, 145.
content : 47, 52, 75, 76, 92, 100, 101, 105, 113.
continue gening : 79, 81.
convertMPtoPDF : 127.
cout : 14, 40.
Cpass3 : 26.
cpp : 10, 141, 164.
Cprt xrefs docs : 128.
cr : 74.
create follow sets of state : 78, 85, 105.
create start state : 67, 78.
crt core items of state : 76, 85.
crt start rule s follow set : 78, 113.
Crules use cnt : 37.
cs : 52, 53.
cs for merging : 93, 96.
cs id : 75.
cs To merge into : 93, 96.
cs vector combo gening it : 46, 67, 68, 69, 75,

76, 83, 84, 85, 96.
cstate : 134.
cstate no : 134.
cur state : 135.
cur stk rec : 132.
cweave : 127.
cweb : 10, 20, 23, 127.
cweb k filter : 127.
CYCLIC_USE_TABLE: 13, 14.
CYCLIC USE TBL type : 13, 14.
deal with follow str sym : 105, 106.
defs : 10.
derives closure rule list : 74.

§165 O2 INDEX 87

determine reduced state type : 78, 82, 87.
DUMP_ERROR_QUEUE: 21, 30.
el : 72.
Elem : 46, 47, 72.
Elem id : 72.
Elem iter : 82.
elem list : 80, 82, 85.
elem space : 31.
empty : 21, 30, 52, 53, 54, 72, 73, 74, 93, 105, 106.
end : 27, 39, 50, 53, 54, 58, 63, 72, 73, 74, 79, 80,

81, 82, 85, 87, 88, 89, 91, 92, 93, 94, 95, 96, 97,
98, 99, 104, 105, 106, 113, 134, 135.

END_OF_LR1_DEFS: 92.
endl : 14, 16, 25, 27, 31, 37, 39, 40, 79, 81, 82,

83, 84, 118, 119, 120, 121, 122, 123, 124, 125,
127, 128, 132, 133, 134, 135.

Eno : 69.
eno : 58, 59, 79, 80, 81, 82, 85, 88, 98, 105.
Entry sym : 69.
entry symbol literal : 115, 134.
enum id : 47, 51, 52, 55, 58, 75, 77, 92, 113.
enumerate filter : 28.
enumerate grammar : 10, 28.
enumerate grammar can : 28.
enumerate grammar fsm : 28.
enumerate grammar walk : 28.
enumerate T alphabet : 10.
enumerated id : 47, 52, 75, 76, 92, 100, 101,

105, 116.
Eos : 58.
eos : 47, 52, 106.
eosubrule : 65.
epsilon : 102, 106.
epsilon fsm : 29.
epsilon rules : 10, 29.
equivalent : 98.
erase : 73.
Err pp la boundary attribute not fnd : 36.
ERR_SW: 14, 22, 25, 119, 125.
error logging : 24.
Error queue : 13, 14, 20, 21, 22, 26, 28, 29, 30,

34, 36, 37, 118, 119, 120, 121, 122, 123, 124,
125, 127, 128, 129.

eval fsm : 34.
eval phrases : 34.
evaluate phase order : 34.
exec : 132.
exit : 14.
external file id : 27.
false : 52, 76, 82, 91, 92, 93, 98, 100, 102, 134.
fe : 52, 53, 54, 58, 94, 97, 105, 106, 113.
Fe : 50.

filename id : 127.
fill la from merge : 52, 53, 54.
fill la from transition : 52, 53, 54.
filter : 29.
find : 50, 52, 53, 58, 72, 73, 74, 87, 88, 89, 92,

94, 97, 98, 104, 105, 106, 113.
find state element s rule no : 55, 94, 97.
find sym in stbl : 51.
find 2 states compatible and merge : 86, 98.
first : 79, 81, 82, 91, 92.
first element : 75.
first element t : 75.
first set : 10, 106.
FIRST SET ITER type : 106.
first set rules : 9, 32.
follow element : 50, 52, 53, 54, 57, 58, 60, 62,

63, 94, 97, 105, 113.
follow rule list : 64, 104, 105.
FOLLOW RULES ITER type : 104, 105.
follow set : 50, 60, 106, 113.
FOLLOW SETS ITER type : 50, 113.
follow str t : 105, 106.
For closure state : 79, 81, 82, 84.
for closure state : 39, 44, 75, 76, 79, 81, 82,

83, 84, 85, 89, 96.
For gening context : 79, 82, 83, 84, 85.
fq filename noext : 127, 128.
from se : 76.
fs filter : 32.
fs rule walk : 32.
fs rules can : 32, 33.
fsc : 10.
fsi : 58, 105.
fsm ph : 127.
gen a state : 79, 81, 82, 86, 158.
GEN_CALLED_THREADS_FS_OF_RULE: 33.
gen context : 39, 44, 70, 73, 75, 76, 78, 79,

81, 82, 89.
Gen context : 81.
GEN_FS_OF_RULE: 32.
gen ok : 82, 84.
gen transitive states balance for closure vector : 81,

82, 84.
gen transitive states for closure context : 39, 79.
gen transitive states for closure part of state : 158.
gen vector : 39, 44, 75, 79, 81, 82, 83, 84, 85.
gening a state : 152.
Gening context : 76, 89.
gening context : 39, 70, 78.
gening state : 39, 40.
GET_CMD_LINE: 20.
get 1st son : 39, 75.

