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ABSTRACT

We propose a new routing strategy for the KYKLOS II multiprocessor interconnection network which

achieves minimum distance for the path between any two processors. For KYKLOS II with 2n processors,

the average distance is shorter than those of previous routing strategies by approximately 2 log 2 n. The

traffic density, a measure of traffic concentration, is comparable or better than previous strategies for up to

two thousand processors, but is soundly beaten by a strategy proposed by Jenevein and Menezes for

larger n.
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1. INTRODUCTION

A double binary tree (DBT) of order n is a graph consisting of two copies, T 1 and T 2 , of an n-level

complete binary tree T with the N = 2n terminal nodes of T 1 one-to-one mapped and identified to the 2n

terminal nodes of T 2 . Different mappings result in different DBTs. The DBTs have been proposed for

multiprocessor interconnection structures where processors are located at those nodes which are obtained

by merging the terminal nodes of T 1 and T 2 . We will label the 2n processors by the 2n binary sequences of

length n. The identity mapping results in the DBT as studied by Bentley and Kung [1], and also by Imai,

Tateizumi, Yoshida and Fukumura [3] (called KYKLOS I by Jenevein and Menezes). The inverse

mapping, i.e., mapping the node (a 1 , ... , a n ) of T 1 to the node (a n , ... , a 1 ) of T 2 , results in

KYKLOS II, a multiprocessor interconnection structure which Jenevein and Menezes have shown to have

many nice properties in several articles [4-7]. In [5] they proposed two routing strategies, the M2-routing

and the H2-routing, and suggested that H2 has shorter average distance between processors, though it can

have larger distances for certain pairs of processors. More importantly, they showed that the traffic density

for H2 grows on the order of O(N 1. 5 ) versus O(N 2 ) for M2 and most other trees.

In this paper we propose a new routing strategy D2 for KYKLOS II and prove that it has the shortest

distance for every pair of processors. We show that its average distance is shorter than that of M2 and H2

by approximately 2 log 2 n and its traffic density is comparable to that of H 2 for up to one thousand

processors but worse off for larger N.

2. THE D2 ROUTING STRATEGY

Let a = (a 1 , ... , a n ) and b = (b 1 , ... , b n ) be two processors in KYKLOS II. We will let d S (a , b)

denote the distance between a and b in T under the routing strategy S and let dS
1 (a , b) (dS

2 (a , b) ) denote the

part of d S (a , b) in T 1 (T 2 ). Let d 1 (a , b) (d 2 (a , b) ) denote the distance in T 1 (T 2 ) alone. By a run we
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mean a sequence I of consecutive indices such that a i = b i if i ∈ I but a i ≠ b i if i is the index (if any)

immediately preceding or succeeding the sequence. Let ➳ i denote the length of the run containing index i;

if a i ≠ b i , then we define ➳ i to be zero. The following lemma is well known [5] and easily verifiable.

Lemma 1. d 1 (a , b) = 2 (n − ➳ 1 ), d 2 (a , b) = 2 (n − ➳ n ).

We now describe D2. Let L(a , b) = (i + 1 , ... , i + k) be a longest run with length ➳(a , b) = k.

Then D2 chooses one of the two following paths randomly. The first path routes a to the processor

s 1 = (a 1 , ... , a i +k , b i +k +1 , ... , b n ) through T 1 and then routes s 1 to b through T 2 . The second path

routes a to the processor s 2 = (b 1 , ... , b i +k , a i +k +1 , ... , a n ) through T 2 and then routes s 2 to b through

T 1 . It is easily verified that these two paths are node-disjoint, except when i = 0 or n − k, then the two

paths overlap. By Lemma 1 both paths have length 2 (n − k). We now prove that there is no shorter path.

Define d(a , b) =
s

min d S (a , b).

Theorem 1. d(a , b) = d D2 (a , b) = 2 (n − ➳(a , b) ).

Proof: An equivalent statement of Theorem 1 is that if d(a , b) = 2d, then ➳(a , b) = n − d. We prove

this equivalent statement by induction on d. It is trivally true for d = 0. For general d let p denote a

shortest path between a and b. If p contains no other processor, then p uses only one of the two trees T 1

and T 2 . Without loss of generality assume that p lies completely in T 1 . Then the length of p, which by

assumption is 2d, equals d 1 (a , b) by Lemma 1. Therefore ➳(a , b) is at least n − d, the length of the first

run. On the other hand, ➳(a , b) is at most n − d for otherwise the D2 routing will find a path of length

shorter than 2 (n − d), contrary to our assumption. Hence ➳(a , b) = n − d.

