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LIFTING LINE THEORY 
AERO 2258A  LLT  Tutorial Example 
Author: Hadi Winarto ; date: 10 May 2004  corrected 19 May 2004 
 
This theory was developed basically to answer the following important aerodynamic 
question : Given the shape of a wing, how can we predict the aerodynamic properties of 
the wing? What is the most efficient wing shape for a given task such that the induced 
drag can be minimized? 
 
The theory was developed by Prandtl in Germany and Lanchester in England at the 
beginning of the twentieth century as described below on the following web site 
http://www.centennialofflight.gov/essay/Theories_of_Flight/Prandtl/TH10.htm 
 

“His 1904 paper raised Prandtl's prestige as an aerodynamicist. He became director of 
the Institute for Technical Physics at the University of Göttingen later in the year, 
where he worked with many outstanding students, creating the greatest aerodynamics 
research center of his time. 

In the years that followed, Prandtl began work on calculating the effect of induced 
drag on lift. Induced drag is the drag created by the vortices that trail an aircraft from 
the tips of its wings. These vortices, or whirling motions of fluid, affect the pressure 
distribution over the wings and result in a force in the direction of drag. Hence, 
induced drag is a kind of pressure drag. He worked with Albert Betz and Max Munk 
for almost ten years to solve this problem. The result was his lifting line theory, which 
was published in 1918-1919. It enabled accurate calculations of induced drag and its 
effect on lift.  

In England, Prandtl's lifting line theory is referred to as the Lanchester-Prandtl 
theory. This is because the English scientist Frederick Lanchester published the 
foundation for Prandtl's theory years earlier. In his 1907 book Aerodynamics, 
Lanchester had described his model for the vortices that occur behind wings during 
flight. Prandtl's model for his theory was similar to Lanchester's, although Prandtl 
claimed that he had not considered Lanchester's model when he had begun his work in 
1911. 

During World War I, Prandtl created his thin-airfoil theory that enabled the 
calculation of lift for thin, cambered airfoils. It is still used today. He later contributed 
to the Prandtl-Glauert rule for subsonic airflow that describes the compressibility 
effects of air at high speeds. Prandtl also made important advances in developing 
theories of supersonic flow and turbulence.” 

 
The theory is based on the assumption that even though the flow around an aircraft’s 
wing is really 3-dimensional, it may be satisfactorily approximated by a linear summation 
of flows around the elemental aerofoils, which makes up the overall wing, where the flow 
around each aerofoil is assumed to be 2-dimensional. This approach gives a reasonable 
result provided that the model flow takes into account the effect of the vortex sheet, 
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which is shed at the trailing edge of the wing. The trailing vortex sheet induces a 
downwash velocity, which varies along the span wise direction. 
  
The wing is assumed to be a flat plate lying on the x-y plane. Therefore, the theory does 
not take into account the wing’s thickness distribution. It is also unable to handle any 
dihedral or sweepback angle. However, it is capable of modelling a tapered wing with 
geometrical and aerodynamic twists. 
 
The problem needs the following input data: 
1.Wing span, b. 
2.Spanwise distribution of the following quantities 
2.1 Sectional profile or aerofoil’s chord length, c(y) 
2.2 Aerofoil’s geometric angle of incidence, Gα (y) 
2.3 Aerofoil’s zero lift angle of incidence, 0α (y) 
2.4 Aerofoil’s lift curve slope, a (y) 
 
Given the above data the theory must find the solution in the form of span wise wing load 
or lift per unit span length distribution, the overall wing’s lift coefficient and the induced 
drag coefficient of the wing. From the Kutta-Joukowski Lift Theorem it is known that lift 
is directly proportional to circulation or vortex strength. Therefore, the theory must be 
capable of predicting the span-wise bound vortex strength per unit length distribution.  
The unknown vortex strength distribution, Γ (y), is approximated by a Fourier series as 
follows: 
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The basic problem is how to calculate the unknown Fourier series coefficients or 
amplitudes, nA . The approximation using a Fourier series becomes more accurate as the 
number of terms, N, increases. However, for hand calculation we must limit the value of 
N to a very small number of 4 or less. 
The lifting line equation that needs to be solved is 
 

