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Abstract

In order to combat Internet congestion Web caches use replacement policies that attempt
to keep the objects in a cache that are most likely to get requested in the future. We
adopt the economic perspective that the objects with the greatest value to the users
should be in a cache. Using trace driven simulations we implement an incentive
compatible market-based Web cache for servers to push content into a cache. This
system decentralizes the caching process as servers provide information in the form of
bids for space in the cache. Truthful information from the server on valuations of objects
and predictions of hit rates is obtained. This information is used in filling the cache,
which can provide increased aggregate value and differential quality of service to servers
when compared to LFU and LRU.

1. Introduction:

The Internet has shifted in recent years from a network dedicated to research to a network of
popular culture and everyday commerce. With this shift the volume of traffic has increased
dramatically. Congestion is often a problem in areas where, and times of day when bandwidth
is scarce. Distributed file storage, which we refer to as "caching" is one method for

improving the quality of service (QoS).

There are two resource management problems for caching: when to refresh stored objects (to
keep them current with sources that might change), and which objects to replace when adding
new objects to a full cache. Our research is concerned with the latter problem: replacement
policy. Traditional caching has been based on Least Frequently Used (LFU) and Least
Recently Used (LRU) replacement policies. Every time a request is made that the cache
cannot fill the cache pulls the object from the host server and saves a copy in the cache so it
may be accessed by the next request. When full, an LFU cache drops the least frequently used



objects until there is enough room for the new object. Similarly, the least recently used
objects are dropped first in LRU. LRU has the effect of sorting a cache by last access time
and LFU has the effect of sorting by the number of requests (Williams et al.). They are
simple algorithms developed, in part, to keep computational time to a minimum. Today
computational cost is of less concern as processor prices continue to fall rapidly.

Traditional methods treat all requests equally. Their implicit goal is to increase the hit rate
of the cache and in turn reduce the amount of bandwidth used. However, there is no
compelling reason to think that aggregate hit rate is the best measure of shared cache value.
Discussions in industry suggest that end user satisfaction with performance and QoS are the
primary drivers for caching (Oaks). Indeed, we start from the position that a network
component such as a cache is only as valuable as its users think it is. By treating all requests
equally traditional caching replacement policies may not optimize this objective. Different
users are likely to place substantially different values on the delay associated with retrieving
Web objects. This assertion of substantial preference heterogeneity is supported by the
substantial variation in the prices of network connections with different speeds. Suppose user
1 obtains greater benefit than user 2 from rapid file service. The ex ante probability of
finding their objects in a cache would be unaffected by their preferences in a traditional
scheme. In order to maximize the aggregate user value (rather than aggregate hit rate),
objects that user 1 requests should have higher weights for remaining in the cache.

There is a second problem with traditional cache replacement policies. The goal of a
replacement algorithm is to forecast accurately those objects that will have the highest value
if they are waiting in the cache for future requests. Most algorithms are backward looking:
they use an index based on past request streams to create the sort list for replacement
priority. Such policies by their nature have difficulty anticipating shifts in users'

preferences. ' Preceding a large sporting event or the release of a new software version,
pictures or software could be cached closer to users knowing that there would likely be a rise
in demand for these objects.

Generally, then, we perceive two potential QoS improvements from incorporating users into
the replacement policy algorithm. First, users might communicate usable information about
their differential preferences for finding objects in the cache. Second, users might
communicate better forecast information about future demands for objects. As a related
point, it might be that distributing (part of) the forecasting function to many users might
allow for much more sophisticated data mining and forecasting models than would be possible
in real time from a centralized cache processor. Our first contribution is to demonstrate with
simulations based on actual Web request trace data the potential value improvement possible
through incorporating user-based forecasting into caching algorithms.

To design a caching replacement policy that relies on user-provided information about future
object demand and relative valuations for service delay we need to solve a problem: how do
we induce users to provide the valuation and forecasting information? It is well known from
the theory of incentives that the cache manager cannot simply ask users to report their
valuation for different service qualities and their forecasts. If the replacement policy of the
cache depends on these reports, then users have an incentive to lie to obtain better
performance. For example, while a cache hit may be worth only $0.01 to me, without
appropriate incentives, I might report that it is worth $1.00 to me, in order to increase the
likelihood that the object is waiting in the cache.

' There are more sophisticated ways to forecast future preferences based on past data than those embodied in
the LFU and LRU algorithms. For example, one could estimate modeling time of day and day of week
effects in past request streams.



