
1

EECS 122, Lecture 19EECS 122, Lecture 19
Today’s Topics:Today’s Topics:

More on Reliable DeliveryMore on Reliable Delivery

Round-Trip TimingRound-Trip Timing

Flow ControlFlow Control

Intro to Congestion ControlIntro to Congestion Control

Kevin Fall, kfall@Kevin Fall, kfall@cscs..berkeleyberkeley..eduedu

Reliable DeliveryReliable Delivery

•• Stop and WaitStop and Wait
––simple ARQ scheme, bad performancesimple ARQ scheme, bad performance
––degrades with increasing RTTdegrades with increasing RTT
––poor performance derives from not poor performance derives from not filling thefilling the

pipepipe

•• How to fill the pipe?How to fill the pipe?
––Recall the Recall the bandwidth-delay productbandwidth-delay product is a is a

measure of the bit storage capacity of a pathmeasure of the bit storage capacity of a path
––so, if we can keep a so, if we can keep a bwbw-delay product’s-delay product’s

worth of data in network, we fully utilize itworth of data in network, we fully utilize it

An ExampleAn Example

•• Imagine a long-distance T1 line:Imagine a long-distance T1 line:
––bandwidth: 1.544Mb/s, RTT about 45msbandwidth: 1.544Mb/s, RTT about 45ms
––bwbw-delay product about 70Kb (8700 bytes)-delay product about 70Kb (8700 bytes)

•• Assuming Stop&Wait w/frame size 1KB:Assuming Stop&Wait w/frame size 1KB:
––performance is ~ (1frame)/(1 RTT) =performance is ~ (1frame)/(1 RTT) =
––1KB/(0.045s) = 182Kb/s1KB/(0.045s) = 182Kb/s
–– limits performance to about 1/8 of linklimits performance to about 1/8 of link

Improving over Stop & WaitImproving over Stop & Wait

•• Want a way to fill up the bandwidth-Want a way to fill up the bandwidth-
delay product of the pathdelay product of the path

•• Extend S&W with the ability to introduceExtend S&W with the ability to introduce
>1 packet into the network before>1 packet into the network before
receiving an ACKreceiving an ACK

•• Go-back-n, also called Sliding WindowGo-back-n, also called Sliding Window
–– introduce a window of size nintroduce a window of size n
––can inject n packets into net before hearingcan inject n packets into net before hearing

an ACKan ACK

Picture of Go-back-n/SlidingPicture of Go-back-n/Sliding
WindowWindow

Sender Receiver

Send 1, set timer 1

Receive 1, send ACK

Cancel timer 1, send 4

Send 7

Time

Send 2, set timer 2
Send 3, set timer 3

Receive 2, send ACK
Receive 3, send ACK

Cancel timer 2, send 5
Cancel timer 3, send 6

Timer 6 expires, re-send 6
Timer 5 expires, re-send 5

Send Window MaintenanceSend Window Maintenance

•• So, how does the sender keep track ofSo, how does the sender keep track of
what to send?what to send?

•• Sliding windows:Sliding windows:
–– label each packet with a label each packet with a sequence numbersequence number
––a a windowwindow is a collection of adjacent is a collection of adjacent

sequence numberssequence numbers
–– the size of the collection is the the size of the collection is the sender’ssender’s

window sizewindow size

2

Example (send window, w=3)Example (send window, w=3)

6 7 8 9 10 11 12

Sent and ACK’d

Not yet able to
be sent

Send Window
Window Size=3

In-window packets are sent but not yet ACK’d,
also called unacknowledged packets

Example (Example (recvrecv ACK for 8) ACK for 8)

