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AERO 2258A THIN AEROFOIL THEORY Lecture Notes 
 
Author : Hadi Winarto 
 
 
Two-dimensional, incompressible, inviscid and irrotational flow 
 
This note is prepared as lecture material for the course AERO 2258A Fundamentals 
of Aerodynamics for the topic of Thin Aerofoil Theory. 
It begins with a discussion on the governing equations for 2-dimensional, 
incompressible and inviscid flow, which is the Laplace equation. Discrete 
singularities that are the elementary solutions of the Laplace equation are then 
discussed. It is then followed by a discussion on the linearity property of the Laplace 
equation, which leads to a discussion on the concept of continuous singularities such 
as the vortex panel with constant and linear vortex strength per unit length 
distribution. This is the basic concept behind the panel method, which is explained in 
some detail, particularly for a second order vortex panel method. Even though the 
panel method is described in some detail, this is not an article on panel method as 
such. The concept is introduced so that students will have some familiarity with the 
concept of continuously distributed singularity, vortex in particular, which is a 
fundamental concept in Thin Aerofoil Theory (TAT). The basic concept in TAT is 
that an aerofoil is replaced by a single vortex panel on which there is a continuously 
distributed vortex singularities, the strength per unit length of which is unknown and 
needs to be evaluated. A good understanding of this basic concept is not possible 
without some rudimentary knowledge of a vortex panel. The concept of boundary 
conditions, that must be satisfied by the sought for solution, is also discussed. The 
mathematics involved is discussed in some detail, but from an engineering point of 
view where mathematical knowledge is used as a tool to help in solving engineering 
problems. Basic mathematical formulas are assumed as given without showing their 
derivations. The manipulation and application of those mathematical formulas are, 
however, shown in sufficient details so that students can gain understanding on how 
the final engineering equations are obtained and not merely given as formulas to be 
memorized blindly. Finally the engineering application of the derived formulas to 
calculate the aerodynamic properties of aerofoils is discussed in relatively great 
details. The application discussed includes aerofoils, which can be represented by a 
flat plate or a cambered (curved) plate, as well as a control surface, which is 
represented by a bent flat plate. 
 
Please report any typographical or other errors to the author at the following address 
                       hadi.winarto@rmit.edu.au 
Bundoora, Melbourne, 15 March 2004 
Last modified 25 May 2004 
 
 
1. The governing equations 
 
The simplest model of airflow is represented by 2-D, incompressible, inviscid and 
irrotational flow. The governing equations for this type of flow consist of 2 partial 
differential equations, each representing the conservation of mass or the Continuity 
Equation, and the irrotationality condition. 
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Continuity Equation:   0
u v
x y

∂ ∂+ =
∂ ∂

     (1) 

 

Irrotationality condition:  0
u v
y x

∂ ∂− =
∂ ∂

     (2) 

 
Two scalar functions (magnitude only, without direction) can be defined so that the 
two components of velocity (vectors), u and v, in the above equations can be replaced 
by the equivalent but simpler scalar functions, namely the stream function and the 
velocity potential function. 
 
Stream Function,ψ , is defined to satisfy the continuity equation as follows 

u
y
ψ∂=

∂
    and  v

x
ψ∂= −

∂
   (3) 

Therefore  0
u v
x y x y y x

ψ ψ� �∂ ∂ ∂ ∂ ∂ ∂� �+ = + − =� � � �∂ ∂ ∂ ∂ ∂ ∂� �� �
 

 
It can be seen that the stream function automatically satisfies the continuity equation. 
Furthermore, the stream function must also satisfy the irrotationality conditions and 
thus 
 

  
2 2

2 2 0
u v
y x y y x x y x

ψ ψ ψ ψ� �∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂� �− = − − = + =� � � �∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂� �� �
   (4) 

 
The potential function is defined to automatically satisfy the irrotationality condition 
as follows 

   u
x
ϕ∂=

∂
    and  v

y
ϕ∂=

∂
   (5) 

thus   0
u v
y x y x x y

ϕ ϕ� �∂ ∂ ∂ ∂ ∂ ∂� �− = − =� �� �∂ ∂ ∂ ∂ ∂ ∂� � � �
 

 
Since the potential function must also satisfy the continuity equation, therefore 
 

  
2 2

2 2 0
u v
x y x x y y x y

ϕ ϕ ϕ ϕ� �∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂� �+ = + = + =� �� �∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂� � � �
   (6) 

 
It can be seen that the two first order partial differential equations in 2 unknowns, 
namely equations (1) and (2), can be replaced by a single second order elliptic partial 
differential equation, namely the Laplace equation either in terms of stream function 
(equation (4)) or in terms of the potential function (equation (6)). 
Furthermore, it can be shown that the stream function and the potential function are 
harmonic conjugate of each other, and thus we can define a complex potential 
function as follows 
 
   ( ) ( , ) . ( , )z x y i x yϕ ψΦ = +      (7) 
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where z is the complex variable 
 
   .z x i y= +        (8) 
 
and i  is the imaginary number  
 
   1i = −        (9) 
 
Equations (4) and (6) can be combined as follows  
   

( )2 2 2 2( ) ( , ) . ( , ) ( , ) . ( , ) 0z x y i x y x y i x yϕ ψ ϕ ψ∇ Φ =∇ + =∇ + ∇ =             (10) 
 

 
 
2. Solution of the Laplace equation 
 
From the theory of complex variable, it is known that the solution of the Laplace 
Equation in terms of a complex function is any complex analytic function. We will 
not discuss this further except to note that the theory helps us in obtaining a very large 
number of elementary solutions of the Laplace equation. Among the very large 
number of elementary solutions, also known as singularities, there are four (4) that are 
especially useful in the study of aerodynamics, namely the source, sink, doublet and 
vortex singularities. Source and sink are actually the same type of singularity except 
that they have opposite signs for their strength. 
The problem of a uniform airflow, which is disturbed by the presence of an aerofoil 
located within the flow field, is modelled by assuming that the disturbance can be 
represented mathematically by the singularities, solutions of the Laplace equation. 
The Laplace equation is said to be linear, meaning that a linear combination of some 
simpler or elementary solutions is also a solution. 
Let us now have a quick look at the elementary solutions 
 
Source / sink : singularity located at ( )0 0,x y with a strength of σ  
 

Stream function induced at (x,y):  ( ) 1 0

0

, . tan
2

y y
x y

x x
σψ
π

− � �−= ± � �−� �
          (11) 

 

Potential function induced at (x,y): ( ) ( ) ( )( )
1
22 2

0 0, .ln
2

x y x x y y
σϕ
π

= ± − + −       (12) 

 

Doublet : singularity located at ( )0 0,x y with a strength of µ  
 

Stream function induced at (x,y): ( )
( ) ( )

0
2 2

0 0

, .
2

y y
x y

x x y y

µψ
π

−=
− + −

            (13) 

                                                                 

Potential function induced at (x,y):     ( )
( ) ( )

0
2 2

0 0

, .
2

x x
x y

x x y y

µϕ
π

−= −
− + −

            (14) 
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Vortex : singularity located at ( )0 0,x y with a strength of Γ  
 

Stream function induced at (x,y): ( ) ( ) ( )( )
1
22 2

0 0, .ln
2

x y x x y yψ
π
Γ= − + −                (15) 

                                                                 

Potential function induced at (x,y):     ( ) 1 0

0

, . tan
2

y y
x y

x x
ϕ

π
− � �−Γ= − � �−� �

            (16) 

 
The velocity components induced at (x,y) by the presence of the singularity at 
( )0 0,x y can be evaluated as follows. 
 

x-component of velocity:  u
x y
ϕ ψ∂ ∂= =

∂ ∂
                       (17) 

 

y-component of velocity:  v
y x
ϕ ψ∂ ∂= = −

∂ ∂
               (18) 

 
Source / sink : singularity located at ( )0 0,x y with a strength of σ  

 

x-component:  ( )
( ) ( )

0
2 2

0 0

, .
2

x x
u x y

x x y y

σ
π

−= ±
− + −

              (19) 

 

y-component:  ( )
( ) ( )

0
2 2

0 0

, .
2

y y
v x y

x x y y

σ
π

−= ±
− + −

               (20) 

 
 

Doublet : singularity located at ( )0 0,x y with a strength of µ  

 

x-component:  ( ) ( ) ( )
( ) ( )( )

2 2
0 0

22 2
0 0

, .
2

x x y y
u x y

x x y y

µ
π

− − −
=

− + −
             (21) 

 

y-component:  ( ) ( )( )
( ) ( )( )

0 0
22 2

0 0

2
, .

2

x x y y
v x y

x x y y

µ
π

− −
=

− + −
              (22) 

 
Vortex : singularity located at ( )0 0,x y with a strength of Γ  

 

x-component:  ( ) ( )
( ) ( )

0
2 2

0 0

, .
2

y y
u x y

x x y yπ
−Γ=

− + −
                 (23) 

 

y-component:  ( ) ( )
( ) ( )

0
2 2

0 0

, .
2

x x
v x y

x x y yπ
−Γ= −

− + −
                 (24) 
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The mathematical expressions for the stream and potential functions of a uniform 
flow, which is inclined at an angleα  to the horizontal axis x, are given as follows 
 
Stream function value induced at (x,y): ( ) ( ), . .cos .sinx y V y xψ α α∞= −         (25) 
 
Potential function value induced at (x,y) ( ) ( ), . .cos .sinx y V x yϕ α α∞= +         (26) 

 

The x- component of velocity is:  ( ), .cosu x y V
x y
ϕ ψ α∞

∂ ∂= = =
∂ ∂

         (27) 

 

The y- component of velocity is:  ( ), .sinv x y V
y x
ϕ ψ α∞

∂ ∂= = − =
∂ ∂

       (28)

       
The quantity V∞ is the speed of the undisturbed air or the free-stream air. 
 