 0
1 1

4 sin( �( ))
sin( �( )) ( ) ( )

( ). ( ) sin( ( ))

N N

n n G
n n

b n y
A n y nA y y

a y c y � y
α α

= =
+ = −� �   (4) 

 
The above equation can be rewritten as follows: 
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Let us now define the following quantities 
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   A(n) = nA        (7) 
 
   D(y) = )()( 0 yyG αα −         (8) 
 
Equation (5) can now be written as 
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The above equation contains N unknowns, namely A(n) for n=1 to N. It is therefore 
necessary to apply equation (9) at N different control points or values of distance along 
the span, y, so that we have a system of equations that can be solved simultaneously to 
calculate the values of A(n). The points chosen should not include the wing tips, since 
regardless of the values of the Fourier coefficients, the vortex strength distribution 
equation (1) is always satisfied at those points. Selecting those 2 points will not provide 
any new information regarding the values of the Fourier amplitudes. It is also 
recommended that the midpoint (y = 0) should also not be selected as a control point, for 
similar reasons. To get the most accurate result for a given number of control points, the 
following method for selecting the control points is recommended. Firstly, N should be 
chosen to be an even integer, such that N = 2M, say. 
The N points along the span are chosen so that they are equally spaced. In other words 
the span is divided up into N equal intervals, and the midpoint of each interval is chosen 
to be a control point. The port (left) wing tip is located at y = -b/2 whereas the starboard 
(right) wing tip is located at y = b/2. The coordinates of the control points are then given 
as follows. For each value of k, from 1 to N, we have 
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Note that the control points are symmetrical about the plane of symmetry, y = 0. In other 
words we have y(k) = y(N+1-k). If the lift per unit span length distribution is symmetrical 
about y = 0, then its value at y(k) is equal to its value at y(N+1-k). Furthermore, it can be 
shown that the Fourier amplitudes with even indexes in equation (1) are all zero 
 
   2mA = 0  for  m= 1, 2,…,M (where M = N/2) 
 
Equation (1) can always be rewritten in a way, which separates the even terms from the 
odd terms as follows 
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Therefore, if the load distribution is symmetrical then equation (11) is simplified to 
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In the discussion below it is always assumed that the load distribution is symmetrical. 
 
The Lifting Line Equation, which is the system of equations (9), that must be solved to 
calculate the Fourier coefficients, can now be written as follows 
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where the values of y are given by equation (10) and 
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    ( ) 0 0( ) ( ) ( ) ( )G G k kD k k k y yα α α α= − = −        (16)  
 
It should be noted that c(k) is the aerofoil’s chord length at the station y(k), or ( )kθ , 

whereas ( )G kα  and ( )0 kα are the geometric and zero lift angle of attacks at y(k). 
The geometric angle of attack may vary as a function of y if the wing is given a 
geometric twist. A wing without twist is one where the geometric angle of attack is 
constant for all values of y, such that the leading edge and the trailing edge of the wing 
are straight lines, which lie on the same horizontal plane when Gα = 0. A wing may be 
given a washout, where the wing is twisted such that the leading edge of the wing tip 
aerofoil is now lower than the leading edge of the root aerofoil (the root aerofoil is the 
aerofoil located at the plane of symmetry if it is imagined that the fuselage is not there 
and the two halves of the wing meet at the plane of symmetry). A wing with washin is 
one where the leading edge of the tip aerofoil is now higher than the leading edge of the 
root aerofoil, whereas the trailing edge of the wing remains on the horizontal plane. It 
follows, therefore, that the chord of the aerofoil at y may have negative or positive 
geometric angle of attack values when Gα = 0 at the wing root, depending on whether the 
wing has a washout or a washin. 
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Let the height difference between the leading edge of the wing tip aerofoil from the 
leading edge of the root aerofoil is tiph , which is negative for washout and positive for 
washin. It should be noted that the leading edge of the wing is required to remain as a 
straight line. Therefore, the twist angle or the geometric angle of attack at y relative to the 
geometric angle of attack at the wing root can be calculated as follows 
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Let the angle of attack of the wing or the aircraft be denoted by the angle of attack at the 
wing root, and is given the symbol of α . This angle obviously can be varied and 
represents the attitude of the aircraft (when the aircraft is at a level cruising flight this 
angle may have a small positive value of not more than 3 degrees). Using this definition 
we can now calculate the geometric angle of attack at y as follows 
 