Next we consider the case that p contains a processor s = (c 1 , ... , c n ). Note that

d(a , s) + d(b , s) = d(a , b) = 2d .

Therefore

max { d(a , s) , d(b , s) } < 2d .

By the inductive assumption
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➳(a , s) = n − d(a , s) ,

➳(b , s) = n − d(b , s) .

Now

➳(a , b) ≥  L(a , s) ∩ L(b , s)

≥ ➳(a , s) + ➳(b , s) − n

= n − d(a , s) + n − d(b , s) − n = n − d(a , b) .

As before, we know ➳(a , b) ≤ n − d(a , b); hence equality holds.

Corollary. For each given processor there exists only one other processor which is away from it by the

maximum distance 2n.

3. A COMPARISON OF ROUTING STRATEGIES

The M2 routing connects a to b by choosing the shorter of the two paths, one lies completely in T 1 and

the other lies completely in T 2 . By Lemma 1

d M2 (a , b) = min { d 1 (a , b) , d 2 (a , b) }

= 2 (n − max {➳ 1 , ➳ n }) .

Since KYKLOS is processor-symmetric, we need only to study the distances of all processors to

processor 0. Let P r (x) denote the number of processors with distance x to processor 0 under the routing

strategy r. Menezes and Jenevein [4] showed that

P M2 ( 2d) = 2d aif 1 ≤ d ≤


 2

n_ _




,

= 2d − 
 3 . 22d − n − 2 

 if 2 ≤ d ≤ n .

In particular, 2n −2 processors have the maximum distance 2n to processor 0. The average distance for even

n is
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2n

1_ __


 d =1
Σ
n

2d . 2d − 2d −
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Σ
n
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


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2n

1_ __




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

î
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3
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3
13_ __










= 2n −
3
10_ __ +

2n

n + 13/3_ ________ .

For odd n the last term is replaced by ( 2n + 5/6 )/2n .

The H2 routing connects a to b using only the subgraph of T induced by the nodes from level i of T 1 to

level n − i of T 2 (the processors are at level 0 of both trees). Furthermore, the path can contain at most

one other processor. Therefore

d H2 (a , b) = 2 (n − ➳
_ _

i ) where ➳
_ _

i = ➳ i if ➳ i ≥ 1 and ➳
_ _

i = ➳ i +1 if ➳ i = 0 .

Since P H2 ( 2d) and the average distance of processors have not been given explicitly, we derive them in

the following. Without loss of generality, assume that i ≤ n − i. Note that for ➳
_ _

i < i there are ➳
_ _

i + 1

ways of obtaining ➳
_ _

i , for i ≤ ➳
_ _

i < n − i there are i + 1 way and for n − i ≤ ➳
_ _

i there are

n − ➳
_ _

i + 1 ways. Furthermore, if the run contains neither index 1 nor index n, then ➳
_ _

i + 2 bits are

fixed; if the run contains either one, then ➳ i + 1 bits are fixed. Thus we have

P H2 ( 2d) = (d + 3 ) 2d −2 aif 1 ≤ d ≤ i

= (i + 2 ) 2d −2 if i < d ≤ n − i

= (n − d + 1 ) 2d −2 if n − i < d ≤ n .

Again, 2n −2 processors have the maximum distance 2n from processor 0. The average distance can be

more easily computed by computing dH2
1 and dH2

2 . Let ➳i′ denote the length of L i truncated at index i.

Then dH2
1 = i − ➳i′ . Since there are 2i − ➳ i −1

′
paths of length exactly ➳i′ for ➳i′ < i and one path of

length i, the average length is
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EdH2
2 ≡ E i = 2− i
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

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

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for 1 ≤ i ≤ n − i .

Therefore, the average distance is

EdH2
1 + EdH2

2 = E i + E n − i = 2n − 4 +


î 2

1_ _




i −1

+


î 2

1_ _




n − i −1

for 1 ≤ i ≤ n − i .

The minimum average distance occurs when i =


 2

n_ _




and equals

2n − 4 +


î 2

1_ _






 2

n_ __



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+


î 2

1_ _

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



 2

n_ __




− 1

.

Note that this distance is shorter than the average distance of M2 only by a constant
3
2_ _.

Since the length of a longest run is certainly no less than that of the run L i , we have

d D2 (a , b) ≤ min { d M2 (a , b) , d H2 (a , b) } .