 
3. Linearity property of the Laplace equation 
 
It was previously mentioned that the Laplace Equation is a linear second order partial 
differential equation. The linearity property of the equation implies that any linear 
combination of some elementary solutions is also a solution. It was mentioned also 
that the problem of air flow over an aerofoil (or in American terminology: airfoil) is 
modelled as a uniform air flow which is disturbed by the presence of the aerofoil. We 
shall now have a look whether the aerofoil can be represented by a single source, or a 
single doublet or a single vortex. For simplicity it will be assumed that the value of 
the angleα is zero. 
 
Linear combination of uniform flow and a source: 
 

    ( ) 1 0

0

, . . tan
2

y y
x y V y

x x
σψ
π

−
∞

� �−= + � �−� �
                    (29) 

 
Linear combination of uniform flow and a doublet: 
 

    ( )
( ) ( )

0
2 2

0 0

, . .
2

y y
x y V y

x x y y

µψ
π∞

−= +
− + −

            (30) 

 
Linear combination of uniform flow and a vortex: 
 

   ( ) ( ) ( )( )
1
22 2

0 0, . .ln
2

x y V y x x y yψ
π∞
Γ= + − + −                      (31) 

 
The flow pattern of a flow field is defined by the streamlines of the flow. 
For a steady flow, i.e. one that does not change with time, if we release a particle at a 
point in the flow field and then follow the motion of the particle as it is swept 
downstream, the path of the particle motion is known as a streamline. Another particle 
released at another point would describe another streamline. By drawing a number of 
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streamlines, we can get a picture of the shape of the flow field. For an unsteady flow 
or turbulent flow, obviously the shape of the streamlines will change continuously 
with time. However, for a steady flow the pattern of the flow field is constant. 
Another property of the streamline is the fact that at any given point on the streamline, 
the direction of the velocity vector is tangent to the streamline at the given point. 
Therefore no flow can cross a streamline. Furthermore, the stream function value at 
any point on the streamline is a constant. In other words, we can define a streamline 
as being the locus of points within the flow field where the values of the stream 
function at all points on the streamline are the same. Thus a streamline can also be 
called a constant stream function curve 
Now let us consider what sort of a flow field we get from the combination of a 
uniform flow, which is disturbed by a doublet. 
To simplify the discussion let us assume that the doublet is located at the origin of the 
system of axes, or at 0 00 0x and y= = . Furthermore, in order to get a meaningful 
result it is assumed that the sign of the doublet strength is negative. With those 
assumptions equation (30) can now be written as follows 
 

( )
2

2 2 2 2, . . . . 1
2

y R
x y V y V y

x y x y
µψ
π∞ ∞

� �
= − = −� �+ +� �

            (32) 

 

where   2

2
R

V
µ

π ∞

=  is a positive constant              (33) 

 
Let us now have a look at a particular streamline with a value of stream function of 
zero. If  ψ  = 0 then equation (32) is simplified to become   
   

2

2 2. 1
R

y
x y

� �
−� �+� �

= 0               (34) 

 
There are 2 solutions to the above equation, namely 
     y = 0                (35) 
and also 

   
2

2 21
R

x y
−

+
 = 0                

 
The above equation can be simplified further as follows 
 
    2 2 2x y R+ =                            (36)  
 
Equation (36) is the equation of a circle whose centre is located at the origin and its 
radius is R. Since fluid can not cross a streamline, therefore a streamline may be 
replaced by an impermeable wall. Therefore equation (32) actually represents the flow 
field of a uniform flow which is flowing over a circular cylinder with radius R. The 
streamline with a stream function value of  0ψ = , which includes the x-axis or 
equation (35) and the circle given by equation (36), is known as the dividing 
streamline. This streamline divides the flow field into 2 parts, namely one that flows 
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over the upper part of the circle and another which flows over the lower part of the 
same circle or circular cylinder. 
All the other streamlines, which describe the flow over the upper part of the circle, 
can be obtained by solving the following equation  
 

    
2

2 2. 1
R

y
x y V

ψ
∞

� �
− =� �+� �

               (37) 

 

where 
V
ψ

∞

 is a constant and 
V
ψ

∞

> 0. 

Similarly, all the other streamlines that describe the flow over the lower part of the 

circle are solutions of equation (37) where 
V
ψ

∞

 < 0. 

If we evaluate the coordinates (x, y) of a large number of points within the flow field 
for a particular value of /Vψ ∞ , and all the neighbouring points are connected to each 
other by short straight lines, then we will get the shape of the streamline for that 
particular value of /Vψ ∞ . The flow pattern that we wish to analyse is then given 
visually as a collection of streamlines for various values of /Vψ ∞ . 
A doublet represents the disturbance of a circular cylinder immersed in a uniform 
flow, whereas a source or a vortex represents another type of disturbance.. However 
none of those would represent the disturbance of an aerofoil. The flow pattern of a 
uniform wind being disturbed by a source or a vortex will not be discussed here, but 
they can be readily found in most textbooks on aerodynamics. 
It is important to note here that whilst the flow around a circular cylinder is not 
particularly important in aerodynamics, however we can employ the theory of 
complex variables to transform the flow field around a circular cylinder into that of 
the flow around an aerofoil. In the simplest case, the transform function or mapping 
function is assumed known and the shape of the aerofoil is obtained as a result. 
Perhaps the most well known mapping function is the Joukowski’s transformation, 
which really is a special form of the more general Karman-Trefftz mapping function. 
If we want to obtain the flow field around any arbitrary shape aerofoil, then we will 
need to evaluate the mapping function. This is a far more difficult problem than for 
Joukowski or Karman-Trefftz mapping, and will not be discussed here. It is sufficient 
to note that one of the possible methods to use is the Laurent Series transformation. 
The use of complex variable transformation is known as the conformal mapping 
method (see appendix 4).  
 
 
4. Discrete and Continuous Singularities 
 
Let us now return to our original statement, which is that a more complex flow can be 
obtained by adding together a number of simpler solutions and see if this can be used 
to obtain a more direct solution to the problem of evaluating the flow field of a 
uniform wind which is disturbed by an arbitrary shape aerofoil. This more direct 
approach is known as the panel method. Here we will discuss the basics of the 2-D 
panel method only, but the same approach may be applied to 3-D problems. This is in 
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contrast to the conformal mapping method, which is only applicable for 2-D 
problems. 
The stream function value at any point (x, y) in a uniform flow, which is disturbed by 
2 vortices, each being located at ( )1 1,x y and ( )2 2,x y respectively, is given by the 
following expression 
 

( ) ( ) ( )( ) ( ) ( )( )
1 1
2 22 2 2 21 2

1 1 2 2, . .ln .ln
2 2

x y V y x x y y x x y yψ
π π∞

Γ Γ= + − + − + − + −       (38) 

 
If there are N, rather than 2, vortices then we have 
 

( ) ( ) ( )( )
1
22 2

1

, . .ln
2

N
n

n n
n

x y V y x x y yψ
π∞

=

Γ= + − + −�              (39) 

 
Let us now consider the situation where there are 2 points, P and Q, with coordinates 
of (XP, YP) and (XQ, YQ). The straight line from P to Q is divided up into a large 
number of equal length interval of /s PQ N∆ = , where PQ is the distance from P to 
Q. Let us now imagine that at the mid point of each small interval there is a vortex of 
strength G, which is the same for all intervals. The stream function value at any point 
(x, y) for this case is given by 
 

  ( ) ( ) ( )( )
1
22 2

1

, . .ln
2

N

n n
n

G
x y V y x x y yψ

π∞
=

= + − + −�              (40) 

 
It should be noted that even though N can be made to be very large, approaching 
infinity, we shall impose the condition that the total strength of the vortices is always 
the same regardless of the actual value of N, and this total vortex strength is Γ where 
 
    .N GΓ =  
 
Let us denote the mid point n as being the point nS , such that the coordinates of the 

point nS  is ( ),n nXS YS  where 
                 

 �X = (XQ – XP) / N = �XPQ / N 
 
  �Y = (YQ – YP) / N = �YPQ / N 
 

  2 2/s PQ N XPQ YPQ∆ = = ∆ + ∆  / N 
 

  
1

. .
2n n

XPQ
XS XP n s XP XPS

PQ
∆� �= + − ∆ = + ∆� �

� �
 

 

    
1

. .
2n n

YPQ
YS YP n s YP YPS

PQ
∆� �= + − ∆ = + ∆� �

� �
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G is the strength of the discrete vortex located at the midpoint of an elemental length 
of  s∆ . If N is chosen to be sufficiently large, then s∆  is sufficiently small to be 
replaced by a continuous differential, i.e. s ds∆ ≅  . Furthermore we shall assume that 
the strength of the vortex, G, is distributed evenly along ds and hence 
 

 

 
Here γ  is the strength per unit length of the continuous vortex sheet ds. Since G is the 
same for all elemental lengths, ds, thereforeγ  is also the same for all ds along the 
vortex sheet or panel PQ. 
 
Equation (40) can now be written as follows 
 

 ( ) ( ) ( )( )
1
22 2

1

.
, . .ln

2

N

n n
n

s
XT YT V YT XT XS YT YS

γψ
π∞

=

∆= + − + −�             (41) 

 
where (XT, YT) are the coordinates of the point T, at which the value of the stream 
function is to be calculated. 
Now it is to be noted that 
 
 n n nXT XS XT XP XPS XPT XPS− = − − ∆ = ∆ − ∆  
 
    n n nYT YS YT YP YPS YPT YPS− = − − ∆ = ∆ − ∆  
Therefore, 
 

( ) ( ) ( )2 22 2 22. . .n n n n n nS T XT XS YT YS PT XPT XPS YPT YPS PS= − + − = − ∆ ∆ + ∆ ∆ +  
 
where it is defined that 
 
   2 2 2PT XPT YPT= ∆ + ∆  
 
   2 2 2

n n nPS XPS YPS= ∆ + ∆  
 
Equation (41) can now be written as follows 
 

          ( )
1 1

.ln.
, . .ln . .