     ( ) ( )G k kα α β= +           (18) 
 
Equation (16) can now be rewritten as follows 
 
    ( ) ( )0 ( )D k k kα α β= − +          (19) 
 
A wing may be given an aerodynamic twist as well as a geometric twist. This means that 
the aerofoil shape at the wing root is different from that at the wing tip. The shape of the 
aerofoil in between the two limiting stations is then determined by insisting that the wing 
cross-section should have a smoothly varying shape along the span wise direction. Since 
the aerofoil shape at the wing tip is different from that at the root, therefore the value of 
the sectional lift coefficient as well as its zero lift angle of attack may also vary along the 
span wise direction. Provided the variation of ( )a y  and ( )0 yα are given, equation (15) 

can still be used to compute the matrix coefficients, ( ), 2 1C k m − , thus the lifting line 
theory can handle such a problem. 
The theory can also handle the problem involving a variation in the chord length of the 
sections as a function of y, as long as the functional form of c(y) is given. This means that 
the theory is also applicable for analysing tapered wing shape, so long as the quarter 
chord line is normal or almost normal to the aircraft’s longitudinal axis. Obviously the 
theory is not valid for a highly swept wing. For swept wings we should use vortex lattice 
method, but this will not be discussed here. 
The taper ratio is the ratio of the chord length of the wing tip aerofoil to that of the root 
aerofoil. Normally the value is less than 1, i.e. the sectional chord length decreases with 
increasing distance away from the plane of symmetry, or with increasing magnitude of y. 
The taper ratio is given the symbol of λ  and thus 
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The chord length at y is then given by the following equation 
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For computational purpose the above equation is more specifically written as follows 
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The specification for aerodynamic twist is quite complicated, since it requires knowledge 
of the shape of the aerofoil section at each station y along the span. In the absence of such 
information, we can simplify the problem somewhat by requiring that the tip aerofoil 
differs only slightly from the root aerofoil such that the lift coefficient and zero angle of 
attack at y are given by the following linear relationships 
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Obviously the properties of the root and tip aerofoils must be supplied as inputs. 
The procedure for the application of the lifting line theory in evaluating the aerodynamic 
performance of any kind of wing shape (with certain limitations) can now be summarized 
as follows. 
The following data must be supplied: 
 

1. The wing’s angle of attack,α , and either the value of the wing span, b, the wing 
area, S, or the Aspect Ratio. These quantities are related as follows 
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S
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2. Any 2 of the following 3 quantities: root chord, tip chord and taper ratio or 

rootc , tipc  and λ . The relationship involving the 3 parameters is tip

root

c

c
λ = . 

The average chord can be calculated as follows ( ) ( )1 1
2 21 1av root tipc c cλλ λ= + = +  

3. The lift curve slope and zero lift angle of attack of the root aerofoil, roota and 0,rootα ,  

and also those of the tip aerofoil, tipa  and 0,tipα . 
4. The value of either the tip aerofoil leading edge height relative to that for the root 

aerofoil, tiph , or the twist angle of the tip aerofoil relative to the root aerofoil, tipβ . 
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If the twist angle of the tip aerofoil relative to the root aerofoil is given, say tipβ , 
then the leading edge height difference should be calculated as follows 
    .sintip tip tiph c β=  

 
The computational procedure can then be described as follows 
 

1. Select the value of the number of control points on the port wing M. 
2. For k = 1, 2, 3, .., M calculate the following 
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    ( ) ( )0 ( )D k k kα α β= − +          (30) 
 

