Industrial-Strength Internet Telephony

Henning Schulzrinne Dept. of Computer Science Columbia University New York, New York schulzrinne@cs.columbia.edu

6th SIP Bake-off (Sylantro/Sun)

December 8, 2000

Joint work with Jonathan Lennox, Kundan Singh and Xiaotao Wu

Overview

- industrial-strength VoIP and presence services:
 - scaling
 - redundancy and fault tolerance
 - network management and logging
 - administration and configuration
 - integration
- where should services reside?
- feature interaction

Design Goals

- 5-nines reliability
- scalability to major domains like aol.com, sun.com or t-online.de
- commodity unreliable hardware (PCs)
- commodity software for databases and directories
- avoid clustering software

Scaling

- SIP signaling primarily handled by SIP proxies, with associated registrars and location servers
- critical common infrastructure for IM/presence, VoIP, conferences, mobile networks, . . .
- SIP proxies do not switch voice, but
 - route calls mobility
 - implement policies
 - programmable logic
- far higher variability than classical switches: execute subscriber-defined code during call signaling:
 - sip-cgi scripts (similar to web cgi-bin scripts)
 - CPL scripts XML-based call logic

- call routing: no "area codes" me email-style addresses, with all att.com through single (logical) proxy
- but: easier to scale due to higher signaling bandwidth
- transmission delay: $288 \,\mu$ s/message for 10 Mb/s Ethernet (typical: 360 bytes)

Scaling or How Many Calls can a SIP Switch Switch?

Some metrics:

- BHCA 750,000 to 2.5 million busy hour call attempts for large class-5 switches = 3.6 ms/call
- AT&T: 280 million calls a day = 0.3 ms/call
- Yahoo: 780 million page views/day
- AOL: 110 million emails/day
- AOL: 500 million IM/day
- web server: about 1,500 to 3,000 static requests/second

Signaling Load Components

Typical Signaling Processing Steps

- 1. parse incoming SIP request
- 2. possibly invoke a generic administrative script
- 3. map aliases (e.g., peter.ford \rightarrow pf) in local database to canonical identifier
- 4. check registration in LDAP or via SQL query
- 5. invoke per-user cgi script
- 6. translate host name
- 7. forward request, response
- 8. log request

SIP Scaling Differs From Other Internet Protocols

- not CPU-bound \blacksquare delay \neq 1/throughput
- low byte volume me easy to physically distribute for redundancy and load distribution
- servers can easily be shared among domains

Signaling Load Distribution

ease depends on service model: SIP proxy, redirect, registrar

DNS SRV Records

• DNS SRV records: priority and weight

_siptcp	SRV 0 0	5060	<pre>sip-server.cs.columbia.edu.</pre>
	SRV 1 0	5060	backup.ip-provider.net.
_sipudp	SRV 0 0	5060	<pre>sip-server.cs.columbia.edu.</pre>
	SRV 1 0	5060	backup.ip-provider.net.

• clients try hosts in order of priority, then balance requests randomly scaled according to weight

Signaling Load Distribution

- does *not* take current load into account
- hot spots?
- SIP allows per-transaction routing of requests, with Route header for routing subsequent transactions
- Route can be either specific domain or IP address OR SRV
- proposal to allow Route also for first request
- if call state, more difficult to fail-over mid-call me need back-end state synchronization

Other Load Components

Full characterization requires dimensioning other servers:

- SQL or in-memory databases for authentication and registration
 - storage requirement depends on Contact length
 - from ≈ 50 to 1,000s bytes/client
- LDAP servers about 180 searches/second?
- media servers for voicemail and IVR
- conferencing servers primarily media/computation-limited

With roughly hourly SIP registration updates, writes can dominate – campus with 20,000 devices is 5.5 updates/second

Fault Tolerance

- failure of proxies does not affect (most) existing calls
- possible exceptions: firewall proxies
- mid-call requests via Route can use different server, if DNS SRV used as address
- registration information:
 - is refreshed roughly hourly
 - multicast
 - forking registrations
 - our SLP synchronization work?
 - recovery after reboot persistent memory
- PSTN gateway location IP TRIP

Administration and Configuration of SIP phones

- need to be able to buy at Fry's and plug in
- currently, each SIP phone and proxy seems to have its own configuration mechanism tftp, HTTP, ftp, SQL, ... m doesn't scale to enterprise
- danger: back to single-provider networks
- to be configured:
 - default media types and encodings
 - speed dial and other feature buttons
 - voicemail forward (or script?)
 - authentication tokens
- also needed for service mobility ability to re-use same configuration on "borrowed" phone

Administration

- phone administration across platforms
- local user registration:
 - anybody can register
 - web page
 - inherit from other database (AAA, RADIUS, LDAP, /etc/passwd, ...)

