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MAS Tutorial Agenda

• Introduction

• Alternatives: T-Wave, PAM, QAM

• Architecture

• PMA

• PMD - focus on Laser Linearity

• PCS

• Acknowledgements
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Introduction: What is MAS?

• MAS is a generic term used to describe various
methods of Multilevel Intensity Modulation

• Multilevel modulation is applicable to most media
including Copper, Wireless, Fiber, etc.

• Methods include T-Waves, PAM, QAM, etc.

• Multilevel signaling lowers the line rate for a
given payload rate - reducing system cost and
increasing distance
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Impetus for MAS

• MAS previously deemed unnecessary for Optics
u Binary signaling was sufficient for the LAN & WAN

u Fiber was assumed to have infinite BW - It does NOT!

• Even for 1.25 Gbps, limitations were noticed in
attempting to go faster and farther than 1 Gbps
u Distances reduced from original GbE objectives

u New phenomena found (e.g. DMD, MMF launch)

• MAS is dominant in modems, DSL, Cu Ethernet...
u Invaluable to re-use existing cable plants at higher rates

• 10 GbE places 10× demands on media BW



IEEE 802 Tutorial6

Technology Basis

• Trade off silicon capability against laser/optics and
high-frequency electronics complexity and cost.

• Bet that silicon costs less and that cost will
continue to improve faster than the laser/optics
high-frequency electronics.

• “Lasers don't follow Moore's Law.” - Piers Dawe, HP

• Compared to copper, fiber has higher bandwidth.
u No hard requirement to use multiple channels like UTP

u No hard requirement to use high-speed compensation
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Features

• MAS enables a single integrated PHY solution
u Applicable to MMF, SMF, Short-haul Copper

u Applicable to SX, LX, EX, CX variants

• GbE Auto-Negotiation capable

• Open Architecture, no IP, proven technology base

• Compatible with single or multi-channel optics
u MAS w/Multi-channel optics enable higher speeds

u Parallel fiber or WDM multi-channel

u 40 Gbps or more possible
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Economics

• Driving towards low-cost CMOS to:
+ Reduce optics cost

+ Increase optical link budget

+ Increase PHY reliability, especially Laser

+ Decrease system BER

• Lower Baud to simplify critical electronics design:
CDR, Optoelectronics, signal integrity and EMC

• Enables the use of One low-cost laser

• Enables integrated PHY Transceiver product
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MAS Alternatives

• T-Waves

• PAM

• QAM
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T-Waves

• Synthesized, Multilevel, Intensity Modulation
u Waveform synthesis/Waveform capture

• Narrowband Frequency Spectrum
u Approximately ƒ/2 to 1.5ƒ

u Reduced spectrum compared to OOK and PAM

• High Resistance to Dispersion and Nonlinearity
u System is loss-limited, not dispersion-limited

u Simple sine-wave modulation enables mechanisms to
characterize and compensate for dispersion and media
impulse response



IEEE 802 Tutorial11

T-Wave Signaling            T-Wave5 Example
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Pulse Amplitude Modulation Basics

• Most existing optical links employ binary signaling
a.k.a. On-Off-Keying (OOK), PAM2, Serial TDM
u Each transmitted symbol represents just one bit (0 or 1)

• PAMn, where n>2, transports >1 bit/Baud
u PAM3 and above lowers line rate but decreases SNR

u PAM3 (e.g. MLT-3), decreases SNR by 3 dB

• PAM5 provides better utilization of limited BW

• PAM5 is 250% as efficient as OOK & 8B/10B
u 10 GbE: PAM5 @ 5 GBaud = OOK & 8B/10B @ 12.5 GBaud

u 10 GbE: PAM5, decreases SNR by 6 dB
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PAM Signaling                   PAM5 Example
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T-Wave vs. PAM

– Significant Link Penalty compared to PAM
u 4.5 dB penalty for the same number of levels since only

half of available levels, less average power, are used.