For each value of m =1, 2, …, M calculate the matrix coefficients 
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3. Now solve the following system of simultaneous equations 
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A simple direct method for computing A(m), the solutions of (32), is the Gaussian 
Elimination Method. Other methods, such as the Jacobi or Gauss-Seidel iterative methods 
may also be used. 
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4. After the Fourier coefficients, A(m), have been calculated we can now compute 

the non-dimensional wing load distribution as follows 
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5. The wing’s lift coefficient can be calculated  as follows 
 

( ). . 1LC AR Aπ=            (34) 
 

6. The Oswald efficiency factor, e, is 
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7. Induced drag coefficient DiC is 
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 The formula for Induced drag can also be written as 
 

 2.Di LC k C=   where k  is the induced drag factor and 
1

. .
k

AR eπ
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Worked Examples 
 
The Problem: 
 
A hypothetical, conventional small aircraft has a wing area of 50 square meter and an 
aspect  ratio of 8. The wing has no dihedral, is unswept at its quarter chord line and is not 
twisted aerodynamically, or its cross section is the same aerofoil shape all along the span. 
The tapered wing with a taper ratio of 0.6 is twisted geometrically. The geometric twist is 
such that the tip aerofoil section is at an incidence of –2.9 degrees when the root section 
is at zero degree incidence. The aerofoil’s zero lift angle of incidence is –2.0 degrees and 
the aerofoil's lift coefficient curve has a slope of 6 per radian. If the wing’s angle of 
incidence is 2 degrees while the aircraft is cruising, calculate the following 
 
(i) Calculate the wing’s span and mean chord lengths. Also calculate the root chord and 
the tip chord lengths. 
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(ii) At the span wise stations y = ± 7.071 m and y = ± 3.827 m calculate the local chord 
lengths of the wing (note that the aircraft's plane of symmetry is located at the span’s mid 
point or at the station y = 0) 
 
(iii) Calculate the geometric angle between the local chord line at each of the span wise 
station stated above and the chord line at the root section, due to the twist. 
 
(iv) Calculate the overall lift coefficient of the aircraft at cruise condition using the lifting 
line theory. Hint   :  Use 2 of the y-stations given above, say y = 7.071 m and 3.827 m, or 
y = -7.071 m and y = -3.827 m as your control points in the calculation. Would you get 
different answers if you were to do the calculation using all 4 control points along the 
whole span, as compared to only using 2 points along the semi span and taking advantage 
of the wing loading symmetry? Explain. 
Also calculate the Oswald factor and the induced drag coefficient. 
 
The Answer: 
 
(1). Wing span, b , and mean chord length, avc . 
 
 . 50 8 20b S AR x m= = =  
 

50
2.5

8av

S
c m m

AR
= = =  

 
Root chord and tip chord 
 

2 2
. 2.5 3.125

1 1 0.6root avc c x m
λ

= = =
+ +

 

 
. 0.6 3.125 1.875tip rootc c x mλ= = =  

(2). Local chord lengths at the following stations 
y(1) =-7.071 m, y(2) = -3.827 m, y(3) = 3.827 m and y(4) = 7.071 

Port wing (y negative): ( ) 2 .root tip
root

c c
c y c y

b

−
= +    , for –b/2 <y< 0 

( )1 3.125 0.125 2.2411c y m= + =  

( )2 3.125 0.4784 2.6466c m= − =  
  

 Starboard wing (y positive): ( ) 2 .root tip
root

c c
c y c y

b

−
= −    , for 0 <y< b/2 

   ( ) ( )3 3.125 0.4784 2.6466 2c m c= − = =  

   ( ) ( )4 3.125 0.8839 2.2411 1c m c= − = =  
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(3). Twist angle distribution 
 

Twist angle at the wing tip: 02.9tipβ = −  thus 

( )0.sin 1.875 sin 2.9 0.09486tip tip tiph c xβ= = − = −  

 Port wing (y negative): ( ) ( ) ( )
1 12

sin . sin 0.009486tiph y y
y

b c y c y
β − −� � � �

= − =� � � �� � � �
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  ( ) ( )1 1 07.071
1 sin 0.009486 sin 0.02993 1.72