To obtain the user valuation and forecasting information required for our caching algorithms,
we need to provide incentives for revelation. Incentives are generally provided through the
service policy. That is, what service is delivered to a user, and how much does that user have
to pay for the service? By designing the service delivered to vary appropriately with the
valuation and forecasting information the users provides, we can induce users to reveal the
information we need for the replacement policy. Thus, service and replacement policies
become necessarily intertwined, and we have to design them together.

To support a user-driven replacement policy, we need a service policy that obtains
distributed, private information about valuations and future usage. One well-known class of
decision mechanisms is specifically adapted to assigning heterogeneous preference weights to
objects, to anticipating shifts in demand, and to stocking items in anticipation of their use:
markets. The market mechanism we have studied is for control over the replacement policy
for some portion of the space in the cache. We see two main types of agents involved in a
market-based cache, servers and clients. Both act as value aggregators of the end users of web
objects. Servers are interested in pushing their content into the cache to reduce the load on
their network connections and to reduce the latency experienced by end users of the server's
content. Clients represent institutions or ISPs that are concerned with buying real estate in
the cache dedicated to saving material based on the preferences of their end users. There are
several potential advantages to using a market approach. Decentralization is important not
only for the reduction in communication but it allows such a mechanism to operate on a
distributed network like the Internet. These agents are motivated by their own profit
maximization. Their profit is directly connected to the utility of their users, ensuring the
most highly demanded content is in the cache.

Thus, our second main contribution is to show how a market-based service policy could be
designed to implement a user-directed replacement policy. Market mechanisms have been
shown useful in the past on other similar issues when decentralized resource allocation is
needed, such as reducing network congestion (MacKie-Mason and Varian). The use of
markets in the building of computational economies is another example of advantage that
gained by decentralized resource allocation in a distributed environment (Kurose and Simha;
Wellman). Waldspurger et al. focuses on distributed agents buying processor time
(Waldspurger et al.). In their system the agents have a clear idea of value of processor speed
but in this paper an agent's value of cache space depends on others; how many times the
space is accessed by end users. Other research has been done combining economic principles
and caching (Karaul, Korilis and Orda). It focuses on distributing requests to replicated
servers based on market mechanisms. A recent dissertation describes the larger situation of
market driven caches and networks (see chapter 4) but does not look at a singular cache
market in detail (Chuang). A recent paper focuses on weighting LRU by a cost metric (Cao
and Irani). However, the cost is based on congestion and hardware prices not user valuation
or the welfare of the system. In addition, by using LRU the paper makes assumptions about
the pattern of future requests.

Although an important contribution is to demonstrate that user-directed replacement policies
could greatly increase caching value, we also have something to say about how to implement
user-directed replacement policies. One approach is to offer a stochastic QoS service. That
is, users could provide valuation and forecasting information, and the cache could promise in
exchange a service policy that increases or decreases the probability that an object will be
found in the cache according to the communicated information. A second approach is to
offer a deterministic QoS service. In this approach, users communicate with the cache and
receive deterministic guarantees on whether specific objects will be in the cache.

A stochastic QoS Web caching service for servers was recently described (Kelly et al.). This
service, called server-weighted LFU (swLFU), responds to different levels of value for cache



hits by weighting their frequency counts accordingly. Those with a higher value per hit
receive a higher byte hit rate on average. Further, the algorithm provides a higher average
social welfare than LRU or LFU to the aggregate of users.

In this paper we develop and analyze a deterministic QoS Web caching service. This
information has value to the users and they need proper incentives to reveal that
information. Second, the cache system in this paper allows for more responsive shifts in the
content of the cache. This feature could be important if the preferences of the users shift or
network resources fail. Third, swLFU makes assumptions about the pattern of object usage.
After accounting for the valuation weights swLFU inherently biases toward the most
frequently used objects. Under our market mechanism the prediction decision is decentralized
down to the users who have a clearer idea of the specific pattern of usage for each object. In
this way a more accurate estimation of the periodicity of an object's request stream can be
determined. Finally, Kelly et al. focused on the performance of a user-directed replacement
policy without designing a service policy to solve the incentives problem. That is, it is
rational for participants to misrepresent their valuations in that example and
misrepresentations would reduce the performance of the cache. In this paper, we propose a
market-based service policy to provide the necessary incentives to make the replacement
policy work.