– Signal Compensation at multi-gigabit rates is
complex and expensive in terms of logic
u Probably not a good tradeoff for 10 GbE environments

– T-Wave Waveform Synthesis logic 3 × PAM
– PAM is more efficient, simpler in ‘easy’

environments (e.g. most 10 GbE applications)
+ T-Waves may be more efficient in ‘difficult’

environments (e.g. very long links, high dispersion)
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Optical QAM

• Many Quadrature Amplitude Modulation
techniques are possible.

• QPSK is the simplest form of QAM (QAM4)
u Multicarrier Modulation (MCM)

n Multiple digital streams are modulated onto carriers at different
frequencies, permits transmission with minimal ISI.

u Intensity modulation most applicable to optical systems

• Overkill in complexity for 10 GbE
u Work in Progress: Roy You and Joseph M. Kahn, “Average-Power

Reduction Techniques for Multiple-Subcarrier Optical Intensity
Modulation”, IEE Colloquium on Optical Wireless Communication,
London, England, June 22, 1999.
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MAS Alternatives - Direction

• T-Waves
u Large Optical Penalty, Too Complex for 10 GbE

√√ PAM
√√ Best Tradeoff between Cost and Complexity

• QAM
u Too Complex for 10 GbE, need RF carrier(s)
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MAS Basics - Line Rate Reduction

• Reduce line rate to support 10 GbE to 5 GBaud
+ Use multi-level signaling, PAM5 to increase #bits/Baud

+ 5 GBaud = 2.5 GHz enables the use of low cost CMOS

+ Enables the use of low cost Lasers (e.g. OC-48)

– PAM5 signaling costs 6 dB in SNR

+ Get back >6 dB with Forward Error Correction (FEC)

± FEC adds latency/costs gates. Impact negligible

– PAM5 needs nominally linear lasers & signal symmetry

+ Linearity requirements offset by Link Calibration



IEEE 802 Tutorial18

MAS Basics - One vs. Multi-Channel

• Reduce cost/complexity by using one channel
+ Fiber has sufficient bandwidth, unlike UTP

+ One channel is cheaper/simpler than 2/4/8/12, etc.

+ One channel is more reliable than multiple channels

+ No multiplexing of data streams required

+ No skew management and associated delay

+ MAS channels can directly feed a “dark wavelength” to
enable higher data/rates
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Signal Design Challenges

• 10 GbE serial data stream transmission presents
several design challenges.
u High speed logic requirements, 10 × GbE, CDR, Optics

u Attenuation

u Dispersion/Group Delay

u Noise from increased Bandwidth

u Crosstalk

u Signal Integrity and Transmission Line Effects

u Parasitic effects in Components and Packaging

u Electromagnetic Emissions and Susceptibility
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MAS Circuit Design Challenges

• Waveform Synthesis and Capture
u 5 GigaSymbols per second (Gsps)

• Clock and Data Recovery
u Low Jitter PLL for PAM5 clock & data recovery

• Forward Error Correction (FEC)
u TBD, focusing on Reed-Solomon codes

u High efficiency, high coding gain, negligible latency

u E.g. RS(255,239) code in 10-4 BER, out 10-14 BER
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CMOS Capabilities

• Submicron CMOS can achieve 10 Gbps

• Reference designs:
u Farjad-Rad, Ramin, et al, “0.4um CMOS 10-Gbps 4-PAM Pre-Emphasis

Serial Link Transmitter”, IEEE JSSC Vol. 34 No 5, May 1999

u Ellersick, W., et al, “A 12-GS/s CMOS 4-bit A/D Converter for an
Equalized Multi-Level Link”, IEEE 1999 VLSI Circuits Symposium,
Kyoto, Japan

• Example gate delay per inverter in ring oscillator

+ Low cost, High Density and readily available

0.35 um 55 ps
0.25 um 40 ps
0.18 um 30 ps è 33 GHz
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MAS 10 GbE Technology Basis