88 INDEX O2 §165

Goto state : 81.
goto state : 46, 76, 84, 95.
gpdf : 148.
grammar filename prefix : 127, 128.
GRAMMAR_TREE: 34, 37, 127, 132, 133.
id : 47, 52, 75, 76, 77, 100, 101, 102, 105, 106, 116.
id : 27.
identifier : 127.
ie : 27, 50, 53, 54, 63, 79, 81, 82, 91, 99, 105, 113.
ieno : 91.
ifstream : 26.
ii : 53.
includes : 10.
insert : 28, 29, 31, 32, 34, 37, 51, 53, 60, 72, 73,

74, 94, 97, 104, 106, 113, 127, 128.
intro : 10.
is state lr1 compatible : 82, 92, 93, 99, 156.
is str epsilonable : 100, 101.
is str rt bnded : 76, 100.
Iter begin : 76.
Iter end : 76.
its enum id : 46, 47.
its rule def : 47, 52, 55, 58, 75, 77, 102, 105, 106.
its state : 57.
its state : 57, 59.
its t def : 47, 75, 77.
je : 72, 74, 80, 85, 91, 92, 98.
jeno : 91.
JUNK tokens : 14, 26, 36.
just walk functr : 29, 31, 32.
ke : 92, 93, 96, 105.
knu1 sick : 151.
la : 113.
la bndry : 36, 113.
la expr : 10, 92.
la expr fsm : 36.
la expr lex fsm : 36.
la expr lex parse : 36.
la expr parse : 36.
la expr source : 10.
la expr tok can : 36.
la express : 49.
la first set : 113.
la set : 45, 46, 47, 48, 52, 53, 54, 92.
LA SET ITER type : 50, 92, 113.
LA SET type : 47, 50.
la srce tok can : 36.
la supplier : 36.
La to fill in : 50, 51, 52, 53, 54.
la tok can lex : 36.
le : 91, 92.
lex : 9, 10, 13, 26, 70, 150, 151, 159.

line no : 27.
literal name : 135.
LOAD_YACCO2_KEYWORDS_INTO_STBL: 18.
loop until empty : 73.
lrclog : 14, 16, 24, 25, 27, 31, 37, 39, 40, 79, 81, 82,

83, 84, 118, 119, 120, 121, 122, 123, 124, 125,
127, 128, 132, 133, 134, 135, 139.

lrerrors : 24.
LR1_COMMON_STATES: 10, 13, 14, 88, 98, 134.
LR1_COMPATIBLE: 14, 79, 81, 82, 92, 98, 99.
LR1_EOG: 92.
LR1_EOLR: 92, 113.
LR1_HEALTH: 14, 38, 39, 40.
LR1_PARALLEL_OPERATOR: 51.
LR1_REDUCE_OPERATOR_LITERAL: 51.
LR1_STATES: 10, 14, 38, 39, 88, 135.
LR1 STATES ITER type : 88, 98, 134.
LR1 STATES type : 13, 14.
lr1 test : 93.
Lr1 VERSION : 14.
ls : 91.
main : 14.
Max no subrules : 31.
me : 91.
Merge : 53.
Merge into state : 91.
merged : 93.
MERGED: 86, 93, 98.
merges : 52, 53, 54, 62, 63.
MERGES ITER type : 53, 63.
MERGES type : 53.
Microsoft : 143.
Microsystems : 145.
mpost : 127.
mpost fsm : 127, 128.
mpost just walk functr : 127.
mpost output : 159.
mpost rule walk : 127.
mpost rules : 127.
mpost rules can : 127.
mre : 94.
mrri : 94.
ms : 91.
msfmi : 94.
n: 133.
next state element : 46, 76, 95.
no : 105.
NO_LR1_STATES: 13, 14, 88.
no reduce types : 87.
no reduces : 87, 92.
normal tracing : 24, 40.

§165 O2 INDEX 89

NOT_LR1_COMPATIBLE: 39, 40, 79, 81, 82, 86,
92, 93, 99.

NOT_MERGED: 86, 93, 98.
npos : 23.
NS enumerate grammar: 28.
NS epsilon rules: 29.
NS eval phrases: 34.
NS la expr: 36.
NS la expr lexical: 36.
NS mpost output: 127.
NS pass3: 26.
NS prt xrefs docs: 128.
NS rules use cnt: 37.
NS yacco2 k symbols: 127, 133.
NS yacco2 T enum: 87.
OP_ENUMERATION_HEADER: 118.
OP_ERRORS_CPP: 119.
OP_ERRORS_HEADER: 119.
OP_FSC_FILE: 129.
OP_GRAMMAR_CPP: 122.
OP_GRAMMAR_HEADER: 121.
OP_GRAMMAR_SYM: 123.
OP_GRAMMAR_TBL: 124.
OP T Alphabet : 125.
OP_USER_T_CPP: 120.
OP_USER_T_HEADER: 120.
open : 24.
orderly walk : 34.
o2 : 10, 164.
o2 : 163.
o2 defs : 10, 141, 159.
o2 externs : 10, 13, 20, 159.
o2 file to compile : 14, 22, 23, 26.
o2 fq fn noext : 14, 23, 24, 127, 128.
O2_FSM_PHASE: 127.
o2 lcl opt : 24.
o2 lcl opts : 24.
O2_PHRASE_TBL: 34.
O2_PP_PHASE: 35, 36, 113.
O2_RULES_PHASE: 29.
O2_T_ENUM_PHASE: 31.
o2 types : 159.
O2 xxx : 34.
o2externs : 10.
Parallel threads shutdown : 16.
parse : 26, 28, 29, 34, 36, 37, 127, 128.
Parser : 26, 28, 29, 34, 36, 37, 127, 128.
pass3 : 10, 13, 16, 26.
pdftex : 127.
phase order filter : 34.
phrase tree : 29.
phrases can : 34.

