
1

EECS 122, Lecture 18
Today’s Topics:

Review of Where We Are

Introduction to Transport Layer

UDP: The User Datagram Protocol

Introduction to Reliability

Kevin Fall, kfall@cs.berkeley.edu

Where We Are So Far…

• Networking concepts
–remote access to resources
–controlled sharing

•multiplexing: TDM, Stat Mux

–protocols and layering
•ISO reference model, encapsulation
•service model, error detection
•end-to-end argument
•soft state

Where We Are So Far…

• Development of the Internet
–interconnection of heterogeneous networks
–simple best-effort service model
–fully-connected graph of hosts (routing)

• Internet scaling issues
–use of hierarchies in routing, addresses, DNS
–use of caching in DNS

Where We Are So Far…

• Direct-link networks
–signals, modulation, error detection
–best-effort delivery between attached

stations
–possible error correction using codes
–MAC protocols, Ethernet

Where We Are So Far…

• The Internet Protocol
–IP service model

•best-effort datagram model
•error detection in header only
•consistent, abstract packet, addressing
•routing
•signaling (ICMP)
•multicasting, IGMP, multicast routing
•IP futures with IPv6

What We Are Missing…

• Access to process-level information
–currently, can only send traffic from one

computer to another
–no way to indicate which process or service

should receive it

• Reliable transport
–no way to know whether data received was

correct
–no way to correct for delivery errors

2

Problem Set #3

• Peterson & Davie:
–Ch 3: 11, 12, 13, 15
–Ch 6: 2, 8, 10
–Ch 8: 2, 5, 15, 17
–(problem on web page)

• Due April 13

The Transport Layer

• provide application-to-application
communication (end-to-end)

• properties to expect:
–guaranteed message delivery, correct

ordering, duplicate elimination, large
messages (streams), end-to-end
synchronization, flow control, multiple
applications [clients/servers]

• what is lacking: security, format
conversion

Internet Transport Layers

• Two main ones: UDP and TCP

• UDP (User Datagram Protocol)
–datagram abstraction
–error detection

• TCP (Transmission Control Protocol)
–stream abstraction
–error detection and correction
–flow control
–congestion control

Identifying Processes/Services

• How to identify a service/process
–process ID?
–process memory address?
–these are OS specific, and may be transient

• Mailboxes (ports)
–abstract way of reaching a process/service
–does not correspond to physical entity
–usually some fixed number per computer

Port Numbers

• How to completely identify a remote
application/service on the Internet?

• [IP Address, port number, protocol]
–expect to find a process listening for

incoming requests on IP address, port
number, using transport layer protocol

–doesn’t tell which application it is!
–(or which app-layer protocol to employ)

Picking Port Numbers

• Port numbers are in range [0..64K-1]

• Ports below 1023 are known as
“reserved” or “well-known” ports, and
are managed by IANA

• Ports in range 1024-65535 may be
“registered” with IANA but aren’t
enforced by them

• RFC1700 - Assigned Numbers RFC

3

Why Does This Matter?

• To what port should a client send in
order to reach a server?

• To what port should a server starting off
bind to?

• For standard services, well-known port
provides an answer

• Some well-known ports:
–echo (7), discard (9), DNS (53), snmp (161)

Ephemeral Ports

• Typically, servers will bind to a particular
port they are assigned (e.g. well-known)

• Clients use a temporary, OS-assigned
port (an ephemeral port)

• Servers are capable of detecting the
client’s port number, enabling responses
to be sent to a particular client process

• Ephemeral ports are returned to the OS
to give out later after process completes

UDP: User Datagram Protocol

• UDP provides a datagram service model

• Provides error detection, not correction

• Basically is IP with an end-to-end
checksum and with port numbers

• UDP Header (8 bytes):

• (NOTE: book is WRONG!)