2.2411
xβ − −� �= − = − = −� �

� �
 

  

 ( ) ( )1 1 03.827
2 sin 0.009486 sin 0.01372 0.79

2.6466
xβ − −� �= − = − = −� �

� �
 

Due to symmetry we have 
 
  ( ) ( ) 03 2 0.79β β= = −   and  ( ) ( ) 04 1 1.72β β= = −  
 
(4). Lifting Line theory 

 Port wing: 1 2
cos

y

b
θ − � �

= � �
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 and starboard wing: 1 2
cos

y

b
θ − � �

= −� �
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  ( ) ( )1 1 02 7.071
1 cos cos 0.7071 45

20
xθ − −� �= = =� �
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  ( ) ( )1 1 02 3.827
2 cos cos 0.3827 67.5

20
xθ − −� �= = =� �

� �
 

 

  ( ) ( )1 1 02 3.827
3 cos cos 0.3827 112.5

20
xθ − −� �= − = − =� �

� �
 

 

  ( ) ( )1 1 02 7.071
4 cos cos 0.7071 135

20
xθ − −� �= − = − =� �

� �
 

  
Lift curve slope is constant or ( ) 16a k rad −=  for k = 1, 2, 3 and 4. 

Similarly, the zero angle of attack is ( ) 0
0 2kα = −  for k = 1, 2, 3 and 4 

The wing’s angle of incidence is 02α =  
The matrix coefficients are given by the following equation 
 

  ( ) ( ) ( ) ( ) ( )( )4 2 1
, .sin 2 1

. sin
b m

C k m m k
a c k k

θ
θ

� �−= + −� �� �
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  ( ) ( ) ( ) ( ) ( )( )13.333 2 1
, .sin 2 1

sin
m

C k m m k
c k k

θ
θ

� �−= + −� �� �
� �

   

 
  ( ) ( ) ( ) ( ) ( )0 0 0

0 2 2 4D k k k kα α β β β= − + = − − + = +  

Taking advantage of the symmetry of the wing loading distribution we have M = 2 and 
we can use m =1 and 2 (port wing only) or m =3 and 4 (starboard wing only). If port 
wing control points only are chosen, then we have 
 

( ) ( ) ( )( ) ( )( )13.333 1 13.333 1
1,1 .sin 1 0.7071 5.2069

1 2.2411 0.7071sin 1
C x

c
θ

θ
� � � �= + = + =� � � �� � � �� �

 

 

( ) ( ) ( )( ) ( )( )13.333 1 13.333 1
2,1 .sin 2 0.9239 5.6544

2 2.6466 0.9239sin 2
C x

c
θ

θ
� � � �= + = + =� � � �� � � �� �

 

 

( ) ( ) ( )( ) ( )( )13.333 3 13.333 3
1,2 .sin 3 1 0.7071 7.2069

1 2.2411 0.7071sin 1
C x x

c
θ

θ
� � � �= + = + =� � � �� � � �� �

 

 

( ) ( ) ( )( ) ( )( )13.333 3 13.333 3
2,2 .sin 3 2 0.3827 3.1706

2 2.6466 0.9239sin 2
C x x

c
θ

θ
� � � �= + = + − = −� � � �� � � �� �

 

 
( ) ( ) 01 4 1 2.28 0.039794D radβ= + = =  

 
( ) ( ) 02 4 2 3.21 0.056025D radβ= + = =  

 
The system of equations is as follows 
 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
1,1 . 1 1,2 . 2 1

2,1 . 1 2,2 . 2 2

C A C A D

C A C A D

+ =

+ =
 

 
This can be solved using Gaussian Elimination method ( see Appendix) as follows 
 
1.The following procedure should be carried out for each value of k, starting from k=1, 
then k=2,3,…up to k=M-1 after each loop is completed 
 
1.1 Normalized the thk  row . 
 For each value of m, starting from m=k+1 to M, i.e. for m=k+1,k+2,..,M  

 ( ) ( )
( )