2. Server Cache Market

The focus of this paper is on shared caches, caches that serve many end users. Figure 1 shows
a general view of the Internet cache hierarchy. The caches at level 2 (L2) are generally
proxy caches serving corporations or universities. The caches at level 3 (L3) are embedded
in wide-area networks across the Internet and can often serve many requests not met by the
L2 caches or serve requests directly from end users. The data used in this study came from
L3 caches but the mechanism is applicable to L2 caches as well

Like Kelly et al. we will be looking exclusively at Web servers as the system users. A
preliminary look at client participation and the difficulties with simulating their decision can
be found in Section 4. Using trace-driven simulations we implement and evaluate a server
cache market. A trace is a record of all requests for Internet objects that come to a cache
over a length of time. Results from this simulation are compared to Kelly’s swLFU policy as
well as plain LFU (using time since last access as the secondary sort key) and LRU. We use
the same three request streams collected by the National Laboratory for Applied Network
Research (NLANR) L3 caches at Palo Alto (PA), Silicon Valley (SV), and the University of
Illinois at Urbana-Champaign (UC) during the period 15 August-28 August 1998 as Kelly et
al. in order to directly compare the results.” In addition the same filtering mechanism is used
as in Kelly et al. to rid the streams of unsuccessful requests and dynamic content (Kelly et al.

page 5).

> NLANR anonymized access logs. ftp://ftp.ircache.net/Traces/.
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Figure 1: Internet Cache Hierarchy

PA site SV site UC site
# servers 114,381 124,698 105,710
# URLs 3,412,105 3,744,274 2,884,598
# requests 7,011,622 7,897,659 5,568,112
Bytes req'd 131,665,275,644 161,620,444,331 127,346,723,989
Valuereq'd 264,025,996,908,451 319,466,493,484,667 264,106,487,028,562
Infinite cache
size (bytes) 60,037,623,775 66,976,225,688 51,825,514,504
hit rate (%) 51.3364 52.5901 48.1943
byte hit rate 54.4013 58.5596 59.3036
value hit rate 48.5422 57.4670 56.5745

Tablel: (from Kelly et al.) Summary statistics on our three request streams after filtering. Given our
assignment of weights to URLSs, "value requested"” (see section 2.1) refers to the total value servers would
receive if every request were served from the cache, including first requests for URLs; infinite cache value
hit rate refers to the fraction of value requested that would be delivered by a cache large enough to store all
requested URLs.

As in Kelly et al., we simulated cache sizes of 1, 4, 16, 64, 256, and 1024 megabytes for the
three request streams listed above for the different caching mechanisms. In order to measure
aggregate welfare for a given cache size we report plots of the value hit rate (VHR) as defined
in the Kelly study. VHR is the value received by servers divided by the total possible value
the server would receive if every request were served from the cache (see section 2.1 for
valuation description). This normalized statistic provides a similar intuition as the common
byte hit rate (BHR) statistic, the total number of bytes hit in the cache divided by the amount
requested. In fact, Kelly points out that the two are exactly equal when all weights are equal.
Summary statistics from the three caches are listed in Table 1.



2.1 Server Valuation

As we discussed earlier, servers associate a value with end users receiving the server objects
from the cache rather than directly from the servers. Each server has a value per cache hit,
V', for each object of given size, S', in bytes. In order to judge the total value of having
object i, in the cache the server must make some judgement of the number of hits, H', the
object will receive for a given length of time. The total value of the object being in the cache
is: T'= V' H'. In this paper we assume a server values hits on each of its web objects in the
cache equally. So, V' =V*=...=V" In actuality each value for an object should be
different, depending on their nature and their value to end users. This assumption simplified
the experimentation. Undoubtedly it reduces the heterogeneity of server valuation and
therefore bids. However, the large number of servers being simulated ensures a wide diversity.

Kelly et al. randomly assigns weights (value per hit, V) in equal proportions from the set {1,
10, 100, 1000, 10000} to each server in the trace streams. We use the exact assignment of
values to the exact servers, not just the same conceptual method of assigning weights. By
guaranteeing that both sets of research use the same weights we ensure that any difference
between the caching mechanisms' results is due to the differences in the process and not
random effects of weight assignment.