Source Port Dest Port
Length Checksum

UDP Header Structure

• Source Port: sender’s port number

• Dest Port: destination’s port number

• Length: data plus header length
(minimum value is 8)

• Checksum: [optional] 16-bit 1’s
complement sum of a pseudoheader of
information from the IP header, UDP
header, and data, padded with zero if
necessary to be a multiple of 2 bytes

The UDP Checksum

• End-to-end checksum

• Pseudoheader is a logical collection of
fields over which the checksum is
computed; not sent directly as data

Pseudoheader

• Why use such a thing?
–Including IP header info provides an end-to-

end check on src/dst IP addresses and IP
protocol info

–assures the correct recipient
–required in IPv6 (recall no hdr checksum)

• A layer violation
–transport layer needs to “peek inside”

network layer
–hard to run UDP on other than IP net layer

4

Implications

• modifications to the IP address or
protocol info is detected by the transport
layer

• systems that intentionally modify IP
addresses [e.g. NAT devices] must also
modify UDP-layer checksum

Sending a UDP Datagram

• Application acquires dest IP address, port
number to send (e.g. use DNS)

• Application chooses message size,
requests send using API (e.g. sockets)

• API allocates OS-level buffer, leaving
room for some headers, copies data from
user-level buffer to OS-level buffer, gives
to UDP

Sending a UDP Datagram

• UDP Module receives user buffer,
prepends IP and UDP headers

• fills in IP header info [proto, len, src, dst]

• fills in UDP header [sport, dport, len]

• computes pseudoheader cksum if
enabled and fills it in

• sets TTL and TOS (system defined)

• sends UDP/IP packet to IP

Sending a UDP Datagram

• IP Module receives packet

• insert options if enabled

• set IP vers, IHL, offset, ID fields

• determine a interface/MTU to use

• if multicast, look for special TTL, info

• fragment if needed and send to link layer

Receiving a UDP Datagram

• Network adapter receives frame,
interrupts processor

• Device driver determines frame contains
IP type data, strips header, gives to IP

• IP checks header, processes options

• IP checks for good address (unicast, one
of our multicasts, broadcasts)

• IP reassembles if necessary, gives whole
pkt to UDP based on protocol field

Receiving a UDP Datagram

• UDP receives IP/UDP packet

• checks length and checksum

• if multicast, give to all listeners on port

• locate OS PCB based on dest port,
providing receiving process’ ID; generate
ICMP unreachable if nobody there

• copy to receiving process’ buffer

• make receiving process runnable

5

What a UDP/IP Packet Looks Like

• UDP/IP Packet on Ethernet, no frag:

• UDP/IP Packet on Ethernet, frag’d:

EtherIPUDPApp Data

EtherIPUDPApp Data

EtherIPApp Data

Why Use UDP?

• Downsides:
–no error correction
–no flow control
–no congestion control
–app picks packet size

• Upsides:
–no connection establishment or state
–broadcast/multicast more straightforward
–app picks packet size

Intro to Reliability

• So, with UDP we basically have IP with
port numbers and error detection

• Would like a way to provide reliable
delivery to applications

• Must deal with:
–packet drops, duplicates, and damage
–flow control (overrun at receiver)
–congestion control (overrun in network)

Repairing Errors

• We have already seen error correcting
codes. These are rarely use to repair
whole-packet errors (drops)

• Instead, typical strategy is to re-send
data which was lost during transit (lost
includes damaged beyond repair)

• Example of ARQ (Automatic Repeat
Request)

Simple ARQ: Stop & Wait

• Agree that a receiver will send an
acknowledgement (ACK) to the sender
for every packet it receives correctly (e.g.
validating checksum)

• When sender sends packet, also sets a
timer

• If no ACK received before timer expires,
sender retransmits the packet

Stop and Wait Event Plot

Sender Receiver

Send 1, set timer

Receive 1, send ACK

Cancel timer, send 2

Timer expires, re-send 2

Time

6

Stop and Wait Performance

• Stop and Wait doesn’t perform very well

• How much work is done?
–one packet every send/ACK cycle
–so, about 1 packet every round-trip time

(RTT)
–overall throughput is ~ to (1/RTT)
–degrades significantly as RTT goes up

(distance from sender to receiver grows)

• Next time, will see how to improve this...