IEEE 1000BASE-X

PCS - 8B/10B

AN - Link Test

PMD - SX, LX, CX

IEEE 1000BASE-T

MAC

10 Gigabit Ethernet

PCS - Coding

PMA - MAS

PMA - Link Monitor

PMD - S,L,E,CX

PHY

PCS - Scrambling

PCS - Trellis/Viterbi

PMA - PAM5 Auto-Negotiation

AN - Multi Speed PMD - EX 1550 nm

Other Technologies

PMA - MAS

PMA - Link Monitor

PCS Reed-Solomon

AN - Serial

AN Link Calibration
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MAS Architecture

Media Access Control (MAC) - Full Duplex 

10 Gigabit Media Independent Interface (XMII)
Parallel 8, 16, 32 bits each way

10 Gigabit PCS/PMA Interface
Serial 2.5 - 3.125 Gbps ×× 4

10 Gigabit Transceiver
PAM5 - 5 GBaud

Media: CX, SX, LX, EX: 2 m - 40+ km

Media: Long PCB Trace/Short Coax

Media: Short Chip Interconnect/PCB Trace

Media: Short Chip Interconnect/PCB Trace
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MAS Block Diagram - Transceiver
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MAS Link Elements

• Contain high-speed logic to Transceiver

• Support flexible interfaces to MAC
u Quad Serial 2.5 - 3.125 Gbps to Transceiver

u Provides flexible MAC/PHY to Transceiver interconnect

u Per Cisco July; HP, Sun, TI June proposals

u Applicable to MAS, Serial TDM, WDM, Parallel Optics

• PAM5 Transmission link operates independently of
Quad Serial links to MAC/PHY at each link end
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MAS System Structure Example

• Integrated GMII
• Integrated Partial PCS
• PCB mounted

MAS
Transceiver

Front Panel Mounted

• Quad-Serial interface 
• 2.5 - 3.125 Gbps
• 2-24” nominalDevice 1

Multiport 
10GbE
MAC

4

4

MAS
Transceiver

• Media: CX, MMF, SMF
•Distance: 2 m to 40+ km

Device 2
Singleport 

10GbE
MAC

4

4PCS/PMA

8/16/32

8/16/32

10 GMII
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PMA - Binary vs. PAM5 Signaling

Bit: 0/1

Binary Signaling
a.k.a. PAM2,

On-Off-Keying

PAM5
1000BASE-T

Maximum
Optical Power

Minimum
Optical Power

Logic Level Logic Level
1

0 -2

+1

0

-1

+2

Bit2: 0/1

Bit1: 0/1

Coding
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PAM’s History in Ethernet

• 100BASE-TX uses multi-level coded symbols

• 100BASE-T4 uses multi-level coded symbols

• 100BASE-T2 uses PAM5

• 1000BASE-T uses PAM5

• MAS, PAM5, is NOT new to Ethernet
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PAM5 in 1000BASE-T

• 1000BASE-T employs PAM5 on 4 channels
u Symbols represents one of five levels (-2, -1, 0, + 1, +2)

u Each symbol represents two bits plus one extra level

u PAM5 SNR penalty is 6 dB

u Extra level provides FEC, special codes, transition
density

u FEC buys back most of the SNR lost by PAM5

u Equalization buys back the rest

u 1000BASE-T utilizes PAM5 + FEC + Equalization to
get 250 Mbps on each wire pair at only 62.5 MHz,
allowing cat 5 UTP usage to 100 m.
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PAM5 Eye Diagram on MMF

667 MHz
1.5 GBaud
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PAM5 Signal Appearance Example

30 MHz
60 MBaud
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PMD - MAS Optics

• Single Channel Basis

• Laser Diode

• Optical Receiver

• Packaging

• Optical Non-Issues

• Power Penalties
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Optical Issues: One vs. Multi-Channel

• Electrical Crosstalk N(N-1) terms (N=#channels)

u Coupling via parasitics, substrate, supply, etc.