2.2 Motivation

Aggregate user value of the cache cannot be fully realized without accurate predictions of
request streams and a method for knowing users' true valuations. If a cache was clairvoyant it
could fill itself with the highest valued objects. We model such a cache here that packs the
cache in order of highest marginal value. The objects are ranked by the value per byte, B'=T'
/' S'. Every twenty minutes the cache is emptied and refilled based on this sort. The twenty-
minute periodicity is used to compare the perfect foresight cache to the market discussed
later.” The perfect foresight cache represents an upper bound on how well one could do.

* A centralized mechanism with perfect knowledge of requests and knowledge of values could bring the
system to a higher level of welfare by swapping objects in and out of the cache based on their request
stream over time at a higher level of granularity than twenty minutes.
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Figure 2: Byte hit rates for LFU, LRU, and Perfect Foresight.
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Figure 3: Value hit rates for LFU, LRU, and Perfect Foresight.

In figure 2 we see a notable gap between the percentage of byte requests served by a cache
with perfect knowledge and the traditional caching mechanisms of LRU and LFU. Their
predictive ability is limited by their assumptions of recency and frequency in prediction.
While a larger cache would help some with BHR improvement LRU and LFU would still fail
to anticipate new requests never seen before.

In figure 3 we see a larger gap when comparing the VHR of the cache mechanisms, especially
at low cache sizes. Not only does LRU and LFU have problems predicting request streams but




in addition, its failure to realize user valuations keeps the aggregate welfare lower. These gaps
represent the possible improvement a cache can realize if accurate measurements of
prediction and user value are obtained.

We implement a market for disk space, where servers buy deterministic access, as a way to
gather the prediction and value information. The market works as follows: An auctioneer
opens the cache space for bidding in an auction periodically throughout the day.* Servers bid
for space at a self-determined price per block and a given number of blocks. By using an
auction information is gathered directly from the servers who are expected to have the most
accurate idea of their valuation and the expected number of future requests on their objects.
The following is a description of the auction and determination of bids.

2.3 Auction

We divide the time axis into equal segments of 20 minutes. Servers issue bids at the beginning
of every period and the auctioneer sorts the bids in descending order of value per byte where
B'=T'/S" So the complete bid from a server for a given object is {B', S'}. The cache is then
filled starting at the top of the list and working its way down.’ If the remaining space in the
cache is too small for the next object on the list it is skipped and the following object is
added. A bid is considered a winning bid if its object is added to the cache. We then define
the clearing price — the bid value of the highest losing bid — as the value every winning bid
needs to pay when the payment is due. By charging an independent clearing price, this
auction is considered competitive. Pareto-efficiency can only be assured by competitive
auctions (Nautz). The clearing price is assumed to be independent of each server's bid and
therefore, incentive compatible. This independence is important to ensure truthful
revelation of servers' valuation information, having a similar effect as a second-price auction
(Mas-Colell, Whinston and Green).

Immediately following the sorting of the winners, the auctioneer starts communicating with
the servers. The servers with winning bids push the winning objects into the cache. At this
point the cache is ready to accept requests from web users for web objects. The auctioneer
checks whether the requested object is in the cache. If it is, the object is returned. Otherwise,
the request is passed to the server and the object is saved in the vacant space in the cache.
Vacant space is defined to be the total cache size minus the total size of winning bid objects.
When the vacant space becomes congested it is managed by LRU.

At this point certain implications of this caching market should be noticed. First, the
maximum size of the vacant space will change each period when the total size of the winning
bid objects changes. When the cache is congested, the total size of objects bid is greater than
the cache, the vacant space will shrink to a useless size. When there is any vacant space in
the cache the clearing price is zero, there is no highest losing bid because all bids were
accepted. The price reflects the fact that space in the cache is no longer a scarce resource;
supply exceeds demand.

* Although we do not explore this issue in the paper it seems reasonable that the more frequently the
auctions are held the quicker the cache content could change and the more responsive the cache would be to
demand shifts.

* Note, by filling the cache by value per byte we are filling the cache by the marginal benefit of the object.
By using this metric the highest marginal benefit objects are placed in the cache which almost guarantees to
maximize ex ante welfare of the cache. Almost, because filling the cache is an integer programming
knapsack problem for which optimal algorithms have been developed, see Winston, Wayne L. Operations
Research Applications and Algorithms. Second ed. Boston: PWS-Kent Publishing Company, 1991. The
rough approach used in this paper should capture most of the welfare as long as the size of the objects is
small relative to the cache size.