pop front : 62.
pos in line : 27.
Possible gen context : 73, 75.
pp : 23.
pp ph : 36, 113.
pre : 132, 134.
prefix grammar : 133.
prev re : 95.
previous state : 46, 76.
previous state element : 46, 76, 80, 95.
Print dump state : 13, 78, 82, 135.
PRINT_GRAMMAR_TREE: 133.
PRINT_RULES_TREE_STRUCTURE: 132.
processed rules set : 73.
prog : 10.
prt ast functor : 132, 133.
prt fs of rules : 10.
prt functr : 132.
prt grammar functr : 133.
PRT_SW: 14, 22, 25, 126.
prt xrefs docs : 128.
prt xrefs docs can : 128.
prt xrefs docs filter : 128.
prt xrefs docs fsm : 128.
prt xrefs docs walk : 128.
pt can : 133.
PTR LR1 eog : 27, 31, 32, 133.
push back : 36, 57, 58, 72, 88, 89, 96.
push front : 63.
p3 fsm : 26.
P3 tokens : 14, 26, 27.
qa : 151.
r def : 73, 74.
r id : 52, 75, 77.
rd : 32, 47, 52, 58, 73, 74, 75, 77, 102, 106, 113, 116.
re : 94, 95, 97.
Recursion count : 14.
RECURSION_INDEX__: 13, 14, 138, 139, 140.
reduce fnd : 89.
reduced state : 80.
reduced state : 46, 52, 75, 80, 95.
Refered rule : 104.
Refered T : 60.
remove merge closure info : 62, 97.
report card : 14, 51.
Requesting state : 82.
rfind : 23.
ri : 95.
rie : 95.
ris : 74, 75, 77.
rni : 94, 97.
rno : 113.

90 INDEX O2 §165

rr : 47, 75, 77, 102, 105, 106.
rri : 94, 95, 97.
rrie : 94, 95, 97.
rstr t : 100.
rsym : 100.
rt : 47, 75, 77, 92, 106.
rt bnded : 76, 85.
rule : 105.
rule def : 32, 33, 47, 52, 58, 73, 74, 75, 77, 102, 106.
Rule def t : 57.
rule def t : 57.
rule def t : 57, 105, 113.
RULE_ENO: 52, 53, 55, 57, 58, 75, 77, 94, 97,

104, 105, 113.
Rule in stbl : 74, 75, 77.
rule in stbl : 74, 75, 77.
rule name : 116.
Rule no : 53, 57.
rule no : 53, 54, 57, 59, 105, 113.
RULE NOS SET ITER type : 94, 97.
RULE NOS SET type : 94, 97.
rule s tree : 73, 105, 113.
Rule tree : 70.
rule walk : 29.
ruleno : 94, 97.
rules can : 29.
rules ph : 29.
rules to add : 94, 97.
rules tree : 28, 29, 31, 32, 39, 128.
rules use can : 37.
rules use cnt : 37, 70.
rules use cnt filter : 37.
rules use cnt fsm : 37.
rules use walk : 37.
rules use walk functr : 37.
S CONFLICT STATES ITER type : 93, 96, 99.
S FOLLOW SETS ITER type : 52, 53, 58, 94,

97, 105.
S VECTOR ELEMS ITER type : 72, 76, 80, 82,

85, 91, 92, 94, 95, 97, 105.
S VECTOR ELEMS type : 72, 80, 82.
S VECTORS ITER type : 72, 79, 81, 82, 87, 89,

91, 92, 94, 95, 97, 105.
S VECTORS type : 56, 65.
se : 72, 75, 76, 77, 80, 82, 83, 84, 85, 92, 95,

105, 106.
se rt bnded condition : 76.
second : 52, 53, 58, 72, 80, 82, 87, 88, 89, 91, 92,

94, 95, 97, 98, 105, 134.
self state : 46, 52, 75, 76, 80, 94, 95, 97.
set : 127.
set rc : 36.

sfmi : 94, 97.
sfmie : 94, 97.
si : 39, 95, 134, 135.
sie : 39, 134, 135.
size : 31, 87, 89, 91.
size type : 23.
sr can : 31.
sr def element : 45, 46, 47, 85.
SR element : 57.
sr element : 46, 52, 72, 76, 91, 92, 105.
sr elements : 57.
sr filter : 31.
sr walk : 31.
srd : 75.
ssi : 95.
START_OF_RULES_ENUM: 10, 92.
Start rule : 113.
start rule def : 33.
Start Rule def t : 75.
start rule def t : 39.
Start rule t : 67, 78.
START_STATE_ENUMERATE: 64, 67, 68, 75, 76.
State : 13, 57, 79, 88, 89.
state : 13, 39, 44, 52, 53, 57, 63, 67, 68, 69, 70,

72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 85, 87,
88, 89, 91, 92, 93, 96, 98, 99, 100, 101, 104,
105, 113, 115, 134, 135.