2 2

N N
n

n
n n

S Ts
XT YT V YT S T V YT s

γγψ
π π∞ ∞

= =

∆= + = + ∆� �  

 
Taking the limit of N approaching infinity, the above summation can be replaced by 
the following integral 
 

  ( )
0

, . ln ( ).
2

PQ

XT YT V YT r s ds
γψ
π∞= + �               (42) 

 

. . .
PQ

G s ds
N N

γ γ γΓ= = = ∆ ≅
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  ( )2 2 22. . .r PT XPT XPS YPT YPS s= − ∆ ∆ + ∆ ∆ +  
 
where r(s) is the distance from point S, anywhere along the line PQ, to the point T, 
and s is the distance from point P to point S. 
It can also be observed that 
 

  . .
s s

XPS XPQ and YPS YPQ
PQ PQ

∆ = ∆ ∆ = ∆  

Therefore 
 
  ( )22 2 2 22. .r PT PR s s TR PR s= − + = + −               (43) 
 
  ( ). . /PR XPT XPQ YPT YPQ PQ= ∆ ∆ + ∆ ∆               (44) 
 

2 2TR PT PR= −                 (45)
                 

Since γ is a constant, therefore equation (42) can be simplified to become 
 

  ( )
0

, . ln ( ).
2

PQ

XT YT V YT r s ds
γψ
π∞= + �               (46) 

 
It an be shown (see appendix 1) that 
 

  ( ) ( )ln . .ln .ln .
Q

P

r s ds PQ PR QT PR PT PQ TR APTQ= − + − +�             (47) 

 

where    1
2

.
tan

.
PQ TR

APTQ
PT PQ PR

− � �
= � �−� �

              (48) 

 
It should be noted that APTQ is the angle subtended by the lines PT and TQ, or the 
visible angle of PQ seen from T. 
 
Equation (42) is the value of stream function at point T, which is immersed in the 
flow field of a uniform flow with a free stream velocity of V∞ , and is influenced by 
the presence of a continuously distributed vortex. The vorticity is distributed on a line 
PQ, which is actually the intersection of rectangle with the x-y plane or the plane of 
the paper. The rectangle is perpendicular to the x-y plane and is infinitely long in the 
z-direction. It is referred to as a panel and because vorticity is distributed on it, 
therefore, it is called a vortex panel. The vortex strength per unit length distribution 
along PQ is ( )sγ , which is a function of the variable length representing the distance 
from P to a point S located anywhere between P and Q. Generally speaking the 
functional form of ( )sγ  is unknown and represents the problem that has to be solved. 
 
The above discussion shows that the Laplace equation can have a discrete solution as 
well as a continuous solution. In terms of the stream function equation (15) represents 
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the solution of the stream function value at any arbitrary point (x, y) induced by a 
discrete vortex with strength of Γ  and located at ( )0 0,x y . The solution of the same 
problem in terms of the potential function is given by equation (16), whereas for the 
velocity components u and v the solutions are equations (23) and (24) respectively. 
 
If the discrete vortex is replaced by a distributed vortex along panel PQ, with vorticity 
strength per unit length of ( )sγ , the solutions are given as follows 
 

   ( ) ( ) ( )1
, .ln .

2

Q

P

x y s r s dsψ γ
π

= �                (49) 

 

   ( ) ( ) ( )1
, . .

2

Q

P

x y s s dsϕ γ θ
π

= − �                            (50) 

 

   ( ) ( ) ( )
( )

sin1
, . .

2

Q

P

s
u x y s ds

r s

θ
γ

π
= �                (51) 

 

    ( ) ( ) ( )
( )

cos1
, . .

2

Q

P

s
v x y s ds

r s

θ
γ

π
= − �                (52) 

 
where 
 

   ( ) ( )( )
1
22 2s XS XP YS YP= − + −                (53) 

 

   ( ) ( ) ( )( )
1
22 2

r s x XS y YS= − + −                (54) 

 

   ( ) 1tan
y YS

s
x XS

θ − −� �= � �−� �
                           (55) 

 
It should be remembered that (XS, YS) are the coordinates of the point S, which is 
located anywhere along the panel PQ. The coordinates of points P and Q are (XP, YP) 
and (XQ, YQ) respectively. 
 
Similar expressions can also be derived for the case where the singularity is source 
and sink or doublet, rather than vortex. The final results are given below 
 
Source and Sink: 
 

   ( ) ( ) ( )1
, . .

2

Q

P

x y s s dsψ σ θ
π

= ± �                (56) 
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   ( ) ( ) ( )1
, .ln .

2

Q

P

x y s r s dsϕ σ
π

= ± �                (57) 

 

   ( ) ( ) ( )
( )

cos1
, . .

2

Q

P

s
u x y s ds

r s

θ
σ

π
= ± �                (58) 

 

  ( ) ( ) ( )
( )

sin1
, . .

2

Q

P

s
v x y s ds

r s

θ
σ

π
= ± �                (59) 

 
Doublet  : 
 

   ( ) ( ) ( )
( )

sin1
, . .

2

Q

P

s
x y s ds

r s

θ
ψ µ

π
= �                (60) 

 

   ( ) ( ) ( )
( )

cos1
, . .

2

Q

P

s
x y s ds

r s

θ
ϕ µ

π
= − �                (61) 

 

   ( ) ( ) ( )
( )2

cos 21
, . .

2

Q

P

s
u x y s ds

r s

θ
µ

π
= �                (62) 

 

   ( ) ( ) ( )
( )2

sin 21
, . .

2

Q

P

s
v x y s ds

r s

θ
µ

π
= �                (63) 

 
It should be noted that ( )sσ  and ( )sµ  are the strength per unit length of the source 
and doublet distribution respectively. 
 
It can be seen clearly that the integrals involved in the above equations are very 
complex and can’t be solved unless the strength per unit length distribution of the 
chosen singularity (source, doublet or vortex) is given. Furthermore, even for the 
simplest case where the strength per unit length distribution is just a constant it is 
already quite difficult to evaluate the explicit expression for the integral. Another 
difficulty is the geometry of the singularity panel. If the panel is not straight but 
curved instead, then it is impossible to obtain an analytical solution for the integral. 
On the other hand we know that wings or aerofoils are not flat panels, but are highly 
curved. In the panel method this problem is overcome by replacing the continuously 
smooth curve of the aerofoil with an approximate curve consisting of a large number 
of panels or straight lines connecting adjacent points on the surface of the aerofoil. 
The overall effect of the whole aerofoil on the value of stream function, or any of the 
other functions that is chosen, at a point is then obtained as the sum of the effects of 
all panels representing the aerofoil. Since each panel is a straight line therefore it is 
possible to derive the expression for the required integral, provided that the strength 
per unit length distribution of the singularity is kept simple. If the distribution is 
assumed constant along the panel, then the method is known as the first order panel 
method, since the distribution only requires the knowledge of one unknown constant. 
A much better approximating distribution is given by a linear function of s, which 
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involves two unknown constants, hence it is referred to as a second order panel 
method. Below we will show the derivation of the expression for the integral on the 
right hand side of equation (49) for a second order panel method. 
The vortex strength per unit length linear distribution is given by the following 
 

   ( ) .
Q P

s P s
PQ

γ γγ γ −= +                            (64) 

 
where Pγ  and Qγ  are the values of ( )sγ  at points P and Q respectively, and 
represent the two unknown constants of the second order panel method. 
The stream function value at (x, y) for this case is thus given by 
 

   ( ) ( )1
, .ln .

2

Q

P

Q P
x y P s r s ds

PQ
γ γψ γ

π
� �−= +� �
� �
�               (65) 

 
The above equation can be rewritten as follows 
 
  ( ) ( ) ( )1 2 1 2 2, . . . .x y CI P CI Q P CI CI P CI Qψ γ γ γ γ γ= + − = − +             (66) 
 

   ( )1 ln .
Q

P

CI r s ds= �                  (67) 

 

   ( )2. .ln .
Q

P

PQ CI s r s ds= �                 (68) 

 
The expression for the integral in equation (67) has already been worked out in 
appendix 1 with the folowing result 
 
   ( )1 .ln .ln .CI PQ PR QT PR PT PQ TR APTQ= − + − +                       (69) 
 
Details for the evaluation of the second integral are given in appendix (2) the result of 
which is 

    

( ) ( )
2 2 2 2 2

1
2 2 ln ln

. .

PQ PR TR PR TR
CI QT PT PQ PR

PQ PQ

PR TR APTQ
PQ

	 
� �− − � �−
� �� �= + − +� �� �� �� �� �
 �

+

           (70) 

 
Our discussion so far only deals with the solution of the Laplace equation in general, 
whereas the real problem that we want to solve is how to analyse the aerodynamic 
properties of a 2-dimensional wing or an aerofoil. The mathematical model for our 
simplified problem, i.e. confined to inviscid, incompressible flows only, is indeed the 
Laplace equation, but we have not discussed about the boundary conditions that must 
be satisfied. To obtain a unique solution we need to specify what boundary conditions 
the solution must satisfy. 
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5. The boundary conditions 
 
The real question we want to find the answer for here is that if the shape of a wing or 
an aerofoil is given, and the wing is immersed in a given airflow, what is the lift and 
drag acting on the aerofoil as a result of its interaction with the flowing air. It should 
be remembered that in a Galilean transformation, it makes no difference if the body is 
stationary and the air is moving (model aircraft in a wind tunnel) or whether the body 
is moving in a stagnant atmosphere (aircraft moving in the atmosphere).  
Drag and lift are the two orthogonal components of the resultant force acting on the 
aerofoil, which is the summation of all the pressure acting on the surface of the 
aerofoil. From Bernoulli equation we know that the total pressure in an isenthalpic 
flow is constant, hence the static pressure decreases if the dynamic pressure increases 
and vice versa. The dynamic pressure is of course half multiplied by air density 
multiplied by velocity squared. Thus pressure is directly related to the fluid velocity 
squared. 
 