The objects in the cache will have a shake-up at the end of a period because the ownership of
the cache changes hand. New servers can receive new space for different objects. Nothing is
done if the winning bid object by a server is the same as before. Otherwise, the object is
moved into the vacant space with congestion managed by LRU.

3. Experiments

The server market is implemented using the same trace data and valuations assigned to
servers for the perfect foresight cache.

3.1 Server Prediction

This model of a market based web cache is evaluated with server agents that are assumed to
follow a simple method of estimating future hits on web objects. These simple servers have
accurate data of past request streams of generic web content for the cache in question. They
assume all request patterns are the same for all objects and use an hour window of past data to
predict the expected number of hits in the auction period of 20 minutes. By using a
relatively unsophisticated agent in prediction ability we can judge the lower bound of the
market mechanism. Others have used past trace data to predict the probability of future
requests to develop cache replacement policies (Rizzo and Vicisano). A simple regression of
requests for an object in the window against the number of requests for the object in the
auction period was completed for each of the cache sites for August 1-14. The first two
weeks of the month were used because realistically servers would use prior request streams to
generate models for the future, in this case August 15-28. In example the linear model for
the SV site was estimated as:*

Period hits = -0.302478 + 0.303812*Window hits

Very similar results were computed for the other two sites. While very simple and only
accounting for the impact of recent requests in predicting the future, the model provides
some interesting intuition. Data analysis showed us that close to 85% of objects are only
requested once in a day. This characteristic is reconfirmed in the model. If the object only
receives one window hit its predicted number of period hits is 0.001334.

3.2 Results

Figures 4 and 5 provide BHR and VHR information for LRU, LFU, swLFU, and the simple
server market for various cache sizes. The most significant predictive characteristics of the
server market performance seem to be the congestion of the cache and the replacement
policy of the vacant space, LRU. It appears that the simple server market provides a better
VHR then LFU and LRU when the cache size is relatively small. This result seems to be
correlated with the cache being congested, meaning the clearing price is positive. Table 2
provides a look at the average clearing price for the different size caches of the three sites.
The 256 MB and 1024 MB caches do not appear congested the vast majority of the time.
Once there are no more objects to push of known average positive value the VHR
performance tends toward LRU. As LRU manages a greater percentage of the cache it
dominates the results.

® The R* was estimated as 0.7764. Both parameter estimates were significant at less than the 0.0001 level.
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Cache size SV Trace UC Trace PA Trace

(MB)
1 16042.8 11464.6 5515.8900
4 4030.45  4030.45 2289.2900
16 732972  442.811 268.7020
64 9.5062  36.1828 40.9102
256 0.046931 0.178155 0.1109
1024 0 0 0

Table 2: Simple server market clearing prices for the SV, UC, and PA traces at various cache sizes.

The BHRs for the server market remains very low for small cache sizes. A smilingly
contradictory result when viewed with the larger VHR results because a higher hit rate for an
object means it is producing a higher value. But in fact there is a direct trade-off between the
two. As more emphasis is placed on the valuation of an object in the sorting process it will
necessarily be at the expense of those objects with a high hit rate but a relatively low
valuation. Again, it seems once the server market cache ceases to be congested the BHR
tends toward LRU.

In Figure 6 we can see how the byte hit rate for URLs changes as a function of the weights
that were assigned for the 64 MB cache. The SV trace presents the most convincing case
that the lower bound server market gives differential QoS in relation to the amount paid by
the servers. The anomalous UC data point is also reported by Kelly et al. who attribute the
result to the random assignment of many highly hit URLs to the weight of 100. The PA
trend is ambiguous but based on the VHR trends in Figure 5 it seems likely that differential
quality of service would be seen for smaller cache sizes.

Byte Hit Rate as function of URL weight
for 64 MB cache
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Figure 6: Byte Hit Rate for the SV, UC, and PA traces as a function of URL weight for a 64 MB cache.
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Figure 5: Value hit rate for LFU, LRU, swLFU, and Server market.

Except where caches are very small swLFU out performs the simple server market in VHR.
This result is probably the case because swLFU uses more information than the simple server
market in making its decisions. While the server market might make better use of the data
only the last hour worth of frequency of requests is used. The difference in VHR widens as
the cache becomes bigger and the simple server market has the opportunity to push less
accurate material into the cache through LRU. But it is inappropriate to compare the two
directly. The results for swLFU represent an upper bound under the assumption that the
valuations used are reported truthfully even though there is no incentive to do so. The
results for the simple server market represent a lower bound on the predictive techniques used
for future hits. The possible welfare to be gained, as seen by the perfect foresight cache,
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leaves a lot of room for improvement for better prediction systems in the market
mechanism.