6 7 8 9 10 11 12

Sent and ACK’d

Not yet able to
be sent

Send Window
Window Size=3

Window has “slid forward”, allowing 11 to be sent,
and 8 to be retired

Receive Window MaintenanceReceive Window Maintenance

•• Receiver keeps a similar windowReceiver keeps a similar window

•• Why?Why?
––Receiver has a finite bufferReceiver has a finite buffer
–– left window edge is first packet receiverleft window edge is first packet receiver

wants to seewants to see
–– right edge is last packet it can holdright edge is last packet it can hold
––packets < left edge or > right edge droppedpackets < left edge or > right edge dropped
––other (good) packets are queued, allowingother (good) packets are queued, allowing

for fixing up out-of-order packetsfor fixing up out-of-order packets

Example (Example (recvrecv window, w=3) window, w=3)

6 7 8 9 10 11 12

Recv’d and ACK’d

Not yet able to
receive

Recv Window
Window Size=3

In-window packets may be received, even out of order

Example (Example (recvrecv packet 8) packet 8)

6 7 8 9 10 11 12

Recv’d and ACK’d

Not yet able to
be received

Recv Window
Window Size=3

Window has “slid forward”, allowing 11 to be received,
and implying an ACK generation for 8

Some ObservationsSome Observations

•• With sliding windows, it is possible toWith sliding windows, it is possible to
fully utilize a link, provided the windowfully utilize a link, provided the window
size is large enough. Throughput is ~size is large enough. Throughput is ~
(w/RTT); Stop & Wait is like w = 1.(w/RTT); Stop & Wait is like w = 1.

•• Sender has to buffer all unacknowledgedSender has to buffer all unacknowledged
packets, because they may requirepackets, because they may require
retransmissionretransmission

•• Receiver may be able to accept out-of-Receiver may be able to accept out-of-
order packets, but only up to its bufferorder packets, but only up to its buffer
limitslimits

3

RetransmissionsRetransmissions

•• So, the sender needs to set timers inSo, the sender needs to set timers in
order to know when to retransmit aorder to know when to retransmit a
packet the may have been lostpacket the may have been lost

•• How long to set the timer for?How long to set the timer for?
––Too short: may retransmit before data orToo short: may retransmit before data or

ACK has arrived, creating duplicatesACK has arrived, creating duplicates
––Too long: if a packet is lost, will take a longToo long: if a packet is lost, will take a long

time to recover (inefficient)time to recover (inefficient)

Retransmission TimerRetransmission Timer

•• The amount of time the sender shouldThe amount of time the sender should
wait is about the round-trip time (wait is about the round-trip time (RTTRTT))
between the sender and receiverbetween the sender and receiver

•• For link-layer networks (LANs), this valueFor link-layer networks (LANs), this value
is essentially knownis essentially known

•• For multi-hop WANS, rarely knownFor multi-hop WANS, rarely known

•• Must work in both environments, soMust work in both environments, so
protocol should adapt to the pathprotocol should adapt to the path
behaviorbehavior

Adaptive Retransmission TimerAdaptive Retransmission Timer

•• In order to set retransmission timer,In order to set retransmission timer,
must know approximate RTT for bothmust know approximate RTT for both
WAN and LAN connectionsWAN and LAN connections

•• One way:One way:
––measure each send/ACK combinationmeasure each send/ACK combination
–– take time-averaged estimate of RTTtake time-averaged estimate of RTT
––set timer to some factor times this averageset timer to some factor times this average
––(used in early (used in early TCPsTCPs…we will see…we will see

improvements once we cover TCP in detail)improvements once we cover TCP in detail)

The Question of The Question of ACKsACKs

•• What exactly should the receiver ACK?What exactly should the receiver ACK?