• Optical Crosstalk (2N-2) terms
u Non-ideal demultiplexer filters or Rx isolation
u Out-of-band LD emission or Tx isolation

• Optical Attenuation terms
u Tolerancing in parallel mux/demux in WWDM
u Additional loss penalty for WDM due to SM optical

combiner and WDM demux splitter

• Optical Power Control Link Budget Penalties
u Multi-channel power skew
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OptoEconomics - MAS Transceivers

• Very mature technology
u Dozens of optical module/transceiver vendors have

experience with single-channel optics

• Low entry cost for prospective module vendors

• Complex optical schemes can lock out or
substantially delay competitive entry

• Competition = Lower prices for end users

• Simplicity: Reduced parts count, Tolerancing
u Single LD, PD, associated optics, coupling

• Single critical high-frequency electrical path
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OptoEconomics - MAS LD Support

• LD cost dominates the cost of most optical PHYs

• Multiple Laser vendors interested in supplying
optoelectronics suitable for MAS

• Indications that MAS Laser costs will compare to
standard, low-cost OC-48 Lasers

• As usual, volume needed to drive costs down
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Laser Diode Attributes

• Wavelength

• Optical Power

• Bandwidth

• Linearity

• Noise
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Laser Wavelength - LW 1310 nm

• MAS independent of Laser Wavelength
u Essentially a laser cost vs. distance tradeoff

• Longwave (1310 nm)
+ Higher Class I Laser Safety limit (~ 6 mW)
+ Low attenuation (< 0.5 dB/km)
+ Bandwidth•distance product of legacy fiber is > SW
+ Supports SMF and MMF
– Mode conditioning required with MMF
+ Higher reliability
+ Lower LD bandgap and forward voltage
– Cost penalty above shortwave lasers
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Laser Wavelength - LW 1550 nm

• Longwave (1550 nm) all of 1310 plus:
+ Higher Class I limit (~10 mW)

+ Lower fiber attenuation (< 0.4 dB/km)

– Cost penalty above LW 1310 nm lasers

+ Cost penalty may be due to volume difference

+ Can use temperature control to assign to a specific ITU-
grid wavelength for DWDM

+ Compatible with EDFAs

– Higher dispersion unless Dispersion Shifted Fiber
(DSF) is used
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Laser Wavelength - SW 850 nm

• Shortwave (850 nm)
+ Low cost VCSELs

– Low Class I limit (~ 0.35 mW)

– High fiber attenuation (< 3.5 dB/km)

+ High bandwidth (to ~2.2 GHz•km) on enhanced MMF
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Laser Optical Power

• Maximum power set by laser safety limits,
nonlinear threshold, drive, reliability, or receiver
saturation, whichever is the lowest.

• Minimum power set by worst-case media loss,
penalties, and receiver sensitivity.

• Laser power range may be tightened, depending
on the laser power control circuit error, drift,
aging, laser safety margin and calibration
uncertainty.
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Laser Bandwidth

• OC-48 Lasers performance is often encumbered
by packaging parasitics.

• BW requirement diminished by half for PAM5
(encoded) relative to 10 GBaud (unencoded)

• BW Laser ~ 1.1 Baud in GHz = 5.5 GHz

• Higher production yield for lower BW lasers

• Lower packaging & integration costs for lower
BW lasers
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Laser Nonlinearity

• Causes of Nonlinearity in Laser Diodes
u Threshold (easily avoided)

u High-power limiting (VCSELS and detectors)

u Dynamic self-heating effects (low-frequency)
n Coding related: DC Balance, Scrambling, etc.

u Overdrive or operation near resonance such as relaxation
oscillation frequency

• Nonlinearity & distortion in drive electronics

• Kinks in the I-L curve
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Nonlinearity Effects on the Link

• Large-signal effects such as threshold (Ith) and Rx
saturation induce a duty cycle distortion.
u Avoid (Ith) and don’t saturate the receiver