4. Client Problem

In reality there is likely to be another type of agent that would be willing to purchase space in
the cache that has a completely different decision problem than the server agents that have
been the focus of most of the discussion. These agents are clients of the cache. Clients, in
this case, refer to enterprise level institutions or ISPs who are users of the L3 cache and wish
to reserve some portion of space in the cache for the requests of their end users (see figure

).

A client’s decision is more complex than a server's decision because a client's motivation to
control space in the cache is directly tied to the homogeneity of content pushed by other
clients. The problem is caused by the public good nature of the cache. This characteristic
means any one can "consume" from the cache without other consumers losing value in their
"consumption" and the cache is non-exclusive, meaning all requests are served. These
aspects might motivate a particular client to cache very little if it knew other clients would
cache material its users demanded. This phenomenon is known as the free rider effect. For
instance, if no clients demand the same object, and the market is incentive compatible, we
can be reasonably sure that their bids to cache objects will reflect their value of the objects.
If many clients have users that demand the same object then their decision to bid for space
for the object must account for the chance that other clients could cache these objects. In
other words the decision must account for the benefit of not controlling part of the cache.
In fact, one could imagine a circumstance where other clients' requests would be better at
predicting a particular client's requests than the client's own past requests. The requests could
be correlated with a time lag, quite possible given the trend nature of many objects. Formally
the clients would try to maximize the decision:

Max  [He(Qc) * V - C(Qc) + Ho(Qt - Qc) * V] * pr[win|B(Qc)]

Qc
+ (1 - pr[win/B(Qc)]) * Ho(Qt) * V

Hce(Qc) = expected number of hits from the client's cache space
Ho(Qt-Qc) = expected number of hits from the rest of the cache

V = value per hit

B(Qc) = value per disk block = Hc*V/Qc

Qc = the number of blocks bid for by the client

Qt = the total number of blocks in the cache

C(Qc) = expected cost of the blocks

pr[win|B(Qc)] = probability of winning disk blocks given clients bid of B

Notice that here we have modeled the problem with one decision variable, Qc. In fact, the
client must bid two parameters in the auction, the number of blocks desired and the value per
block. For simplicity value per disk block is represented as a function of the size of the cache
that can be estimated from past trace data.

5. Conclusions

Caching can perform better and can support variable QoS if user valuation and prediction
information can be gathered and used intelligently by the replacement algorithm. We have
implemented a particular incentive-compatible market mechanism for gathering that
information, and a particular replacement policy (market for write access to the cache) that
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uses the information. We have shown that we can improve on LRU and LFU even with very
simple, naive models of the quality of user prediction information. We have further shown
that with better predictions, the potential gain in value is very high, more than twice the
value obtained by LRU and LFU. It is certain that some very large servers would be able to
see some of this gain. They could anticipate shifts in end user demand that the prediction
algorithm explored here could not. Netscape would know to push a new version of its
browser even though that particular object has no past request data (in fact Netscape does this
now with proxy severs). Further work needs to be done to represent improved server
prediction of end user requests. Currently LRU and LFU seem to be doing a better job at
predicting than the lower bound server market. By offloading request prediction to the
servers experimental results become very dependent on our ability to mimic those predictions
and our assumptions of what servers would be reasonably able to predict. When cache
resources are scarce this market mechanism appears to give encouraging results to those
whose goal it is to maximize the value received by the users.

Future work should include estimation of the hit rate functions found in the client's decision
problem and further simulations using these agents. Then simulations involving both types
of agents in a more realistic market setting would be possible. Further future work will include
more detailed regression models for the estimation of the number of requests in a given
auction period for individual server objects. By being more specific and by exploring weekly
and daily periodicity in the request streams we hope to realize more of the possible welfare
demonstrated by the perfect foresight cache. In addition, the prediction models could be for
specific objects and could be updated periodically instead of relying on one model for all
agents in the entire simulation as was done here. These methods are not the only ways to
improve prediction in Web caching replacement policies. Past research shows that decision
theoretic user models can be used to improve performance (Horvitz). In the future we will
also look at the balance between the auction period length and changes in the preferences of
the servers. In addition, we could compare the performance of the other caching
mechanisms to the server market when there are dramatic changes in server preferences
(valuation of hits).
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