,
,

,

C k m
C k m

C k k
′ =  
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 Then 

 ( ) ( )
( ),

D k
D k

C k k
′ =  

The result is 
             ( ) ( ) ( ) ( )1 1, 2 . 2 1A C A D′ ′+ =  

 ( ) ( ) ( ) ( ) ( )2,1 . 1 2, 2 . 2 2C A C A D+ =  

where  ( ) ( )
( )
1, 2

1,2
1,1

C
C

C
′ =  and  ( ) ( )

( )
1

1
1,1

D
D

C
′ =  

 
 1.2 Eliminate all elements in the thk column of all rows under the thk  row 
  For each value of j, starting with j=k+1 then j=k+2 etc up to j=M 
  ( ) ( ) ( ) ( ), , , . ,C j m C j m C j k C k m′ ′= −  
  Then 
  ( ) ( ) ( ) ( ), .D j D j C j k D k′ ′= −  
 The result is 
  ( ) ( ) ( ) ( )1 1, 2 . 2 1A C A D′ ′+ =  

            ( ) ( ) ( )2, 2 . 2 2C A D′ ′=    

 where ( ) ( ) ( ) ( )2, 2 2,2 2,1 . 1, 2C C C C′ ′= −  and ( ) ( ) ( ) ( )2 2 2,1 . 1D D C D′ ′= −  
 
Even though in the above example the matrix is only 2X2 or M=2, the procedure is quite 
general and can be applied for any value of M. 
The procedure described above is the elimination part of the Gauss method. Note that the 
end result is a “triangular matrix” with all diagonal elements having the value of unity, 
and all elements below the diagonal are zeros. 
Now we shall describe the back substitution part of the method. 
 After the last elimination process has been done, we will have the last equation to be of 
the form 
  ( ) ( ) ( )* *, .C M M A M D M=  
This can immediately be solved for A(M) as follows 
  ( ) ( ) ( )* */ ,A M D M C M M=  

Knowing the value of A(M), we can now use the equation directly above the thM  
equation, which has the following general form 
 ( ) ( ) ( ) ( )1 , . 1A M C M M A M D M− + = −  
The above equation can be solved immediately for A(M-1) as follows 
 ( ) ( ) ( ) ( )* *1 1 1, .A M D M C M M A M− = − − −  
This process can be continued until all A(m) for m=M, M-1, M-2,…,1 have been 
computed. For A(M-2) the equation is as follows 
        ( ) ( ) ( ) ( ) ( ) ( )* * *2 2 2, . 2, 1 . 1A M D M C M M A M C M M A M− = − − − − − − −  
The generalized formula for back substitution is as follows 
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First calculate ( )A M :  

 ( ) ( ) ( )* */ ,A M D M C M M=  and then 
 For k = 1,2,…,M-1 

 ( ) ( ) ( ) ( )
1

* *

0

, .
k

j

A M k D M k C M k M j A M j
−

=
− = − − − − −�  

 
For the example given we have the following calculated data 
 
C(1,1) = 5.2069 C(1,2) = 7.2069 D(1) = 0.039794  
C(2,1) = 5.6544 C(2,2) = -3.1706 D(2) = 0.056025  
  
The matrix can be written as 
 

( )
( )
15.2069 7.2069 0.039794

.
5.6544 3.1706 0.0560252

A

A

� 	� 	 � 	
=
 �
 � 
 �−� 
 � 

 �� 


 

 
Elimination process gives the following result 
 
Normalization 

( )
( )
11 1.3841 0.007643

.
5.6544 3.1706 0.0560252

A

A

� 	� 	 � 	
=
 �
 � 
 �−� 
 � 

 �� 


 

 
Elimination 

( )
( )
11 1.3841 0.007643

.
0 10.9969 0.0128082

A

A

� 	� 	 � 	
=
 �
 � 
 �−� 
 � 

 �� 


 

 