• Power penalty due to eye closure

• 2nd, 3rd harmonic, sum & difference frequencies

• Easy for kink-free digital lasers to pass
u Requirement for kink-free performance over

temperature and operating range
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Large and Small-Signal Nonlinearity
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Linearity Compensation
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Linearity Experiment

• 2-tone testing

• System baseline > 90 dB not including PD

• PD & amplifier linearity > 70 dB below saturation

• 2 Vendor’s digital 1300 nm DFB lasers

• Measured 3rd harmonic
u over frequency (250 MHz - 4 GHz)

u over power (0.25 mW - 2 mW)

u over modulation index (0.05 - 0.5)

• Both devices were linear (> 40 dB)
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2-Tone Testing
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• 2nd-order: Measure ratio H of fundamental tone at
f1 to the intermodulation signal at (f2 - f1)

• 3rd-order: Measure ratio H of fundamental tone at
f1 to the intermodulation signal at (2f2 - f1)
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2-Tone Nonlinearity Test Setup
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Time Domain Baseline
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Frequency Domain Baseline

Test System
Nonlinearity
w/o LD/PD

H = ~104 dB

H = ~98 dB
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Vendor 1 Laser @ 1 mW

DFB Laser
1300 nm
Modulation
   Index: 50%
Coax Package

H = ~46 dB

H = ~46 dB
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Vendor 2 Laser @ 1 mW

DFB Laser
1300 nm
Modulation
   Index: 50 %
Mini-Dil Package

H = ~72 dB

H = ~69 dB
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Linearity Calculation

• Linear operation on function X(t)
Y(t) = A + B X(t)
X=input, Y=output, A=Y-intercept, B=slope

• Nonlinear operation
Y(t) = A + B X(t) + C X(t)2 + D X(t)3 + ...
Assume non-linearity coefficients C and D << 1, neglect higher-order

• Error is ∆Y ≈  C X(t)2 + D X(t)3

• Maximum error is E = (C/3)3 / (D/2)2

• E.g. 1Ω Resistor: A=0, B=1 V/mA, C=0.001
V/mA2, D=0.001 V/mA3, then E=0.00067 V
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Requirements Calculation

• Consider the nonlinear transfer function
Y(t) = A + B X(t) + C X(t)2 + D X(t)3

Assume coefficients C and D << 1

• Let X(t) = cos(ω1t) + cos(ω2t) this generates
Y(t) = A + B X(t) + (C/2)cos(2ω1t) +
(C/2)cos(2ω2t) + C cos(ω1- ω2)t +
C cos(ω1+ ω2)t   which are the 2nd-order terms

• + (D/4)cos(3ω1t) + (D/4)cos(3ω2t) +
(3D/4)cos(2ω1- ω2)t + (3D/4)cos(2ω1+ ω2)t +
(3D/4)cos(2ω2- ω1)t + (3D/4)cos(2ω2+ ω1)t

     which are the 3rd-order terms
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Nonlinearity Characterization

• Laser vendors may specify the nonlinearity as:
u Composite Second-Order (CATV)

u Composite Triple-Beat (CATV)
n Can relate CSO and CTB to the nonlinear coefficients C and D

given the # of channels and intermodulation products/channel

u 2-Tone test at the appropriate frequency is simpler
n Use Vector Network Analyzer

n For 2nd-order, 2-tone test, C = H

n For 3rd-order, 2-tone test, D ≈ (4/3) H
– Assuming the coefficient D << 1

n -20 dB requirement: D = 0.013, C = 0.01
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Laser Linearity Summary

• Power penalty = 10 log [1-(N-1)E]

• Need linearity of -20 dB for <0.25 dB penalty

• Early analysis of a limited sample of standard
digital (not CATV) OC-48 DFB class lasers
indicate sufficient linearity performance.

• Kink-free lasers appear to be sufficient for MAS
deployment.

• Large-signal linearity is a function of link design.