Administering Authentication

- PGP or S/MIME certified by third party
- carrier-based authentication, signed by proxy ****** "DT certifies that this customer is called Lieschen Müller" or "this caller is calling from the premises of Visa"
- per-callee user name(s) and passwords: "friends/secret"
- per-domain identities | with global identifiers

Example: Columbia Internet Extensible Multimedia Architecture

Single Sign-On

Uses per-domain identities

				pro-
100%		 1 <u>0</u> 🚽	9 🖾	× 🌮

CINEMA Registration

Email send to henning@cs.columbia.edu:

Subject:	Your	CINEMA	regis	stration		
Date:	Tue,	24 Oct	2000	21:48:09	-0400	(EDT)
From:	<cgi.scriptdo.not.reply@cs.columbia.edu></cgi.scriptdo.not.reply@cs.columbia.edu>					
То:	henning@cs.columbia.edu					

Your new CINEMA password for cs.columbia.edu is "deduct.transversal.desert". The realm is "Password for cs.columbia.edu".

Scaling & Reliability: Open Issues

- performance of real servers SIPstone?
- design alternatives: thread models, select(), etc.
- external server access models vs. in-memory databases
- impact of security
- single sign-on
- cryptographic certificates
- fail-over, state recovery

Where Should Services Reside?

- most services *can* be in VoIP end systems
- but network servers
 - can do address hiding,
 - are permanently on-line
 - have permanent IP addresses
 - high bandwidth (e.g., for conferences)
 - security breaches impact large number of users
 - only indirect user interaction (web configuration)

Service Location Examples

Feature	end sys.	proxy	network with media
Distinctive ringing	yes	can assist	can assist
Visual call id	yes	can assist	can assist
Call waiting	yes	no	yes(*)
CF busy	yes	yes(*)	yes(*)
CF no answer	yes	yes	yes
CF no device	no	yes	yes
Location hiding	no	yes	yes
Transfer	yes	no	yes
Conference bridge	yes	no	yes
Gateway to PSTN	yes	no	yes
Firewall control	no	no	yes
Voicemail	yes	no	yes

Service Invocation

- administrative scripts vs. user scripts vs. method scripts
- adding new services by possibly competing third parties, e.g., call filtering: "nospam.org is my new filtering provider"
- service routing more than just Route inserted in script?

Feature Interaction

- feature interaction = "feature or features modify or influence another feature in defining overall system behavior"
 - call forward busy with call waiting
 - vacation program with mailing list reflector
- single-component similar to PSTN
- multiple components: non-cooperative feature providers

Cooperative Feature Interaction

Same goal, different approaches

Request forking and CF voicemail: fork to A and B, with B forwarding to voice mail

Multiple expiration timers: at different proxies with similar value me race condition

Camp-on and call forward on busy: caller never receives busy indication – can be solved by centralized knowledge in PSTN

Adversarial Feature Interactions

Outgoing call screening and call forwarding: downstream server may forward to blocked address

Outgoing call screening and end-to-end connectivity: cannot force signaling route

Incoming call screening and polymorphic identities: SIP IDs are cheap in only positive identification likely to work

Incoming call screening and anonymity: no trusted network provider to hide identity

New Approaches to VoIP Feature Interactions

Explicitness: for cooperative – list actions and order

- "do not forward": busy instead of forwarding
- caller preferences (voicemail attribute, "human only")
- programs, possibly multi-layered, instead of feature lists is one "master" decision of features

Universal authentication: require PK certificates

Network-layer admin. restrictions: firewalls, port filters

Verification testing: external testing tools