State elem : 57, 58, 59.
state element : 44, 45, 46, 48, 50, 52, 53, 54, 55, 56,

57, 58, 72, 75, 76, 80, 82, 91, 92, 94, 95, 97, 105.
State for merging : 93, 94, 95, 98.
state no : 39, 40, 59, 67, 68, 69, 79, 81, 82,

83, 84, 88, 134.
state s conflict state list : 89, 93, 96, 99.
state s follow set map : 52, 53, 58, 94, 97, 105,

113.
state s to vector : 64.
state s vector : 72, 79, 81, 87, 89, 91, 92, 94,

95, 97, 105.
State to eval : 92.
state type : 67, 68, 69, 78, 82.
STATES ITER type : 39, 98, 134.
STATES SET ITER type : 53.
STATES SET type : 13, 14.
STATES type : 14, 88.
STBL_T_ITEMS: 14, 113.
STBL T ITEMS type : 14.
std : 14, 16, 23, 24, 25, 26, 31, 40, 128, 132,

133, 134, 135.
Str : 100, 101.
str t : 101.
string : 14, 23, 24.

§165 O2 INDEX 91

subrule def : 46, 55, 75, 76.
subrules t : 75.
substr : 23.
Sun : 145.
svi : 87.
svie : 87.
sym : 27, 36, 47, 52, 92, 100, 101, 105, 113, 116.
t cnt : 92.
T COUNT type : 92.
t def : 51, 92.
T_ENO: 52, 75, 77, 92.
T Enum : 28, 29, 31, 32, 34, 37, 47, 52, 75, 76, 77,

80, 87, 89, 92, 100, 102, 106, 116, 127, 128.
T eosubrule : 58.
T fsm phrase : 127.
t id : 75, 77.
t in stbl : 60, 92, 106.
T in stbl : 50, 92, 106, 113.
t name : 116.
T not meta : 92.
T parallel la boundary : 36, 113.
T parallel parser phrase : 36, 113.
T refered rule : 28, 37, 47, 75, 77, 92, 100,

102, 106, 128.
T refered T : 28, 47, 75, 77, 92, 102, 106, 128.
T rule def : 28, 29, 32, 37, 116, 128.
T rules phrase : 29.
T_SW: 14, 22, 25, 120, 125.
t sym : 50, 51.
T sym tbl report card : 14, 51.
T T called thread eosubrule : 28, 47, 52, 75, 76,

77, 87, 92, 106, 116, 128.
T T cweb comment : 127.
T T enum phrase : 34.
T T eosubrule : 28, 47, 52, 75, 77, 80, 87, 89,

92, 100, 102, 106, 116, 128.
T T error symbols phrase : 34.
T T fsm phrase : 34.
T T lr1 k phrase : 34.
T T null call thread eosubrule : 28, 47, 52, 75, 76,

77, 87, 92, 106, 116, 128.
T T rc phrase : 34.
T T rules phrase : 34.
T T subrule def : 28, 29, 31, 37, 128.
T T terminal def : 116.
T T terminals phrase : 34.
T terminal def : 47, 75, 77.
td : 47, 51, 75, 77, 116.
teno : 92.
tid : 92.
tintbl : 92.
tm : 63.

to element : 76.
to element t : 76.
To merge closure state : 63.
To merge into state : 93, 94, 95, 97.
To merge state : 91.
tok can : 26, 28, 29, 31, 32, 34, 37, 127, 128, 133.
tok can ast functor : 28, 29, 34, 37, 127, 128.
tok co ords : 27.
TOKEN_GAGGLE: 14, 36.
TOKEN_GAGGLE_ITER: 27.
total no subrules : 31.
Transition : 54.
transitions : 52, 53, 54, 58.
TRANSITIONS ITER type : 54.
TRANSITIONS type : 54.
true : 21, 30, 52, 53, 54, 72, 73, 74, 76, 83, 85, 86,

91, 92, 93, 100, 101, 102, 105, 106, 134.
TS path7 : 150.
tvi : 87.
unwind : 93.
unwind merge : 93.
Ve : 44.
vectored into by elem : 64, 67, 68, 69, 88, 91,

98, 134.
vectored into by elem sym : 64, 67, 68, 69, 115,

116, 134.
Vectored into id t : 69.
VISITED_MERGE_STATES_IN_LA_CALC: 13, 14,

52, 53.
Voc ENO : 44, 47, 69, 72, 75, 76, 79, 81, 82, 88,

91, 92, 98, 100, 101, 105, 116.
walk the plank mate : 28.
x: 92.
xpdf : 148.
xrefs docs walk functr : 128.
xx : 31, 32.
xxx : 10.
xxxsym : 10.
xxxtbl : 10.
y : 139.
yacco2: 10, 12, 14, 16, 24, 26, 27, 31, 32, 36, 40,

127, 128, 132, 133, 134, 135, 151.
YACCO2_AR__: 12.
yacco2 characters : 10.
YACCO2 define trace variables : 12, 14.
yacco2 err symbols : 10.
Yacco2 holding file : 20.
yacco2 k symbols : 10.
YACCO2_MSG__: 12, 26.
YACCO2_MU_GRAMMAR__: 12.
YACCO2_MU_TH_TBL__: 12.
YACCO2_MU_TRACING__: 12.