Note that ➳( 0 , b) is simply the length of the longest zero-run in the n-sequence b. If we average ➳( 0 , b)

over all b including 0, then the average equals the expected length of the longest zero-run which was given

by Guibas and Odlyzko [2] to be log 2 n − 3/2 + γ/log 2 + v( log 2 n) + O( ( log n)3 / n) where γ is the

Euler constant (= .577 . . . ) and v is a nonconstant continuous periodic function with period 1 and mean 0.

By eliminating ➳( 0 , 0 ) and using Theorem 1 we obtain
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Theorem 2. The average distance of two processors in KYKLOS II under D2 routing is

2n − 1

2n
_ ______ . 2




î

n − log 2 n +
2
3_ _ −

log 2
γ_ ____ + v( log 2 n) + O



î n

( log n)3
_ _______










.

Hence the average distance of D2 is shorter than that of M2 and H2 by approximately 2 log 2 n.

4. TRAFFIC DENSITY

Let F D2 (k) denote the frequency that the level-k links (links connecting level-k nodes and level

(k + 1 ) nodes) of T 1 are traveled considering all


î 2

n



paths under the D2 routing. By symmetry, the

corresponding frequency for any given level-k link T D2 (k) is F D2 (k)/2n −k . Define the traffic density of

D2 as

1 ≤ k ≤ n
max T D2 (k) .

Then the traffic density is a measure of the concentration of traffic under a routing strategy. Jenevein and

Menezes [5] showed that the traffic density for M2 is N 2 /64 and occurs at level n − 1, while the traffic

density for H2 is N 1. 5 /2 for even n and N 1. 5 /√ 2 for odd n and occurs at level


 2

n_ _



. Thus a major

attraction of the H2 routing is the reduction of traffic density from order N 2 to order N 1. 5 .

Though we are unable to solve for the D2 traffic density since we do not have the probability

distribution P D2 ( 2d), we can still compute the D2 traffic density directly for small n by the following

method. By symmetry we need only study the path from processor zero to all other processors and also the

traffic density in T 1 . For a fixed n we enumerate the set S n of all the binary sequences of length n except

the one containing all zeros. For each sequence we find its longest run of zeros (if there are more than one,

select one randomly) and counts the number of remaining bits after the run. For the sequence of all ones

we define the count to be zero or n with equal probability. A count k signifies that the highest node in T 1

that the path reaches is at level k. Let g D2 (k) denote the expected number of sequences in S n with count k,

‘‘expected’’, since k is not fixed when there are more than one longest run. Since any path with count k

must go through two links at each level i below k, we have
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F D2 (k) = 2
i =k +1
Σ
n

g D2 (i) for k = 0 , ... , n − 1 ,

from which T D2 (k) and the traffic density can be easily computed.

In the following table we show the traffic density and the level it occurs of D2 for 3 ≤ n ≤ 10 and

compare it with H2.

n 3 4 5 6 7 8 9 10

D2-density 8 24 71 213 648 2106 6879 23402

level 1 or 2 2 3 4 5 6 6 7

H2-density 32 32 256 256 2048 2048 16384 16384

level 2 2 3 3 4 4 5 5

Thus we see that for n ≤ 10, the traffic density of D2 is comparable to H2 for even n and quite a bit

better for odd n. For n ≥ 12 discrepancy of D2 and H2 widens as is clear from the following table.

n 12 14 16 18 20

D2-density 2. 8 × 105 3. 4 × 106 4. 3 × 107 5. 4 × 108 7. 1 × 109

level 9 11 13 15 17

H2-density 1. 3 × 105 1. 0 × 106 8. 0 × 106 6. 5 × 107 5. 3 × 108

level 6 7 8 9 10

For n large the probability of ➳ ( 0 , b) = i can be approximated by (e−n /2i +1

− e−n /2i

) by using an

asymptotic estimate of the probability that a random binary n-sequence contains no run of length i or

more [2]. For given i each position in the sequence from n − i to n − 1 then has approximately equal

probability of ending a longest zero-run while position n has about twice as much probability. Ignoring this

difference, then we can approximate g D2 (i), 1 ≤ i ≤ n, by

j =0
Σ
n − i

(e−n /2 j +1

− e−n /2 j

)
n − j

1_ _____ .

However, it is not easy to solve for max T D2 (k).
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5. CONCLUSION

We propose a routing strategy D2 for KYKLOS II which assures a shortest path between any two

processors and is shorter by approximately 2 ln n than H2. The traffic density for D2 is comparable to H2

for up to two thousand processors, in fact, significantly better when n ≤ 9 is odd. However, H2 has much

better traffic density characteristic for large n.
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