Imagine an airflow moving uniformly from the left to the right. Everywhere within 
the flow field the velocity is the same, i.e. the free stream velocity, thus the static 
pressure is also the same with a value of free stream static pressure. Now imagine that 
suddenly an aerofoil is inserted into the airflow. Obviously the presence of the 
aerofoil would disturb the uniform airflow, and the velocity field would change from 
the previously uniform value, at least in the vicinity of the aerofoil surface. 
On the other hand we have also seen that the singularities, which are the elementary 
solutions of the Laplace equation, also has the effect of disturbing a uniform flow of 
fluid, at least in the vicinity of the location of the singularity. From this observation 
we can make the conclusion that perhaps the airflow around an aerofoil can be 
simulated by placing singularities on the aerofoil’s surface, or on a surface that can be 
assumed to be representative of the aerofoil surface. 
 
It is an observed fact that air can’t penetrate into the inside of the aerofoil, the surface 
of which is made out of solid. Since the surface of the aerofoil represents part of the 
boundary of the airflow, therefore the requirement that air can’t penetrate into the 
aerofoil’s surface is called a boundary condition. The aerofoil’s surface is called the 
inner boundary since it represents the boundary of the inner part of the flow. The 
other boundary is the outer boundary, which ideally is infinitely far away from the 
aerofoil’s surface, but from a practical point of view may be defined as being 
sufficiently far away from the surface. At the outer boundary the flow is undisturbed 
by the presence of the aerofoil, therefore in our simulated flow the Laplacian 
singularities placed on the surface also must not disturb the free stream uniform flow 
far away from the singularities. This requirement is always automatically satisfied by 
all of the singularities, namely source/sink, doublet and vortex. Therefore, it is only 
the inner boundary condition that must be satisfied in our simulated flow, i.e. that the 
flow must not penetrate the aerofoil’s surface. This requirement can be expressed in 
either one of at least two different ways. 
 
Firstly, it may be stated that the surface of the aerofoil is part of the dividing 
streamline that splits the airflow into an upper half and a lower half of the flow field. 
Since a streamline is a curve on which the value of the stream function is constant, 
this type of boundary condition is called the Dirichlet Condition where the value of 
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the function (the stream function) is defined (as being of a constant value) at the 
boundary of the flow field. 
 
The other way of specifying the boundary condition is that the normal component of 
the flow velocity at the boundary must be zero, since otherwise it would imply that air 
is allowed to penetrate into the aerofoil’s surface. Since flow velocity is the derivative 
of the function (i.e. the stream function) this is the same as specifying the values of 
the function’s derivative at the boundary and is known as the Neuman Condition. 
 
Generally speaking, in some problems the function values are specified at some parts 
of the boundary, while at the rest of the boundary the derivative values are specified. 
This third type of boundary condition is known as the Mixed Boundary Condition, 
which is also known as the Robin Condition. 
 
Now we can begin to describe how our problem is to be simulated using a second 
order vortex panel method. 

            

   
 
Figure 1. Definition of parts of an aerofoil (from Georgia Institute of Technology web 
site   http://www.adl.gatech.edu/classes/lowspdaero/lospd5/lospd5.html) 
 
 
The undisturbed flow is represented as a uniform flow the velocity vector of which is 
inclined at an angle ofα  relative to the horizontal or x-axis. The aerofoil is fixed in 
space and is so located such that its chord line is along the x-axis, with the nose being 
at the origin and the tail being to the right of the nose. The aerofoil’s surface is 
represented by a large but finite number of points on it. The smoothly continuous 
curved surface is approximated by a piecewise linear segmented continuous surface 
consisting of small segments of straight lines or panels. Obviously the approximation 
gets better as the number of points on the aerofoil’s surface is increased. However, 
this has the implication of increasing amount of computational work to be done. 
 
Since in reality all wings have tails with finite thickness, it will be assumed here that 
the aerofoil has a blunt trailing edge, with distinct lower and upper tail points. The 
lower trailing edge (tail) point is identified as the point 1P  and the upper tail point is 
the point NP , where N is the number of points representing the aerofoil’s surface. The 
number of panels is obviously (N-1). Indexation of all surface points is done in a 
clockwise direction, thus the point next to and to the left of the first point is identified 
as the point 2P  etc. The thn  panel is the line connecting point nP  to 1nP + , which is also 

identified as the point nQ . Thus the thn  panel is also referred to as the panel nPQ . 
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In the following discussion we will describe a solution based on the method that 
utilizes the Dirichlet boundary conditions. Thus the solution obtained will be in terms 
of the stream function. 
 
The stream function value at a point T with coordinates (XT,YT) due to T being 
immersed in a uniform flow, which is inclined at an angle of α  to x-axis, is given as 
follows 
 
   ( ) ( ), . .sin .cosuw XT YT V XT YTψ α α∞= − +               (71) 
 
The stream function value at T induced by the vortex panel nPQ  is given by equation 
(65), where the vortex strength per unit length distribution is assumed given by a 
linear distribution, i.e. we shall use a second order method. Thus along the panel nPQ  
we have the following distribution 
 

   ( ) 1 .n n
n n

n

P P
s P s

PQ
γ γγ γ + −= +                            (72) 

 
For this case equation (65) can be rewritten as follows 
 

   ( )
1

11
2 . .ln .

n

n

P
n n

n n
nP

P P
PQ P s r s ds

PQπ
γ γψ γ

+

+� �−= +� �
� �
�              (73) 

 

   

( )( )

( )( )

1
1 2 12

1
1 2 2 12

. .

. .

n n n n n n

n n n n n n

PQ CI P CI P P

PQ CI CI P CI P

π

π

ψ γ γ γ

ψ γ γ

+

+

= + −

= − +

              (74) 

 
The expressions for 1nCI  and 2nCI  are given by equations (69) and (70) as follows 
 
 ( )1 1.ln .ln .n n n n n n n n nCI PQ PR PT PR PT PQ TR APTQ+= − + − +                     (75) 
 

   

( ) ( )
2 2 2 2 2

1
2 12 ln ln

. .

n n n n n
n n n n n

n n

n n n

n

PQ PR TR PR TR
CI PT PT PQ PR

PQ PQ

PR TR APTQ
PQ

+

	 
� �− − � �−
� �� �= + − +� �� �� �� �� �
 �

+

    (76) 

 
The stream function value at T induced by all the vortex panels making up the 
complete aerofoil shape is given by 
 

 ( ) ( )( )
1 1

1
1 2 2 12

1 1

, . .
N N

vs n n n n n n
n n

XT YT PQ CI CI P CI Pπψ ψ γ γ
− −

+
= =

= = − +� �             (77) 
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If it is now defined that 
 

  

,1 11 21

, 1 2 2 1

, 2 1

2,3,..., 1

T

T n n n n

T N N

C CI CI

C CI CI CI for n N

C CI

−

−

= −

= − + = −

=

             (78) 

 
then equation (77) can be rewritten more compactly as follows 
 

( ) 1
,2

1

, .
N

vs T n n
n

XT YT C Pπψ γ
=

= �                  (79)  

 
The value of the stream function at point T is the sum of the stream function due to 
being immersed in the uniform wind plus the stream function induced by all the 
vortex panels making up the surface of the aerofoil 
 

  

( ) ( )

( ) 1
,2

1

, ,

. .sin .cos .

T uw vs

N

T T n n
n

XT YT XT YT

V XT YT C Pπ

ψ ψ ψ

ψ α α γ∞
=

= +

= − + + �

             (80)  

 
The above equation can be rewritten as follows 
 

( ),
1

. 2 . 2 . . .sin .cos
N

T n n T
n

C P V XT YTγ π ψ π α α∞
=

− = −�               (81)  

 
If the coordinates of all points on the aerofoil’s surface ( ),n nXP YP and the coordinates 

of point T, i.e. ( ),XT YT , are given then all the influence coefficients, 1nCI  and 

2nCI hence ,T nC  for all values of n from 1 to N can be evaluated.  
 
Now let us define a dummy value of 1Nγ +  as follows 
 
   1N TPγ ψ+ =                  (82)  
 
and also a dummy coefficient 
 
   , 1 2T NC π+ = −                             (83)  
 
then equation (81) can be written more compactly as follows 
 

   ( )
1

,
1

. 2 . . .sin .cos
N

T n n
n

C P V XT YTγ π α α
+

∞
=

= −�              (84)  
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All the values of ,T nC  and the right hand side of the above equation are known and the 

only unknowns are nPγ  for n = 1 to n = N+1 provided that the control point T is 
chosen to be on the aerofoil’s surface such that Tψ  is a constant. Since there are N+1 
unknowns therefore we need N+1 equations to be solved simultaneously to calculate 
the values of the unknowns, nPγ . However there are only N points on the surface of 
the aerofoil that can be selected to be the control points where equation (84) is 
applied, thus we need one more equation to complete the system of equations to be 
solved simultaneously. 
 
The extra equation is obtained from the physical observation that the airflow leaving 
the upper surface of the aerofoil must have exactly the same velocity as the airflow 
leaving the lower surface. This means that the velocity at the two tail points (upper 
and lower tail points) must be the same. It can be shown that the airflow velocity at an 
aerofoil’s surface point is exactly the same as the value of the vortex strength per unit 
length, Pγ , at the point. This trailing edge flow condition is known as the Kutta 
condition and can be represented by the following equation 
 
   1 0NP Pγ γ+ =                             (85)  
 
For each of the control point, which is chosen to be the aerofoil’s surface point P, we 
can write down an equation based on the general expression of equation (84). The 
( 1)thN +  must be derived differently, namely it is based on satisfying the Kutta 
condition. Now we can define the following for the ( 1)thN +  equation 
 

   

,1

,

,

, 1

1

0 2,3,..., 1

1

0

T

T n

T N

T N

C

C for n N

C

C +

=

= = −

=

=

               (86)  

 
With the above definitions we now have a system of equations consisting of (N+1) 
equations involving (N+1) unknowns as follows 
 

   
1

,
1

.
N

T n n n
n

C P Dγ
+

=
=�                 (87)  

 
where  
 

  

( )

1

2 . . .sin .cos 1,2,....,

0

n n n

N

D V XT YT for n N

D

π α α∞

+

= − =

=
            (88)  



 19 

 
The system of equations (87) can be solved simultaneously to calculate the unknown 

nPγ  and since the absolute value of nPγ  is the same as the airflow velocity at the 
point nP , therefore the distribution of flow velocity along the aerofoil’s surface is 
known. Furthermore, it can be shown that for vortex panel method as described here, 
the value of pressure coefficient Cp  can be obtained from the Bernoulli equation and 
the final result is 
 

   
2

1Cp
V
γ

∞

� �
= −� �

� �
                (89)  

 
The pressure coefficient at point on the surface of the aerofoil can thus be calculated 
and plotted as desired. The pressure coefficients can also be integrated to give the 
resultant force acting on the aerofoil. This resultant force can be resolved into 2 
components, one being the lift force in the direction normal to the free stream 
direction and the other is the drag force acting along the free stream direction. Due to 
the inviscid flow assumption, it is expected that the drag force or drag coefficient 
must have a value of zero. In practice the computed drag coefficient will be found to 
have a non-zero value due to computational error such as round off error etc. The 
moment acting on the aerofoil can also be obtained from the known pressure 
distribution. A simple example of the application of the panel method is given in 
appendix 3. 
 