92 INDEX O2 §165

YACCO2_PARSE_CMD_LINE: 22.
yacco2 stbl: 51, 161.
YACCO2_T__: 12.
yacco2 T enumeration : 10.
yacco2 terminals : 10.
YACCO2_TH__: 12, 26.
YACCO2_THP__: 12.
YACCO2_TLEX__: 12.
yyy : 27.

O2 NAMES OF THE SECTIONS 93

〈Decrement Recursion counter 140 〉 Used in sections 79, 81, 82, 84, and 86.

〈External rtns and variables 13 〉 Used in section 163.

〈 Include files 161 〉 Used in section 163.

〈 Increment Recursion counter 138 〉 Used in section 137.

〈 Increment and printout Recursion counter 137 〉 Used in sections 79, 81, and 82.

〈Print pathological symptoms but continue 30 〉 Used in section 29.

〈Printout Recursion counter 139 〉 Used in sections 79, 82, 83, 84, and 137.

〈Structure implementations 44, 46, 48, 50, 52, 53, 54, 55, 57, 58, 60, 62, 63, 66, 67, 68, 69, 70, 72, 73, 74, 75, 76, 78, 79,

81, 82, 87, 88, 89, 91, 92, 93, 98, 99, 100, 101, 104, 105, 113, 115 〉 Used in section 141.

〈 accrue O2 code 14, 162 〉 Used in section 164.

〈 add conflict states to to merge network 96 〉 Used in section 95.

〈 add potential follow set context per production 94 〉 Used in section 93.

〈 add subrule’s element to the being gened state’s vector 77 〉 Used in section 76.

〈 are all phases parsed? 34 〉 Used in section 14.

〈 calculate Start rule called threads first sets 33 〉 Used in section 14.

〈 calculate rules first sets 32 〉 Used in section 14.

〈 can new state be merged into state network? yes erase its existance and exit 86 〉 Used in section 82.

〈 common prefix gened goto state? yes deal with its goto state 84 〉 Used in section 82.

〈 commonize la sets 41 〉 Used in section 39.

〈 create a new state 85 〉 Cited in section 146. Used in section 82.

〈deal with current follow string element 106 〉 Used in section 105.

〈determine each rule use count 37 〉 Used in section 14.

〈determine entry symbol 47 〉 Used in section 46.

〈determine if la expression present. Yes parse it 35 〉 Used in section 14.

〈display to user options selected 25 〉 Used in section 22.

〈dump aid: enumerate grammar’s components 28 〉 Used in section 14.

〈dump lexical and syntactic’s outputted tokens 27 〉 Used in section 26.

〈 emit Cweb and Mpost files 127 〉 Used in section 126.

〈 emit FSA, FSC, and Documents of grammar 130 〉 Used in section 14.

〈 emit documents 126 〉 Used in section 130.

〈 emit fsc file 129 〉 Used in section 130.

〈 epsilon and pathological assessment of Rules 29 〉 Used in section 14.

〈 extract fq name without extension 23 〉 Used in section 22.

〈 fetch command line info and parse the 3 languages 19 〉 Used in section 14.

〈 generate grammar’s LR1 states 39 〉 Used in section 14.

〈 get cast referenced T 109 〉 Used in sections 47, 92, and 106.

〈 get cast referenced called thread eosubrule 112 〉 Used in section 47.

〈 get cast referenced eosubrule 110 〉 Used in sections 47, 52, and 106.

〈 get cast referenced null called thread eosubrule 111 〉 Used in section 47.

〈 get cast referenced rule 108 〉 Used in sections 47, 102, and 106.

〈 get command line, parse it, and place contents into a holding file 20 〉 Used in section 19.

〈 get refered-t 61 〉 Used in section 60.

〈 get subrule’s referenced rule in follow string 107 〉 Used in section 105.

〈 get total number of subrules for elem space size check 31 〉 Used in section 14.

〈 if error queue not empty then deal with posted errors 21 〉 Used in sections 20, 22, 26, 34, 36, 118, 119, 120, 121,

122, 123, 124, and 125.

〈 is state’s element associated with gened closure state? no bypass 83 〉 Used in section 82.

〈 is str’s element epsilon 102 〉 Used in section 101.

〈 is the grammar unhealthy? yes report the details and exit 40 〉 Used in sections 14 and 39.

〈 is there back to back thread calls? 51 〉 Used in section 50.

〈 left recursion on rule check — out damn spot 59 〉 Used in section 58.

〈 load O2’s keywords into symbol table 18 〉 Used in section 17.

94 NAMES OF THE SECTIONS O2

〈 o2.cpp 164 〉
〈 o2.h 163 〉
〈 o2_defs.cpp 141 〉
〈 output Errors files 119 〉 Used in section 130.

〈 output T-alphabet file 125 〉 Used in section 130.