Then ( ) 0.012808
2 0.001165

10.9969
A = = −

−
 and 

Back substitution 
 

( ) ( )1 0.007643 1.3841 0.001165 0.009255A x= − − =  
 
Therefore, the wing load distribution is given by the following 

 ( ) ( )( )2
. 4 1 sin 2 sin 3lc C b A A

V
θ θΓ= = +  

Thus  ( )2
. 4 0.00925sin 0.001165sin 3lc C b

V
θ θΓ= = −  

The total wing lift coefficient is 
 
 ( ). . 1 8 0.00925 0.2325LC AR A xπ π= = =  
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The Oswald efficiency planform factor is 
 

 2

1 1
0.9546

1.047540.001165
1 3

0.009255

e

x

= = =
� �+ � �
� �

 

The induced drag coefficient is 
 

 
2

20.04168 0.002253
. .

L
Di L

C
C C

AR eπ
= = =  

 
Let us now investigate the effect of the number of control points on accuracy of the result 
Let a third point be chosen on the port wing such that ( ) 03 22.5θ = . The value of y(3) is 

then ( ) ( )3 cos 3 9.2388
2
b

y θ= − = − . 

The chord length at the third station is ( )3 3.125 0125 9.2388 1.970c x= − =  

The twist angle is ( ) 1 09.2388
3 sin 0.009486 2.55

1.970
xβ − � �= − = −� �

� �
 

Therefore  ( ) 0 0 03 4 2.55 1.45 0.025307D rad= − = =  
The additional matrix coefficients required are given by the following equation 
 

  ( ) ( ) ( ) ( ) ( )( )13.333 2 1
, .sin 2 1

sin
m

C k m m k
c k k

θ
θ

� �−= + −� �� �
� �

 

 

( ) ( )13.333 5
1,3 0.7071 9.2069

2.2411 0.7071
C x� �= + − = −� �

� �
 

( ) ( )13.333 5
2,3 0.3827 3.9992

2.6466 0.92388
C x� �= + − = −� �

� �
 

( ) 13.333 1
3,1 038268 3.5898

1.9702 0.38268
C x� �= + =� �

� �
 

( ) 13.333 3
3, 2 0.92388 13.4950

1.9702 0.38268
C x� �= + =� �

� �
 

( ) 13.333 5
3,3 0.92388 18.3234

1.9702 0.38268
C x� �= + =� �

� �
 

 
The system of equations for the 3 control points case is as follows 
 

( )
( )
( )

15.2068 7.2069 9.2069 0.039794

5.6544 3.1706 3.9992 . 2 0.056025
3.5898 13.4950 18.3234 0.0253073

A

A

A

� 	−� 	 � 	

 �
 � 
 �− − =
 �
 � 
 �

 �
 � 
 �� 
 � 
� 
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The elimination process gives the following results 
 

( )
( )
( )

11 1.3841 1.7682 0.0076427

0 10.9969 5.99897 . 2 0.012808
0 8.5264 24.67092 0.002133

A

A

A

� 	−� 	 � 	

 �
 � 
 �− =
 �
 � 
 �

 �
 � 
 �−� 
 � 
� 


 

 
( )
( )
( )

11 1.3841 1.76821 0.0076427

0 1 0.54551 . 2 0.001165
0 0 29.3221 0.0078033

A

A

A

� 	−� 	 � 	

 �
 � 
 �− = −
 �
 � 
 �

 �
 � 
 �� 
 � 
� 


 

(details of how the calculations are carried out is given in the appendix) 
 
Now the back substitution part 
 

( ) 0.007803
3 0.0002661

29.3221
A = =  

( ) ( )2 0.001165 0.54551 0.0002661 0.00102A x= − − − = −  

( ) ( ) ( )1 0.007643 1.76821 0.0002661 1.3841 0.000102 0.009525A x x= − − − − =  
 
Wing’s lift coefficient   ( ). . 1 8 0.009525 0.2394LC AR A xπ π= = =  
 
Oswald efficiency factor    
 

2 2

1 1
0.9631

1 0.034403 0.0390240.00102 0.0002661
1 3 5

0.009525 0.009525

e

x x

= = =
+ +� � � �+ +� � � �

� � � �

 

 

Induced drag coefficient:   
2

20.04133 0.002368
. .