Even though the panel method is quite good for computing the aerodynamic 
properties of an aerofoil, it is basically a numerical method and doesn’t give analytical 
insight into the aerodynamic behaviour of an aerofoil. To get such an insight we need 
an analytical tool, even if it is very much simplified. This tool is known as the Thin 
Aerofoil Theory, which is the next topic to be discussed. 
 
 
 
 
 
6. Thin Aerofoil Theory 
 
The camber line of an aerofoil is the curve midway between the lower and upper 
surfaces of the aerofoil. For a symmetric aerofoil the camber line is simply a straight 
line. If a line is drawn perpendicular to the camber line, then it must intersect both the 
upper and the lower surfaces of the aerofoil. The distance between the two 
intersection points is called the thickness of the aerofoil. Obviously this thickness 
would vary along the chord of the aerofoil. The thickness is normally expressed as a 
percentage of the chord length. The thickness of an aerofoil is defined as the 
maximum thickness as described previously. A thin aerofoil is defined as any aerofoil 
whose (maximum) thickness is a very small percentage of the chord length, such that 
it is reasonable to model the aerofoil as a curved or flat plate of zero thickness. While 
this restriction is quite severe, it enables us to get an analytical solution to the 
problem. Here we sacrifice accuracy to get analytical insight. 
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6.1 Flat plate as an aerofoil 
 
Let us now consider a very thin symmetric aerofoil, which is quite reasonable to be 
approximated as a flat plate of zero thickness, with a chord length c. The aerofoil is 
located along the x-axis with its nose being at the origin of the system of coordinates. 
The aerofoil is immersed in a uniform wind whose velocity vector is at an angle α  
relative to the horizontal or x-axis. The disturbance to the uniform wind due to the 
presence of the aerofoil is modelled as the disturbance caused by a vortex sheet 
located along the camber line of the aerofoil. The vortex strength per unit length 
distribution of the sheet ( )xγ  is unknown and must be evaluated. 

The stream function at any point ( )* *,x y  within the flow field is given as follows 

 

  ( ) ( ) ( ) ( )* * * * 1
2

0

, .sin .cos .ln .
c

x y V x y x r x dxπψ α α γ∞= − + + �             (90)  

 

  ( ) ( ) ( )2 2* *r x x x y y= − + −                           (91)  

 
The velocity components at any point are given by the following 
 

  ( ) ( ) ( )
( )

* * 1
2

0

sin
, .cos . .

c x
u x y V x dx

r xπ

θ
α γ∞= + �               (92)  

 

  ( ) ( ) ( )
( )

* * 1
2

0

cos
, .sin . .

c x
v x y V x dx

r xπ

θ
α γ∞= − �               (93)  

 

  ( ) ( ) ( ) ( )
* *

sin cos
y x x

x and x
r x r x

θ θ −= =                          (94)  

 
If the problem is specified as a Dirichlet boundary condition problem, then we must 
find the analytical expression for ( )xγ  such that equation (90) is satisfied at all 
control or boundary points. The boundary condition to be satisfied is that all the 
points on the camber line, or part of x-axis from 0 to c, must have the same stream 
function value because the camber line is a streamline. It is quite easily seen that this 
problem is impossible to solve analytically. 
 
Now let us recast the problem as a Neuman boundary condition problem. The 
boundary condition to be satisfied is that the component of velocity normal to the 
camber line, ( )* *,v x y , must be zero at all points along the camber line. The equation 

to be solved is thus equation (93), which can be rewritten as follows 
 

  ( ) ( )
( )

1
2

0

cos
.sin . . 0

c x
V x dx

r xπ

θ
α γ∞ − =�                           (95)  
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Since the control point is on the camber line thus *y is always zero. Therefore 

( )cos 1xθ =  and ( ) *r x x x= − . 
Equation (95) is then simplified to 
 

  
( )1

2 *
0

.
.sin

c x dx
V

x xπ

γ
α∞=

−�                            (96)  

 
It can be seen that this problem looks simpler than the Dirichlet formulation of the 
same problem. Even so the problem is not quite so simple. 
We know that any continuous function can always be approximated by a Fourier 
series, even if the exact expression for the function is unknown. Therefore, it is 
reasonable to replace the unknown function ( )xγ  by a Fourier series with unknown 
coefficients. However, before we can do that it should be realized that the Fourier 
series is expressed in terms of angles rather than variable such as x. Therefore, it is 
necessary that we perform a coordinate transformation from x to θ . It is required that 
when x = 0 then θ = 0 and when x = c we want θ = π . 
 
A suitable transformation function can be given as follows 
 

    
( )2

2

1 cos

sin .

c

c

x

dx d

θ
θ θ

= −
=

               (97)  

 
Equation (95) can now be rewritten as follows 
 

   
( )

*
0

.sin1
.sin

2 cos cos
d V

π γ θ θ
θ α

π θ θ ∞=
−�               (98)  

 
We will not go into the mathematical details of how to solve the above equation. It is 
sufficient to simply apply the known mathematical results to help find the solution. 
For example it is known that 
 

  

*

* *
0

*
*

0

cos . sin
0,1,2,3....

cos cos sin

sin .sin .
cos 0,1, 2,3....

cos cos

n d n
for n

n d
n for n

π

π

θ θ θπ
θ θ θ

θ θ θ π θ
θ θ

= =
−
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−

�

�

             (99)  

 
We shall now assume a solution and then substitute the solution into equation (96) 
and verify that the trial solution indeed satisfies the equation or otherwise. 
The trial solution is 
 

  ( ) 1 cos
2 .sin .

sin
V

θγ θ α
θ∞

+=                 (100)  

 
The left hand side of equation (96) can now be expanded as follows 
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          (101)  

 
The first equation in (99) for n = 0 and n = 1 gives the following results 
 

   

*
0

*
0

0
cos cos

cos .
cos cos

d

d

π

π

θ
θ θ

θ θ π
θ θ

=
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=
−

�

�

              (102)  

 
Therefore equation (98) can be simplified as follows 
 

        ( )*
0

.sin .sin1 cos
. . 0 .sin

cos cos
V V

d V
πα αθ θ π α

π θ θ π
∞ ∞

∞
+ = + =

−�            (103)  

 
Thus it has been proven that the trial solution (100) indeed satisfies the governing 
equation (96). 
 
In the previous section it was stated that the flow solution must also satisfy the Kutta 
condition at the trailing edge or at θ π= (since x = c). It should be noted that the 
Kutta condition for an aerofoil with a sharp trailing edge is that the trailing edge must 
be a rear stagnation point, where 0Vγ = = . Substituting the value of θ π=  into (100) 
we get the following result 
 

  ( ) 0
2 .sin .

0
Vγ π α∞=   (indeterminate value). 

 
The above value is indeterminate and we should apply the L’Hospital’s rule. The rule 
states that if the ratio of 2 functions, say f(z)/g(z), becomes indeterminate as z 
approaches 0, then the value can be calculated by replacing the functions with their 
derivatives. Thus in the limit of z→0, the value of ( ) ( )0 / 0f g is given 

by ( ) ( )' '0 / 0f g . In our example both f and g approach 0 as θ π→ . Therefore the 

required value should be calculated as ( ) ( )' '/f gπ π . 
Now it is noted that 
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Therefore 
 

 ( ) sin
2 .sin . 0

cos
V

πγ π α
π∞

−= =  

 
It can be seen that the solution also satisfies the Kutta condition. 
 
We can also obtain the solution as a function of the Cartesian variable, x, as follows. 
From equation (97) we can get the following 
 
  ( )1 cos 2 1 /x cθ+ = −  
 

  ( )2 2sin 1 cos 2 1x x cθ θ= − = + −  

 
Therefore 
 

  ( )
( )

2 .sin . 2 .sin .
c x c x

x V V
xx c x

γ α α∞ ∞
− −= =

−
             (104)  

 

At the trailing edge x = c, therefore ( ) 0cγ = , thus satisfying the Kutta condition. 