• Production testing for small-signal linearity may
not be required.
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Laser Noise

• RIN is a catch-all for Noise in a Laser Power
u RIN = <P2> / <P>2 = variance / (average)2

u Back Reflections into the laser cavity can make noise
very large and chaotic

u Shot noise from quantum nature of photons and
injected carriers (spontaneous emission)

u Mixing of spontaneous emission with the lasing field

u Thermal fluctuations

u Mode-Partition noise, mostly in FP lasers, less
problematic in DFB/DBR lasers
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How to Reduce Laser Noise

• Reduce Line Rate and BW (MAS, scrambling)

• Implement FEC for coding gain to offset RIN

• Tighten RIN specification on lasers
u For RIN-dominated systems, a 6 dB RIN decrease

yields a 3 dB SNR improvement

• Optimize laser for low threshold, high carrier
density and high relaxation oscillation frequency

• Cooling is not a cost-effective option

• Add an Optical Isolator
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Optical Isolator

• An Isolator is a “check valve” for light
• Avoids Back Reflections from connectors
• Very compact device, easy to integrate

u For a low-noise laser, an isolator preserves the intrinsic
laser RIN in a system with large back reflections

• Cost is << 50% of a single DFB laser
• Small loss penalty < 0.5 dB
• Difficult to incorporate into multi-channel lasers
• Tradeoff Isolator cost against FEC silicon cost to

achieve System BER Objective.
u Suggested MAS Direction: Robust FEC
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Optical Isolator Basics
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LD Example Requirements, LX

• OC-48 class DFB/DBR laser

• 1310 nm wavelength

• 1 mW average power

• Nominal Linearity (-20dB ~ -30dB)

• RIN better than -125 dB/Hz
u Tradeoff against FEC complexity, Isolator cost

• 5.5 GHz Bandwidth (<65 pSec)

• Carrier, Die, or other HF packaging
Note: Work in progress, not Absolute Requirements
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Optical Receiver Attributes

• Wavelength

• Optical Power

• Bandwidth

• Linearity

• Noise
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Receiver Wavelength and Power

• Rx saturation level is set by the best-case
responsivity, headroom in the photodetector
biasing and subsequent amplification stages.

• Cannot use traditional limiting post-amp
u Requires linear post-amp

• LW Receiver is more sensitive than SW

• Receiver noise can dominate ultimate sensitivity at
low power levels.
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Receiver Bandwidth

• BW requirement diminished by half for PAM5
(encoded) relative to 10 GBaud (unencoded)

• BW Receiver ~ 0.75 Baud in GHz = 4.0 GHz

• Integrated PhotoDiode (PD) and Trans-Impedance
Amplifier (TIA) component availability is much
higher @ 4.0 GHz than >7.5 GHz (10 GBaud)

• Higher production yield for lower BW devices

• Lower packaging & integration costs for lower
BW devices



IEEE 802 Tutorial65

Receiver Linearity

• PDs are intrinsically very linear

• Avoid saturation and compression regimes

• Gain of TIA and postamp sets AC/DC saturation

• Care in design of Rx electronics yields low NL
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Receiver Noise Components

• Shot Noise:

• Thermal Noise:

• Dark Current Shot Noise:

• 1/f Noise: at low frequencies

• Amplifier Noise: design & component selection

• Power Supply Rejection Ratio:
    design & component selection
• Uncorrelated crosstalk and EMI Susceptibility:
    layout and shielding

BW∝

BW∝

BW∝

Power∝

DARKI∝
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Optical Sub-Assembly Packaging

• MAS PHY is OSA and connector independent

• Supports MMF & SMF installed and new media

• Duplex-SC and Small Form Factor Integration

• OSA package independence
u Pigtailed HF packaging, e.g. mini-DIL

u Traditional coaxial OSA’s

u V-groove, microbench, MT-type technology

• More flexibility for module implementation
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MAS Optical Non-Issues