〈 output User Terminals files 120 〉 Used in section 130.

〈 output enumeration header file 118 〉 Used in section 130.

〈 output grammar cpp file 122 〉 Used in section 130.

〈 output grammar header file 121 〉 Used in section 130.

〈 output grammar sym file 123 〉 Used in section 130.

〈 output grammar tbl file 124 〉 Used in section 130.

〈parse command line data placed in holding file 22 〉 Used in section 19.

〈parse la expression and calculate its first set 36 〉 Used in section 35.

〈parse the grammar 26 〉 Used in section 19.

〈print dump common states 134 〉 Cited in section 39. Used in section 40.

〈print dump state 135 〉 Cited in section 39. Used in section 40.

〈print grammar tree 133 〉 Cited in section 130.

〈print out xref docs 128 〉 Used in section 126.

〈print tree 132 〉 Cited in sections 14 and 29.

〈 relink spawning state of merged state 95 〉 Used in section 93.

〈 return entry symbol literal 116 〉 Used in section 115.

〈 set up logging files 24 〉 Used in section 22.

〈 setup O2 for parsing 17 〉 Used in section 14.

〈 shutdown 16 〉 Cited in section 14.

〈unchain my reduce states if end-of-subrule and continue to next item 80 〉 Used in sections 79 and 81.

〈unwind potential merge 97 〉 Used in section 93.

O2

Section Page

License . 1 1

Summary of O2 — Yacco2’s nickname . 2 2
Component overview running O2 . 3 2

Tracing facilities . 4 3
Grammar anatomy . 5 3
Terminal vocabulary . 6 3
Overview of generating the grammar’s pdf and postscript(ps) documents 7 4
A sample O2 script where the options are described . 8 5
Some definitions . 9 6
Catalogue of O2’s files . 10 8
O2’s language . 11 10
C macros . 12 11

External routines and globals . 13 12

Main line of O2 . 14 13

Some Programming sections . 15 14
Shutdown . 16 14
Setup O2 for parsing . 17 14
Load O2’s keywords into symbol table . 18 14
Fetch command line info and parse the 3 languages . 19 14
Get command line, parse it, and place contents into a holding file 20 14
Do we have errors? . 21 15
Parse command line data placed in holding file . 22 15

Extract fully qualified file name to compile without its extension 23 15
Set up O2’s logging files local to the parsed grammar . 24 15

Display to user options selected . 25 16
Parse the grammar . 26 16
Dump lexical and syntactic’s outputted tokens . 27 16
Dump aid — Enumerate grammar’s components . 28 17
Epsilon and Pathological assessment of Rules . 29 18
Get the total number of subrules . 31 19
Calculate each rule’s first set . 32 19
Calculate Start rule’s called threads first set list . 33 19
Are all Grammar phases parsed? . 34 20
Thread’s end-of-token stream: Lookahead expression post evaluation 35 21

Parse the la expression and calculate its first set . 36 22
Determine rule use count: Optimization . 37 22

Generate grammar’s LR1 states . 38 23
Driver generating lr1 states . 39 23

Is the grammar unhealthy? yes report the details and exit . 40 24
Commonize LA Sets — Combine common sets as a space saver 41 24

O2 TABLE OF CONTENTS 1

Overview of O2’s state generated components . 42 25
LR1 definitions . 43 26

gen context definition/implementation . 44 29
state element definition/implementation . 45 29

state element implementation . 46 29
∼state element . 48 31

Lookahead Comments . 49 31
add fs setA to LA . 50 31
calc la — fill the reduced element’s la set by walking follow set graph 52 32
fill la from merge . 53 33
fill la from transition . 54 33
find state element s rule no . 55 33

Follow set definition for a rule . 56 34
Follow set implementation . 57 34
add follow set transition . 58 34
remove merge closure info . 62 35
add merge closure info . 63 35

State definition/implementation . 64 36
State’s map of “to vector” elements . 65 36

State implementation . 66 37
state (AST ∗ Start rule t) . 67 37
state (): for closure only state of derives . 68 37
state (AST & Vectored into id t) — Create transitive state . 69 37
closure only derives — Create a closure only derives state . 70 37

Generate states . 71 38
add element to state vector . 72 38
add closure rules subrules to state . 73 39
add rule to closure list . 74 39
add rule s subrules to state . 75 40
crt core items of state . 76 42

Add subrule’s element to the being gened state’s vector 77 44
create start state — Create start state . 78 45
gen transitive states for closure context . 79 45

Unchain my reduced states if end-of-subrule and continue to next item 80 46
gen transitive states balance for closure vector . 81 46
gen a state . 82 47

Is element vector associated with the current closure state being gened? 83 48
Is element gened from common prefix of an earlier closure state gen? 84 48
Create a new state . 85 49
Can new state be merged into state network? Yes then exit 86 49

determine reduced state type . 87 50
add state to gbl lr1 state tbls . 88 50
add state to conflict states list if . 89 51

General routines on state compatibilities . 90 52
Determining if 2 states are equivalent? . 91 53
is state lr1 compatible . 92 55
are 2 states compatible yes merge . 93 57