The values of *

.2sinV
γγ

α∞

=  can be calculated as a function of x/c and the results are 

tabulated below 
     
x/c 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

*γ  ∞
 

3 2 1.528 1.225 1.000 0.816 0.655 0.500 0.333 0.00 

  
 
The lift, L, acting on the flat plate can be calculated using the following Kutta-
Joukowski lift equation 
 
    L Vρ ∞= Γ                          (105)  
 
The circulation around the aerofoil is equal to the total strength of the distributed 
vortex, which can be obtained by integrating or summing up all the values of ( )xγ . 
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�

                                (106)  

 
The lift coefficient is defined as follows 
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   21
2

2 sin
.l

L
C

V c
π α

ρ ∞

= =              (107)  

 
For small values of α  (in radian) the following approximation is quite accurate 
 
   sinα α�                (108)  
 
Therefore the lift coefficient can be rewritten as follows 
 
   2 .lC π α=                (109)  
 
The force dF acting on an aerofoil elemental length dx is given by the Kutta-
Joukowski lift equation as follows 
 
  ( ).dF V x dxρ γ∞=                (110)  
 
The pitching moment about the leading edge due to the force dF is   
 

  ( )
0 0

. . .
c c

LEM x dF V x x dxρ γ∞= − = −� �  

 

  ( )
0

1 cos
.2 . 1 cos . sin

sin 2 2LE

c c
M V V d

π θρ α θ θ θ
θ∞ ∞

+= − −�  

 

  
2

2 2 2

2 2 4LE

c
M V V c

π πρ α αρ∞ ∞= − = −              (111)  

 
The pitching moment about any other point can be obtained quite easily by 
remembering the definition of moment, which is simply force multiplied by the arm 
length. The pressure distribution along the aerofoil surface is such that it can be 
replaced by a resultant moment and a resultant force (lift force). There is a particular 
location or value of x, where the resultant moment of the pressure distribution is zero. 
This zero resultant moment point is known as the centre of pressure and its location 
can be calculated as follows. 
Let us assume that the centre of pressure is located at cpx . At this point the resultant 
moment is zero and the resultant force is given by equation (105). Now imagine that 
an equal but opposite force is located at the same point. To cancel this force we must 
add another force, which is equal to the resultant force but located elsewhere, say at 
the leading edge. Adding two equal but opposite forces doesn’t change the resultant 
force acting on the aerofoil, but those forces which is called a couple is equivalent to a 
moment. The magnitude of this moment of the couple is simply cpx multiplied by the 
lift force. However, to get the moment acting at the centre of pressure to remain zero 
we must add a moment which is equal but in opposite direction of the moment due to 
the couple. Now we have the lift force at the centre of pressure, a couple of forces the 
magnitude of which is the same as the lift force and a moment, which has a magnitude 
of cpx .L in the direction that the lift force would rotate the aerofoil about the leading 
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edge as the axis of rotation. This of course is in the counter clockwise direction. A 
moment is defined as being positive if it tends to rotate the aerofoil nose up. Therefore 
the moment acting at the leading edge is negative. A lift force acting upwards is 
defined to be positive and thus the value of cpx  can be calculated as follows 

   

2 2

2

. .
4

. 4
LE

cp

V cM c
x

L V c

π αρ

πρ α
∞

∞

−
= − = − =             (112)  

 
The coefficient of moment about the leading edge is defined as 
 

   
2 21

4 1
, 22 2 2 21 1

2 2

LE
m LE

V cM
C

V c V c
παρ πα

ρ ρ
∞

∞ ∞

−= = = −            (113)  

 
It should be noted that cpx can also be obtained from the following equation 

   
1

, 2 1
2 4

cp m LE

l

x C

c C
πα

πα
−= − = − =              (114)  

 
 
6.2 Cambered thin aerofoil 
 
In the previous section it has been shown how a simple analysis based on a very crude 
model with severe restrictions can still be very useful in giving insight into the 
aerodynamic properties of aerofoils. Whilst the flat plate model for an aerofoil is not 
capable of giving detailed knowledge of velocity or pressure distribution around the 
aerofoil surface with any accuracy, it is capable of predicting reasonably accurately 
the value of the slope of the lift versus angle of attack curve, namely 2π . This value 
is quite close to the value obtained from wind tunnel measurement or much more 
sophisticated numerical modelling, which gives slightly lower value of the slope but 
differing by a factor of not more than 10 percent or so. 
The method is also capable of predicting the location of the centre of pressure, which 
for this simplified flow model is the same as the aerodynamic centre. For the case of 
aerofoils in actual subsonic flows, the aerodynamic centre is located near the quarter 
chord point as predicted by the flat plate model. However, the centre of pressure 
moves as a function of the angle of attack, α . 
 
In this section we shall relax the constraints slightly by allowing the aerofoil to have 
curvature or camber. The thickness of the aerofoil must still be very small, and the 
maximum camber must also be very small such that the aerofoil is still very much like 
a flat plate. However, because the aerofoil is allowed to have camber the boundary 
condition that must be satisfied is somewhat different from the flat plate model. At a 
point on the camber line, which represents the aerofoil’s surface, the normal to the 
camber line is not exactly in the y-direction (as in the case of the flat plate model) but 
along a line that is slightly inclined to the y-axis. Let this angle be η and is the same 
as the inclination of the tangent (or slope) to the camber line at the control point. This 
implies that   

  tan
dy
dx

η =   or   1tan
dy
dx

η − � �= � �
� �

          (115)  
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It is further assumed that the angle is sufficiently small such that the tangent of the 

angle is equal to the angle itself in unit of radian, i.e. tan
dy
dx

η η =� . 

 
The equation to be satisfied is now slightly different from equation (95) as follows 
 

    
( ) ( )1

2 *
0

.
.sin

c x dx
V

x xπ

γ
α η∞= −

−�             (116)  

 
Since ( )α η−  is quite small, therefore the above equation can be simplified as follows 
 

    
( ) ( )1

2 *
0

.
.

c x dx
V

x xπ

γ
α η∞= −

−�             (117)  

     

 
From the web site   http://www.desktopaero.com/appliedaero/airfoils1/tatderivation.html 
 
  

 

From the web site   http://www.desktopaero.com/appliedaero/airfoils1/tatderivation.html 
 
The solution of equation (116) has 2 components. The first one is the same solution as 
for the flat plate situation or equation (98). The second component is to account for 
the aerofoil’s camber. The trial solution is thus given as follows 
 

( ) 0
1

1 cos
2 sin

sin n
n

V A A n
θγ θ θ

θ

∞

∞
=

+	 
= +� �

 �

�            (118)  

 
Substituting (118) into (117) we get 
 

 ( )0 * *
10

1 1 cos sin .sin
.

cos cos cos cosn
n

n
A A d

π θ θ θ θ α η θ
π θ θ θ θ

∞

=

+� �+ = −� �− −� �
��            (119)  

 
From equation (99) it is known that 
 

    *
0

1 1 cos
. 1

cos cos
d

π θ θ
π θ θ

+ =
−�             (120)  
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The second part of equation (99) gives the following results 
 

  *
*

0

sin .sin
. .cos

cos cos
n

d n
π θ θ θ π θ

θ θ
= −

−�    for n = 1, 2,…..           (121)  

 
Substituting (120) and (121) into (119) we get the following 
 

   ( )* *
0

1

cosn
n

A A nθ α η θ
∞

=
− = −�              (122)  

 
Therefore our trial solution (118) satisfies the governing boundary condition (117) 
provided the Fourier series coefficients satisfy the requirement of equation  (122). 
 
We know from basic calculus that 
 
  ( ) * * * * *cos cos cos sin sinn m n m n mθ θ θ θ θ+ = −            (123)  
 
  ( ) * * * * *cos cos cos sin sinn m n m n mθ θ θ θ θ− = +            (124) 
 
Therefore         ( ) ( )( )* * * *1

2 cos cos cos cosn m n m n mθ θ θ θ+ + − =            (125) 

 
The results above can be used to get the following results 
 

 ( ) ( )( )* * * * * *1
2

0 0

cos cos cos cosn m d n m n m d
π π

θ θ θ θ θ θ= + + −� �  

             = 
2
π

    if n m=  or ( ) 0n m+ =             (126) 

             = 0       if n m≠  
 
Integrating equation (122) from 0 to π , we can get the following 
 

  ( )( )* * * *
0

10 0

cos . .n
n

A A n d d
π π

θ θ α η θ θ
∞

=

� �− = −� �
� �
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Since * *

0

cos 0n d
π

θ θ =� for n = 1, 2, 3,…, therefore 

  ( )( ) ( )* * * *
0

0 0

1 1
. .A d d

π π

α η θ θ α η θ θ
π π

= − = −� �                       (127) 

 
Multiplying equation (122) by *cos mθ  and integrating from 0 to π  we get 
 

   ( )( )* * * * * * * *
0

10 0 0

cos cos cos cos .n
n

A m d A n m d m d
π π π

θ θ θ θ θ α η θ θ θ
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The integrals on the left hand side of the equation above are all zero except if n m= , 
in which case it has the value of 2

π . The first term on the right hand side of the 
equation is always zero hence the equation can be simplified as follows 
 

   ( )* * *

0

2
.cos .mA m d

π

η θ θ θ
π

= �   for  m = 1, 2, 3, …..          (128) 

 
Since in this last result m is just a dummy index, thus we can change it to n or k or 
any other symbol if we so wish. 
The total circulation around the aerofoil is given by equation (106), which for 
cambered aerofoil can be written as follows 
 

  ( )0
10 0

. 1 cos . sin .sin .n
n

V c A d A n d
π π

θ θ θ θ θ
∞

∞
=

	 

Γ = + +� �


 �
�� �                   (129) 

 
From basic mathematics we know that 
 
  ( ) ( )( )1

2sin .sin cos 1 cos 1n n nθ θ θ θ= − − +             (130) 
 
  ( ) ( )( )1

2sin .sin 2 cos 2 cos 2n n nθ θ θ θ= − − +            (131) 
Therefore 
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sin .sin .
2

n d
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        = 0     if 1n ≠             (133) 
 

   
0

sin .sin 2 .
2

n d
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          = 0 if 2n ≠             (135) 
 
Equation (129) can now be simplified as follows 
 

   ( )0 1 0 1. . . . . 2
2 2

V c A A V c A A
π ππ∞ ∞
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� �

           (136) 

 
The lift acting on the aerofoil is given by the Kutta-Joukowski lift equation (120), 
hence the lift coefficient can be calculated as follows 
 

   
( )21

0 12
0 121

2

. . 2 1
2

. 2l

V c A A
C A A

V c
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π
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           (137) 

 
The lift curve slope can be calculated knowing that 0A  is given by equation (127) 
 

   , 2l
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C
C α π

α
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              (138) 
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The pitching moment about the leading edge can also be evaluated as follows 
 

   ( )
0 0

. . .
c c

LEM x dF V x x dxρ γ∞= − = −� �  

where  ( ) ( )xγ γ θ=  is given by equation (96) and x and dx are given by equation 
(112), hence the above equation can be simplified further as follows 
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Substituting equations (149), (150), (151) and (152) into the above, we finally get 
 