• Receiver Nonlinearity

• Sidemode Supression Ratio

• Laser Absolute Wavelength

• Laser Temperature Control

• Photodetector linearity

• Skew

• Crosstalk
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Optical Power Penalties

• Power Penalties need to be carefully re-examined
for MAS
u DFB lasers not covered in GbE link model

u Model must be normalized for higher data rates/Baud
according to the number of PAM levels

u PAM power penalty PN = 10log(N-1)

• New Power Penalties also applicable to OOK
u Laser Chirp penalty, if any

u Polarization Mode Dispersion (long distance SMF)
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Conceptual Optical Power Budget

Courtesy of David Cunningham, HP
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PMA - PAM5 Optical Power Penalty

Courtesy of David Cunningham, HP

PAM5 penalty
6 dB 

5
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Beyond PAM5

• PAM5 significantly more cost effective than PAM2
u FEC and Link Calibration offset PAM5 losses

u Careful system design enables more PAM levels

u For a 3 dB link penalty, PAM9, 3 bits/Baud, 3.33
GBaud, ƒo 1.875 GHz, supporting MMF with 500
MHz•km/1.875 GHz ≈ 267 m
n Only 5.6% higher Baud than 3.125 GBaud

n Enables simpler CDR, DAC, ADC designs

n Enables simpler equalization designs, longer distances

• The technology to go beyond PAM 5 is here now
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PCS - Coding

• PAM5 systems have coding requirements similar
to those of PAM2 (e.g. GbE’s 8B/10B) including:
u Special Symbol support (SOP, EOP, etc.)

u DC Balance (jitter containment)

u Transition Density (CDR)

u Error Containment (minimal error multiplication)

• PAM5 adds FEC to these requirements
u Possible FEC codes include:

n Trellis/Viterbi (e.g. 1000BASE-T)

n Reed-Solomon
– E.g. RS(255,239) code in 10-4 BER, out 10-14 BER
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PAM5 Coding Direction

• One 1000BASE-T PCS octet maps to one symbol
spread across 4 wire pairs (1 Baud interval).

• 10 GbE maps one 1000BASE-X equivalent octet
to 4 consecutive Baud intervals.
u PAM5 symbol = 5 ×× 5 ×× 5 ×× 5 = 625 code points

• 8B/10B supports 256 data codes, 12 special codes
u 268 codes map to ~ 400/1024 total codes

• PAM5 goal is to map 625 code points to the 268
codes AND meet all other coding requirements
including FEC.
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FEC Coding Gain

• Redundancy is used by all Forward Error Correction (FEC)
codes to perform Error Detection and Correction (EDAC).

• FEC codes allow a receiver in the system to perform EDAC
without requesting a retransmission.

• FEC codes enable a system to achieve a high degree of data
reliability, even in the presence of significant signal noise.

• FEC usage can offer significant effective SNR improvement
in systems where improvement using any other means is
very costly or impractical.
u E.g. Increased transmit power, expensive lower noise components.

• FEC SNR improvement is sometimes called “coding gain”.
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FEC Latency

• Worst case: A long block length Reed Solomon
code, such as (255,239)
u 255 bytes @ 100 ps/bit = 204 nsec @ 10 Gbps

u Light travels through a fiber at a rate of ~5 ns/m

u 204 ns/(5ns/m) = 40.8 m of fiber optic cable

u Actual delay depends heavily upon the particular
implementation (e.g. degree of parallelism, hardware
vs. tables vs. firmware, etc.)

u Negligible latency effects on full duplex links

u SNR/BER gain of FEC vs. additional gates/latency is a
good tradeoff
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MAS PMD

• PMD independent, supports SX, LX, EX, CX

• Supports the same media as 1000BASE-X

• Supports similar distances as 1000BASE-X
u 62.5 µm MMF, 500 MHz•km, 1300 nm ≈ 200 m
u 50 µm MMF, 1250 MHz•km LOF, 1300 nm ≈ 500 m
u Even longer distances @ 850 nm with VCSELs and

newer enhanced MMF, 2200 MHz•km ≈ 880 m
u  SMF 1300 nm ≈ 10-15 km
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Auto-Negotiation (AN)