Add potential follow set context per production . 94 58
Relink spawning state of merged state . 95 59
Add conflict states to merge network . 96 59
Unwind potential merge . 97 60

find 2 states compatible and merge . 98 60

2 TABLE OF CONTENTS O2

are gened states lr1 compatible . 99 61
is str rt bnded . 100 61
is str epsilonable . 101 62

Is str’s element epsilon? . 102 62
Follow set routines . 103 63

add rule to follow list . 104 63
create follow sets of state . 105 63
crt start rule s follow set . 113 66

For tracing facilities . 114 67
entry symbol literal . 115 67

Return entry symbol literal . 116 67

Emit FSA, FSC, and Documents of grammar . 117 68
Output enumeration header file . 118 68
Output Errors file . 119 68
Output User Terminals files . 120 68
Output grammar header file . 121 68
Output grammar cpp file . 122 68
Output grammar sym file . 123 69
Output grammar tbl file . 124 69
Output T-alphabet file . 125 69
Documents — Grammar’s Cweb and Mpost diagrams, and Cross references 126 69

Emit Cweb and Mpost diagrams . 127 70
Print out xref docs . 128 71

Emit FSC file . 129 71
Driver to emit FSA, FSC, and Documents of grammar . 130 71

Print routines . 131 72
Print tree structure of rules . 132 72
Print grammar tree . 133 72
Print dump common states . 134 73
Print dump state . 135 73
Some tracing facilities . 136 73

Increment and printout Recursion counter . 137 74
Increment Recursion counter . 138 74
Printout Recursion counter . 139 74
Decrement Recursion counter . 140 74

Write out o2 defs .cpp Structure implementations . 141 75

Bugs — ugh . 142 76
Microsoft compiler Corrupted memory heap . 143 76
Comment no 2: Apple bug – Problem Id: 4403453 unresolved linkages 144 77
Sun Microsystems compiler . 145 77
Incomplete gening of state’s core items due to common prefix . 146 78
Missing reduced state deposit on prefix elements leading up to the merged state 147 78
3rd party AdobeReader annoyances . 148 78
Missing T(s) in lookahead set due to merges . 149 79
Not testing Start State for LRness . 150 80
Run run run run run away . 151 80
Ditto to above — random monkeys throwing coconuts . 152 80
Random VMS monkeys throwing spurious end-of-lines into streaming text 153 80
Take 2: Random VMS monkeys throwing spurious end-of-lines . 154 81
Other takes on VMS port: cxxlink . 155 81
Evil con numbra those optimizations: lr1 compatibility check . 156 82

O2 TABLE OF CONTENTS 3

|+| versus “eolr” Evil con numbra duo: lr1 compatibility check 157 82
Closure state/vector context infinitely gening states when 1 of its own states not lr(1) 158 82
Improvement: arbitration-code procedure name added to grammar doc 159 83

Cweb’s writing out of O2 program . 160 84
Include files . 161 84
Create header file for O2 environment . 163 84

O2 implementation . 164 85

Index . 165 86

	License
	Summary of O2 --- Yacco_2's nickname
	Component overview running O2
	Tracing facilities

	Grammar anatomy
	Terminal vocabulary
	Overview of generating the grammar's pdf and postscript(ps) documents
	A sample O2 script where the options are described
	Some definitions
	Catalogue of O2's files
	O2's language
	C macros
	External routines and globals
	Main line of O2
	Some Programming sections
	Shutdown
	Setup O2 for parsing
	Load O2's keywords into symbol table
	Fetch command line info and parse the 3 languages
	Get command line, parse it, and place contents into a holding file
	Do we have errors?
	Parse command line data placed in holding file
	Extract fully qualified file name to compile without its extension

	Set up O2's logging files local to the parsed grammar
	Display to user options selected

	Parse the grammar
	Dump lexical and syntactic's outputted tokens
	Dump aid --- Enumerate grammar's components
	Epsilon and Pathological assessment of Rules
	Get the total number of subrules
	Calculate each rule's first set
	Calculate Start rule's called threads first set list
	Are all Grammar phases parsed?
	Thread's end-of-token stream: Lookahead expression post evaluation
	Parse the la expression and calculate its first set

	Determine rule use count: Optimization
	Generate grammar's LR1 states
	Driver generating lr1 states
	Is the grammar unhealthy? yes report the details and exit
	Commonize LA Sets --- Combine common sets as a space saver

	Overview of O2's state generated components
	LR1 definitions
	gen_context definition/implementation
	state_element definition/implementation
	state_element implementation
	penalty @M state_element

	Lookahead Comments
	add_fs_setA_to_LA
	calc_la --- fill the reduced element's la set by walking follow set graph
	fill_la_from_merge
	fill_la_from_transition
	find_state_element_s_rule_no

	Follow set definition for a rule
	Follow set implementation
	add_follow_set_transition
	remove_merge_closure_info
	add_merge_closure_info