     [ ]2 2 2 21 1 1
0 1 2 0 1 22 2 22 2 4 2LEM V c A A A V c A A A

π π π πρ ρ∞ ∞
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The leading edge moment coefficient is then 
 

  [ ]1
, 0 1 222 21

2 2
LE

m LE

M
C A A A

V c
π

ρ ∞

= = − + −             (139) 

 
The location of the centre of pressure is given by 
 

   
1

, 0 1 22
1

0 12
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4

cp m LE
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            (140) 

 
The moment coefficient at the quarter chord point is 
 

[ ] ( ) ( )1 1 1
, / 4 , 0 1 2 0 1 2 14 2 2 2 2 4m c m LE lC C C A A A A A A Aπ π π= + = − + − + + = −         (141) 

 
The equations for the camber lines for NACA aerofoils can be obtained from the book 
by I.H.Abbott and A.E.von Doenhoff : Theory of Wing Sections or it can be obtained 
from the following web address 
   http://www.desktopaero.com/appliedaero/appliedaero.html 
 
As an example of the application of TAT for a cambered aerofoil we will consider a 

simple aerofoil whose camber is given by ( ) 4 . . 1
x x

y x h
c c
� �= −� �
� �

 where the maximum 

camber h is a small positive number and c is the chord 
 

hence  ( )( )4 1 2 4 1 1 cos 4 cos
dy h x h h
dx c c c c

θ θ� �= − = − − =� �
� �

           (142) 
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The Fourier coefficients for this aerofoil can be calculated as follows 
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Note that equation (141) has been used to evaluate the integrals for 1A  and 2A . 
The value of the lift coefficient is 
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The leading edge and quarter chord moment coefficients, and the centre of pressure 
location are 

    ,
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Let us now study a similar aerofoil, except that the maximum camber is now located 
at 0.25c, rather than at the mid point 0.5c. 
The equation for the camber of the aerofoil is now given by the following 
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Therefore  ( )( )( ) ( )1
2

8 8
1 4 1 cos 2cos 1

dy h h
dx c c

θ θ= − − = −             (148) 
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Therefore  ( )( )( ) ( )1
2

8 8
1 4 1 cos 2cos 1

9 9
dy h h
dx c c

θ θ= − − = −             (150) 

 
It should be noted that x/c =1/4 is equivalent to cos 0.5θ =  or / 3θ π=  
 
The Fourier coefficients can now be calculated as follows 
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The lift coefficient can now be calculated as follows 
 

      ( ) ( )1
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h h
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The pitching moment coefficients and the centre of pressure location are 
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Now let us consider another situation where the maximum camber location is pushed 
back even further. For the cases where the maximum camber is located at x/c = ¾, the 
results are as follows 
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Therefore  ( )( )( ) ( )1
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It should be noted that x/c =3/4 is equivalent to cos 0.5θ = −  or 2 / 3θ π=  
The Fourier coefficients can now be calculated as follows 
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The lift coefficient can now be calculated as follows 
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The leading edge pitching moment and centre of pressure location are 
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The various results can be tabulated to see the effects of shifting the location of the 
maximum camber point as follows. 
 
Max. camber 
location 

       0.25 c     0.50 c      0.75 c 

/ 2lC π  α +1.6179 ( )/h c  α +2.0 ( )/h c  α +5.3358 ( )/h c  

( ) .2 / m LECπ−  α +2.9169 ( )/h c  α +4.0 ( )/h c  α +9.5738 ( )/h c  

1
/ 4
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c
−  1.299
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1.6179 /

h c
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 2
( )

( )
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2.0 /
h c

h cα +
 4.238

( )
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/
5.3358 /

h c
h cα +

 

, / 4 /m cC π−  0.6495 ( )/h c  ( )/h c  2.119 ( )/h c  

 
From the table it can be seen that as the location of the maximum camber is moved 
backward towards the trailing edge, for a given value of maximum camber, h/c, and 
angle of attack,α , then the lift coefficient increases and the leading edge pitching 
moment also increases or becomes more negative. The quarter chord moment also 
becomes more negative, but the location of the centre of pressure moves further 



 34 

backward by an amount, which depends on both h/c and α as well as on the location 
of the maximum camber.  
If the maximum camber location is fixed, then for a given angle of attack the lift 
coefficient and the moment coefficients all increase with increasing value of the 
maximum camber. However the location of the centre of pressure behaves in a more 
complex manner and depends on the magnitude of the angle of attack as well. 
 
If the maximum camber, h/c, and its location are kept constant, then the lift 
coefficient and the leading edge moment coefficient both increase linearly with 
increasing angle of attack. The quarter chord moment remains constant and is 
independent of the angle of attack. However, the location of the centre of pressure 
again behaves in a complex manner depending on the relative values of the maximum 
camber, its location and the angle of attack. 
 
If the angle of attack is zero, the above table can be simplified as follows 
 

 Max. camber 
location 

   0.25 c     0.50 c   0.75 c 

2
lC

π
 1.6179

h
c

    2.0
h
c

 5.3358
h
c

 

.

2
m LEC

π
−  2.9169

h
c

    4.0
h
c

 9.5738
h
c

 

cpx

c
 

 
0.4508 

   
 0.500 

 
0.4485 

 
As can be seen from the above table, an aerofoil seems to have a positive value of lift 
coefficient even if the angle of attack is zero. This implies that at a particular negative 
value of angle of attack, the lift acting on an aerofoil is zero. The angle of attack for a 
cambered aerofoil when the lift produced is zero is called the zero lift angle of attack 
and is denoted by the symbol of 0α . The lift coefficient for a cambered aerofoil is 
usually given as 
    ( )02lC π α α= −              (164) 
 
From the above table it can be seen that the magnitude of zero lift angle of attack for a 
given camber, h/c, increases monotonically as the location of that maximum camber is 
moved further and further backward towards the trailing edge. If the location of the 
maximum camber is fixed, both the lift and moment coefficients increase linearly 
with increasing camber, h/c. Furthermore, the constant of proportionality increases 
rapidly with increasing value of the location of the maximum camber (or the further 
rearwards the maximum camber point is located on the aerofoil). The magnitude of 

0α is obviously determined by the curvature of the aerofoil, which is dependant on 
both the magnitude and location of the maximum camber h/c. 
 

Max. camber location 0.25c 0.50c 0.75c 

0α  (for h/c = 0.01) -0.93 0  -1.15 0  -3.06 0  

0α  (for h/c = 0.02) -1.85 0  -2.29 0  -6.11 0  

0α  (for h/c = 0.03) -2.78 0  -3.44 0  -9.17 0  
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A rather interesting point to note is the complex behaviour of the location of the 
centre of pressure. From previous result we know that the centre of pressure for a 
symmetric aerofoil (or flat plate) is located at the quarter chord point. However, from 
the above table it can be seen that for zero angle of attack, the centre of pressure 
location for a cambered aerofoil is actually near the mid point of the aerofoil rather 
than the quarter chord point. Furthermore, that location is independent of the value of 
the camber, but is slightly dependent on the location of the maximum camber point. 
For an aerofoil with its maximum camber located at the chord’s mid point, the centre 
of pressure is also located at the mid point. However, if the location of the maximum 
camber is moved either forward or backward of the mid point, the centre of pressure 
always moves slightly forward of the mid point. 
 
The centre of pressure is a concept in Mechanics, which is useful in presenting data 
about distributed stresses or pressure in the most efficient way. All the relevant 
information about the distributed pressure can be presented in terms of only 2 
quantities, namely the resultant force and the location of the centre of pressure. The 
centre of pressure is defined as the point about which the moment of the distributed 
pressure is zero. It can also be thought of as being the point at which the resultant 
force acts. The moment at any other point can be calculated simply as the product of 
the resultant force multiplied by the distance of the point from the centre of pressure. 
The concept of the centre of pressure is, however, sometimes rather useless in the 
field of aerodynamics. In mechanics the resultant force is normally quite large in 
magnitude. On the other hand, in aerodynamics the resultant force is often quite small 
and sometimes even zero. When the lift, or total force, is zero then the definition of 
the centre of pressure is quite meaningless. When lift is zero the resultant of the 
distributed pressure is a pure couple, which of course has a constant moment value at 
any point along the chord of the aerofoil. There is no point where the moment acting 
on the aerofoil is zero, so there is no centre of pressure. To get out of this difficulty, in 
aerodynamics we define the aerodynamic centre as the point about which the moment 
acting on the aerofoil is constant, independent of angle of attack or the lift produce.  
 
The information about the distributed pressure can then be represented by 3 
quantities, namely the resultant force, the moment about the aerodynamic centre and 
the location of the aerodynamic centre itself. The result of TAT analysis suggests that 
the aerodynamic centre is located at the quarter chord point, since as has been pointed 
out earlier the moment at the quarter chord is independent of angle of attack. 
Experimental results suggest that real aerofoils in real flows do have their 
aerodynamic centres located very near the quarter chord point, at least for subsonic 
flows. (Aerofoils in supersonic flows have their aerodynamic centres located closer to 
the midpoint of the chord). 
 
Because of this rather fortunate situation, it is not necessary to present the data of the 
location of the aerodynamic centre. Thus it can be seen that the aerodynamic centre is 
a very useful concept in aerodynamics, similar to the usefulness of the concept of the 
centre of pressure in Mechanics. It is for that reason that we will be discussing more 
about the moment about the aerodynamic centre (or the quarter chord point) rather 
than the moment about the centre of pressure. 
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6.3 Flapped Aerofoil and Control Surfaces.   
                      