• Unrelated to MAS technology, distinct protocol
• Simplifies the 1/10 GbE integration task
• Uses Tone-based signaling akin to FLPs

u New AN protocol for optical/copper serial links
u Enables speed negotiation: 1/10 GbE operation

• Provides transport for  MAS Link Calibration
• Leverages all of Ethernet AN except new Tones
• Achieves functional parity with UTP AN products
• Operational Benefit: Most useful to determine

why two connected devices don’t work
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Auto-Negotiation Review

• Method used to exchange information between 2 stations;

• Used to configure operating parameters such as speed, flow control;

• An AN device advertises its abilities and detects the abilities of its
Link Partner (remote device);

• AN information is exchanged using link pulses and acknowledged;

• AN compares the two sets of abilities and uses a priority resolution
algorithm to establish the best mode of operation;

• The highest performance common technology is attached to the media;

• AN becomes transparent until reinvoked due to reset, power-on, link
failure, etc.;

• Allows for automatic link establishment without user intervention.
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Toning

• Serial Receivers include two receive circuits
1) Data Acquisition logic   2) Signal Detect logic

• Data Acquisition logic limitations
u Frequency response limitations

n Prevents direct communication between 1X and 10X variants

• Signal Detect logic may be used to detect Tones
u Tones may be used between 1×× and 10×× variants

• Existence Proof
u P1394b startup protocol

• Use Toning as basis for Serial AN Signaling
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Tone Frequency

• Should support 1X - 10X or greater speed variants
u Example Frequency: 625 MHz square wave

n b’1010101010/0101010101’ 8B/10B D21.5 code @ 1X speed

n b’1100110011/0011001100’ 8B/10B D24.3 code @ 2X speed

n b’1100000111/0011111000’ 8B/10B K28.7 code @ ≥4X speed

• Probably invisible to interfaces less than 1 GbE
n Tone frequency above Fast Ethernet & Ethernet filters

n Propose that lower speed Ethernet variants are not interoperable

n If AN is supported by only one link end, and AN fails, it is
assumed that the link partner is a 1GbE device
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Tone Pulse Timing

• Tone Pulses correspond to
Fast Link Pulses (FLP)
• Pulse Timing basis is
Signal Detect response

u Specs may be derived from GBIC, GbE, P1394b

u Transmit Disable pulsing possible, extends AN time

• Proposed Pulse and Pulse-to-Pulse timings
u T1 - Pulse Duration: 50 µs

u T2 - Clock-to-Clock/Data-to-Data Duration: 200 µs

u T3 - Clock-to-Data/Data-to-Clock Duration: 100 µs

T1

T1

T3
T2

CLKDATA
(1)

DATA
(0)

CLK
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Tone Pulse/Burst Protocol

• Tone Pulses are arranged 17-33 Pulses to a Burst

• Tone Bursts are transmitted repeatedly until ACK’d
by Link Partner

• Tone Burst Protocol includes Base Page and
Optional Next Page Exchange

• Priority Resolution algorithm establishes best mode
of operation
u The highest performance common technology is enabled

or

u Management can tell why the 2 devices don’t work
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Link Calibration

• Uses information in Tone Pulses sent during AN
to calibrate transmitter power and receiver levels
u Executes simultaneously with AN protocol

u Sets optimum transmit power for each link

u Sets optimum receiver thresholds

u Increases optical link budget

u Eliminates optical compression penalty

u Compensates for laser non-linearity

u Similar in nature to, but much simpler than
1000BASE-T PHY-Startup
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MAS Summary

• Digital grade lasers have sufficient linearity

• Provides two more variables, Baud & Number of
Intensity Levels, for system tradeoff

• Is independent of PMD choices

• Scalable to even higher data rates
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