	State definition/implementation
	State's map of ``to vector'' elements

	State implementation
	state(AST*Start_rule_t)
	state(): for closure only state of derives
	state(AST&Vectored_into_id_t) --- Create transitive state
	closure_only_derives --- Create a closure only derives state
	Generate states
	add_element_to_state_vector
	add_closure_rules_subrules_to_state
	add_rule_to_closure_list
	add_rule_s_subrules_to_state
	crt_core_items_of_state
	Add subrule's element to the being gened state's vector

	create_start_state --- Create start state
	gen_transitive_states_for_closure_context
	Unchain my reduced states if end-of-subrule and continue to next item

	gen_transitive_states_balance_for_closure_vector
	gen_a_state
	Is element vector associated with the current closure state being gened?
	Is element gened from common prefix of an earlier closure state gen?
	Create a new state
	Can new state be merged into state network? Yes then exit

	determine_reduced_state_type
	add_state_to_gbl_lr1_state_tbls

	add_state_to_conflict_states_list_if
	General routines on state compatibilities
	Determining if 2 states are equivalent?
	is_state_lr1_compatible
	are_2_states_compatible_yes_merge
	Add potential follow set context per production
	Relink spawning state of merged state
	Add conflict states to merge network
	Unwind potential merge

	find_2_states_compatible_and_merge
	are_gened_states_lr1_compatible
	is_str_rt_bnded

	is_str_epsilonable
	Is str's element epsilon?

	Follow set routines
	add_rule_to_follow_list
	create_follow_sets_of_state
	crt_start_rule_s_follow_set

	For tracing facilities
	entry_symbol_literal
	Return entry symbol literal
	Emit FSA, FSC, and Documents of grammar
	Output enumeration header file
	Output Errors file
	Output User Terminals files
	Output grammar header file
	Output grammar cpp file
	Output grammar sym file
	Output grammar tbl file
	Output T-alphabet file
	Documents --- Grammar's Cweb and Mpost diagrams, and Cross references
	Emit Cweb and Mpost diagrams
	Print out xref docs

	Emit FSC file
	Driver to emit FSA, FSC, and Documents of grammar
	Print routines
	Print tree structure of rules
	Print grammar tree
	Print dump common states
	Print dump state
	Some tracing facilities
	Increment and printout Recursion counter
	Increment Recursion counter
	Printout Recursion counter
	Decrement Recursion counter

	Write out o2_defs.cpp Structure implementations
	Bugs --- ugh
	Microsoftcompiler Corrupted memory heap
	Comment no 2: Apple bug -- Problem Id: 4403453 unresolved linkages
	SunMicrosystemscompiler
	Incomplete gening of state's core items due to common prefix
	Missing reduced state deposit on prefix elements leading up to the merged state
	3rd party AdobeReader annoyances
	Missing T(s) in lookahead set due to merges
	Not testing Start State for LRness
	Run run run run run away
	Ditto to above --- random monkeys throwing coconuts
	Random VMS monkeys throwing spurious end-of-lines into streaming text
	Take 2: Random VMS monkeys throwing spurious end-of-lines
	Other takes on VMS port: cxxlink
	Evil con numbra those optimizations: lr1 compatibility check
	 versus ``eolr'' Evil con numbra duo: lr1 compatibility check

	Closure state/vector context infinitely gening states when 1 of its own states not lr(1)
	Improvement: arbitration-code procedure name added to grammar doc
	Cweb's writing out of O2 program
	Include files
	Create header file for O2 environment
	O2 implementation
	Index
	Names of the sections
	Decrement Recursion counter
	External rtns and variables
	Include files
	Increment Recursion counter
	Increment and printout Recursion counter
	Print pathological symptoms but continue
	Printout Recursion counter
	Structure implementations
	accrue o2 code
	add conflict states to to merge network
	add potential follow set context per production
	add subrule's element to the being gened state's vector
	are all phases parsed?
	calculate Start rule called threads first sets
	calculate rules first sets
	can new state be merged into state network? yes erase its existance and exit
	common prefix gened goto state? yes deal with its goto state
	commonize la sets
	create a new state
	deal with current follow string element
	determine each rule use count
	determine entry symbol
	determine if la expression present. Yes parse it
	display to user options selected
	dump aid: enumerate grammar's components
	dump lexical and syntactic's outputted tokens
	emit Cweb and Mpost files
	emit FSA, FSC, and Documents of grammar
	emit documents
	emit fsc file
	epsilon and pathological assessment of Rules
	extract fq name without extension
	fetch command line info and parse the 3 languages
	generate grammar's LR1 states
	get cast referenced T
	get cast referenced called thread eosubrule
	get cast referenced eosubrule
	get cast referenced null called thread eosubrule
	get cast referenced rule
	get command line, parse it, and place contents into a holding file
	get refered-t
	get subrule's referenced rule in follow string
	get total number of subrules for elem_space size check
	if error queue not empty then deal with posted errors
	is state's element associated with gened closure state? no bypass
	is str's element epsilon
	is the grammar unhealthy? yes report the details and exit
	is there back to back thread calls?
	left recursion on rule check --- out damn spot
	load o2's keywords into symbol table
	o2.cpp
	o2.h
	o2_defs.cpp
	output Errors files
	output T-alphabet file
	output User Terminals files
	output enumeration header file
	output grammar cpp file
	output grammar header file
	output grammar sym file
	output grammar tbl file
	parse command line data placed in holding file
	parse la expression and calculate its first set
	parse the grammar
	print dump common states
	print dump state
	print grammar tree
	print out xref docs
	print tree
	relink spawning state of merged state
	return entry symbol literal
	set up logging files
	setup O2 for parsing
	shutdown
	unchain my reduce states if end-of-subrule and continue to next item
	unwind potential merge