Let us now apply our knowledge to study the behaviour of control surfaces such as 
the rudder, elevator or aileron. The control surfaces are normally symmetric aerofoils, 
and here we will impose the constraint that they are very thin so that the results of 
TAT are applicable for them. 
The elevator is the control surface to create pitching moment, and is attached to the 
horizontal tail plane via a hinge line. Let the horizontal tail plane, including the 
elevator, be represented by a portion of the x-axis, with its nose located at origin of 
the coordinates system and its chord length is c. Let the hinge line of the elevator be 
located at xh = (1-F).c, where F is the length of the elevator as a fraction of the total 
chord length c and normally has a value of around 0.3 or there about. The elevator 
may be deflected up or down. To create a nose up or positive pitching moment the 
elevator must be deflected upwards, and downwards deflection will create a negative 
pitching moment. A horizontal tail plane with its elevator deflected is modelled very 
simply as a horizontal straight line from the nose at the origin to the hinge point H at 
xh and another straight line representing the elevator from the hinge line to the trailing 
edge. This elevator is at a negative deflection angle of η  when deflected downward. 
Let us also assume that the airflow is moving uniformly at an angle of α  relative to 
the horizontal line. 
Transformation of coordinate from Cartesian to polar coordinate gives us the 
following results. The nose is at 0θ = and the trailing edge is at θ π= , while the 
hinge line is at hθ , where ( ) ( )1 1 cos . / 2xh F c h cθ= − = −  or ( )1cos 2 1h Fθ −= − . 
The Fourier series coefficients of the TAT solution for this case can be calculated as 
follows 
 

0
0 0

1 1
. .

dy
A d d

dx

π π

α η θ α θ
π π

� �= − − � �
� �

� ��              (165) 

Now it should be remembered that for 0 hθ θ≤ ≤  we have 0η =  since the line 
representing the main tail plane is horizontal, whereas for hθ θ π≤ ≤ , i.e. from the 
hinge line to the trailing edge, we have a constant negative value of η . 
 This means that the coefficient can be calculated as follows 
  

0

1
. 1

h

h
A d

π

θ

θα η θ α η
π π
	 
 � �= − = − −� � � �

� �
 �
�             (166) 

 
The other coefficients, for n = 1, 2, 3, …, are given as follows 
 

2 2sin .
cos . .

.n
h

n h
A n d

n

π

θ

θη θ θ η
π π

	 

= = −� �


 �
�            (167) 

 
( )2

1 sin .A hπ θ η= −               (168) 
 

( )1
2 1sin 2 . .cosA h A hπ θ η θ= − =             (169) 

 
Let us now define the following functions of hθ  
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( )1 1
h

k h
θθ
π

= −                          (170) 

 
( ) ( )1

2 4 2sin sin 2k h h hθ θ θ= −                        (171) 
 

( ) ( )3 1

sin sin
1

h h h
k h k h

θ θ θθ θ
π π π

= − + = +            (172) 

 
The lift and quarter chord moment coefficients of the tail plane with the elevator 
deflected are then given by the following equations. 
 

( ) ( )( )1
0 1 322 2 .lC A A k hπ π α θ η= + = −                         (173) 

 
( ) ( )1

, / 4 1 2 24m cC A A k hθ η= − − =                        (174) 
 
The pressure that acts on the elevator would produce a turning moment about the 
hinge axis. If the pilot wishes to change the elevator deflection angle setting, she or he 
has to exert a force on the control stick to overcome the elevator’s hinge moment. It is 
useful, therefore, to be able to predict how the hinge moment would vary as a function 
of the 3 parameters, namely the angle of attack, the deflection angle and the fractional 
length. 
 
The resultant force of the pressure that acts only on the elevator can be calculated as 
follows: 
 

( ), 021
12

2 1 cos .sin .sinel
l el n

nh
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C A A n d

V c

π

θ

θ θ θ θ
ρ

∞
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� �

��  

 
The moment of the distributed pressure, on the elevator only, about the leading edge 
is given by the following equation 
 

( ) ( ), 0
1

1 cos .sin .sin 1 cos .mLE el n
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( )0
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1 1

1 cos 2 sin .sin . sin .sin 2 .
2 2
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mLE el n

n nh h h

A A
C d A n d n d

π π π

θ θ θ
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The integrals can be evaluated as follows 
 

( )1 cos . sin
h

d h h
π

θ

θ θ π θ θ+ = − −�  

 

 ( ) 1
21 cos 2 . sin 2
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For n = 1  ( ) ( )1 1 1
2 2 2sin .sin . 1 cos 2 . sin 2

h h

d d h h
π π

θ θ
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For n = 2 ( ) ( )1 1 1
2 2 4sin 2 .sin 2 . 1 cos 4 . sin 4
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For n>2 
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Putting the above results together to evaluate the integrals, we can get the following 
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Therefore 
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For the coefficient of moment we need the following
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Therefore 
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The coefficient of moment of pressure distribution on the elevator, about the leading 
edge of the aerofoil is given as follows 
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          (175) 

 
Let us now define the following 

( ) ( )4 1

sin sin
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h h h
k h k h

θ θ θθ θ
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The lift coefficient and the leading edge moment coefficients of the elevator are now 
given by 
 
  ( ) ( )( ), 4 52 . .l elC k h k hπ θ α θ η= −                         (180) 
 

( ) ( )( ), 6 7. .
2mLE elC k h k h
π θ α θ η= − −                         (181) 

 
The hinge moment of the elevator is then given by the following    
  

( ), , ,1 .mH el mLE el l elC C F C= + −                           (182) 
 
The lift and hinge moment coefficients of the elevator can also be rewritten as follows 
 
   ( ) ( ) ( ), 1 1, . .l elC a F b Fα η α η= −             (183) 
 
   ( ) ( ) ( ), 2 2, . .mH elC a F b Fα η α η	 
= − −
 �           (184) 

 
where               ( ) ( )( )1 42 .a F k F hπ θ=    and   ( ) ( )( )1 52 .b F k F hπ θ=  

 
      ( ) ( ) ( ) ( )2 6 42 . 4 1a F k F F k Fπ 	 
= − −
 �    and     ( ) ( ) ( )2 7 52 . 4 1 .b F k F F kπ 	 
= − −
 � 

 
The values of the above coefficients for some particular values of F are shown in the 
table below 
 

   F   0.10   0.20   0.30  0.40   0.50 
( )1a F  0.08700 0.2546 0.4855 0.7793 1.1416 

( )1b F  0.2636 0.5474 0.8556 1.1939 1.5708 

( )2a F  - 0.2365 -0.2200 - 0.1268 0.0212 0.2146 

( )2b F  - 0.0088 0.0369 0.0869 0.2665 0.2665 

 
It should be noted that the hinge moment coefficient (see equation (184)) is dependent 
on the angle of attack as well as on the angle of deflection. This is undesirable, since 
the hinge moment for a given deflection angle is different for different value of angle 
of attack. As far as the pilot is concerned, it is desirable that when s/he wants to 
change the setting of the angle of deflection, the force that s/he has to exert should be 
the same regardless of the angle of attack (which is not associated with trying to 
control the aircraft as such). However, for a particular value of F between 0.30 and 
0.40 the value of ( )2a F  is zero. This means that for the particular  value of F, the 
hinge moment is independent of angle of attack, thus that value of F should be chosen 
as the fractional length of the elevator (or the movable part of any control surface, 
such as the rudder on the vertical fin etc).  
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Additional information: 
 
Airfoil Geometry 
http://www.desktopaero.com/appliedaero/appliedaero.html 

 
 
Airfoil geometry can be characterized by the coordinates of the upper and lower 
surface. It is often summarized by a few parameters such as: maximum thickness, 
maximum camber, position of max thickness, position of max camber, and nose 
radius. One can generate a reasonable airfoil section given these parameters. This was 
done by Eastman Jacobs in the early 1930's to create a family of airfoils known as the 
NACA Sections.  

 
  
The NACA 4 digit and 5 digit airfoils were created by superimposing a simple 
meanline shape with a thickness distribution that was obtained by fitting a couple of 
popular airfoils of the time:  
 
y = ±(t/0.2) * (.2969*x0.5 - .126*x - .3537*x2 + .2843*x3 - .1015*x4)  
 
The camberline of 4-digit sections was defined as a parabola from the leading edge to 
the position of maximum camber, then another parabola back to the trailing edge.  

 
 
NACA 4-Digit Series: 
 
   4             4                   1                   2 
max camber  position           max thickness 
in % chord  of max camber  in % of chord 
                    in 1/10 of c 
 
After the 4-digit sections came the 5-digit sections such as the famous NACA 23012. 
These sections had the same thickness distribution, but used a camberline with more 
curvature near the nose. A cubic was faired into a straight line for the 5-digit sections.  
 
NACA 5-Digit Series: 
 
   2             3         0             1      2 
approx max     position              max thickness 
camber            of max camber   in % of chord 
in % chord      in 2/100 of c 
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The 6-series of NACA airfoils departed from this simply-defined family. These 
sections were generated from a more or less prescribed pressure distribution and were 
meant to achieve some laminar flow.  
 
NACA 6-Digit Series: 
 
6          3,                     2                  -         2          1      2 
Six-     location          half width         ideal Cl   max thickness 
Series  of min Cp      of low drag        in tenths  in % of chord 
           in 1/10 chord  bucket in 1/10 of Cl 
 
After the six-series sections, airfoil design became much more specialized for the 
particular application. Airfoils with good transonic performance, good maximum lift 
capability, very thick sections, very low drag sections are now designed for each use. 
Often a wing design begins with the definition of several airfoil sections and then the 
entire geometry is modified based on its 3-dimensional characteristics. 
…………………………………………………………………………………… 
 
 
The following web sites give the coordinates of various NACA aerofoils 
 
Appendix I- Profiles http://www.pdas.com/profiles.htm  
Appendix II- Mean Lines http://www.pdas.com/meanline.htm  
Appendix III- 4 and 5 Digit Sections http://www.pdas.com/sections45.htm  
Appendix III- 6-Series Sections http://www.pdas.com/sections6.htm 
Appendix III- 6A-Series Sections http://www.pdas.com/sections6a.htm 
 
See also 
http://www.adl.gatech.edu/classes/lowspdaero/lospd5/lospd5.html 
 
http://www.desktopaero.com/appliedaero/airfoils1/tatderivation.html 
 
http://adg.stanford.edu/aa208/fundamentals/TATResults.html 
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