L
Di L

C
C C

AR eπ
= = =  

 
It can be observed that the values of lift coefficient and Oswald efficiency factor 
computed using Fourier series with 2 terms, differ from those obtained using Fourier 
series with 3 terms, by approximately 3 percentage points. However, the error of the 
induced drag is aproximately 5 percentage points. Obviously, if greater accuracy is 
required, then we have to use a Fourier series with more terms. From the results obtained 
in this example, it appears that the Fourier series approximation is only accurate to, let us 
say I percent, if the number of the Fourier coefficients is greater than 3. 
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Appendix 
Solution of a system of simulltaneous linear equations using Gaussian Elimination 
method 
 
The system of equations to be solved is as follows 
 
5.2068 A(1) + 7.2069 A(2) – 9.2069 A(3) = 0.039794 
5.6544 A(1) – 3.1706 A(2) – 3.9992 A(3) = 0.056025 
3.5898 A(1) + 13.495 A(2) + 18.323 A(3) = 0.025307 
 
The above system of equations can be written in matrix form as follows 
 
5.2068    7.2069   - 9.2069   0.039794

5.6544  - 3.1706  - 3.9992    0.056025
3.5898    13.495      18.323   0.025307

 

 
Normalization of first row 
 
C(1,2) = 7.2069/5.2068   = 1.38413 
C(1,2) = -9.2069 /5.2068 = -1.76821 
D(1)    = 7.2069/5.2068   = 0.0076427 
 
The resulting matrix is 
 
    1         1.3841   - 1.7682   0.0076427

5.6544  - 3.1706  - 3.9992    0.056025
3.5898    13.495      18.323   0.025307

 

 
Elimination for second and third rows 
 
C(2,2) = - 3.1706 – 5.6544 x1.38413        = -10.9970 
C(2,3) = - 3.9992 – 5.6544 x (-1.7682)     =  5.99897 
D(2)    =  0.056025– 5.6544 x 0.0076427 =  0.01281 
 
C(3,2) =  13.495 –  3.5898 x 1.38413       = 8.52625 
C(3,3) =  18.3234 – 3.5898 x (-1.76821)  = 24.67092 
D(3)    =  0.025307–3.5898 x 0.0076427  = -0.0021288 
 
The resulting matrix is 
 
    1    1.38413   - 1.7682      0.0076427

    0    -10.9970   5.99897       0.01281
    0    8.52625    24.67092   -0.0021288
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Normalization for second row 
 
C(2,3) = 5.99897/(-10.9970) = -0.54551 
D(2)    = 0.01281/(-10.9970) = -0.001165 
 
The resulting matrix is 
 
    1    1.3841     - 1.76821     0.0076427

    0        1          -0.54551    -0.001165
    0    8.52625   24.67092   -0.0021288

 

 
Elimination for third row 
 
C(3,3) = 24.67092 - 8.52625 x (-0.54551)       = 29.3221 
D(3)    = -0.0021288 - 8.52625 x (-0.001165) = 0.007804 
 
The resulting matrix is 
 
    1    1.3841  - 1.76821  0.0076427

    0        1       -0.54551   -0.001165
    0        0       29.3221   0.007804

 

 
The above matrix represents the following system of equations 
 
A(1) + 1.3841A(2) - 1.76821A(3) = 0.0076427
                       A(2) -0.54551A(3) = -0.001165
                                 29.3221A(3) =  0.007804

 

 
Now the values of the unknowns A(1), A(2) and A(3) can be calculated as follows 
 
Back substitution 
 
A(3) = 0.007804 / 29.3221 = 0.0002661 
 
A(2) = -0.001165- (-0.54551) x 0.0002661 = -0.00102 
 
A(1) = 0.0076427 – (-1.76821) x  0.0002661 - 1.38413 x (-0.00102) = 0.009525        
 
 
Please report any error(s) to the author at  hadi.winarto@rmit.edu.au 
Last updated 27 May 2004 