•• Some possibilities:Some possibilities:
––ACK every packet, giving its sequenceACK every packet, giving its sequence

numbernumber
––use use cumulative ACKcumulative ACK, where an ACK for, where an ACK for

number number nn implies ACKS for all implies ACKS for all k < nk < n
––use use negative negative ACKsACKs ((NACKsNACKs), indicating which), indicating which

packet did not arrivepacket did not arrive
––use use selective selective ACKsACKs ((SACKsSACKs), indicating those), indicating those

that did arrive, even if not in orderthat did arrive, even if not in order

Issues with Issues with ACKsACKs

•• ACKsACKs might be dropped in the network: might be dropped in the network:
––often results in similar behavior as though aoften results in similar behavior as though a

packet was droppedpacket was dropped
––so, do so, do ACKsACKs need reliable transfer too? need reliable transfer too?
––If so, then chicken-and-egg problem…If so, then chicken-and-egg problem…
––note that with cumulative note that with cumulative ACKsACKs, not too bad, not too bad

if some if some ACKsACKs are lost, provided there are are lost, provided there are
many of themmany of them

–– focus on cumulative ACKS (used by TCP)focus on cumulative ACKS (used by TCP)

Cumulative and DelayedCumulative and Delayed ACKs ACKs

•• Cumulative ACK Example:Cumulative ACK Example:
––receiver receives packets 1,2,3,5,6,7,8receiver receives packets 1,2,3,5,6,7,8
––sends sends ACKs ACKs for 1,2,3 or maybe 1,2,3,3,3,3,3for 1,2,3 or maybe 1,2,3,3,3,3,3
––upon receiving packet 4, upon receiving packet 4, ACKsACKs 8 8

•• Observations:Observations:
––can’t ACK out-of-order packetscan’t ACK out-of-order packets
––can delay can delay ACKsACKs, say, for every other packet, say, for every other packet
––delaying might be useful for delaying might be useful for piggybackingpiggybacking

ACKsACKs on data (on reverse-direction flow) on data (on reverse-direction flow)

4

Send Window Size IssuesSend Window Size Issues

•• A bigger send window size providesA bigger send window size provides
larger throughput… (well, maybe)larger throughput… (well, maybe)
–– if w is too big for what the receiver canif w is too big for what the receiver can

handle, extra data is discarded at thehandle, extra data is discarded at the
receiver and must be retransmittedreceiver and must be retransmitted
(inefficient)(inefficient)

–– if w is too big for what the network canif w is too big for what the network can
handle, extra is discarded within the networkhandle, extra is discarded within the network
and must be retransmitted (also inefficient)and must be retransmitted (also inefficient)

•• Want flow and congestion control…Want flow and congestion control…

Avoiding receiver overrunAvoiding receiver overrun

•• Flow controlFlow control
––recall receiver’s window is a measure of howrecall receiver’s window is a measure of how

much data receiver can buffermuch data receiver can buffer
––would rather the sender not send more thanwould rather the sender not send more than

the receiver can handlethe receiver can handle
––need a way for the receiver to tell the senderneed a way for the receiver to tell the sender

how much buffer space is availablehow much buffer space is available

•• Window “advertisement”Window “advertisement”
––receiver tells sender how much spacereceiver tells sender how much space

availableavailable

ExampleExample

Sender Receiver

Seq 1

ExampleExample

Sender Receiver

Seq 1

ExampleExample

Sender Receiver

ACK=1
Win=3

ExampleExample

Sender Receiver

ACK=1
Win=3

5

ExampleExample

Sender Receiver

Seq 2

ExampleExample

Sender Receiver

Seq 2

ExampleExample

Sender Receiver

ACK=2
Win=2

ExampleExample

Sender Receiver

ACK=2
Win=2

ExampleExample

Sender Receiver

Seq 4 Seq 3

ExampleExample

Sender Receiver

Seq 4

ACK=3
Win=1

6

ExampleExample

Sender Receiver

ACK=4
Win=0

ACK=3
Win=1

ExampleExample

Sender Receiver

ACK=4
Win=0

Sender receives ACK for 3, but remembers
it sent 3 & 4 when win=2, so no more yet

ExampleExample

Sender Receiver

Sender now frozen due to flow control

Flow ControlFlow Control

•• Flow control happens when receiver isFlow control happens when receiver is
unable to keep up with sender’s rateunable to keep up with sender’s rate
––consuming process may be busyconsuming process may be busy
–– receiving computer may be slowreceiving computer may be slow

•• Window information arrives with Window information arrives with ACKsACKs,,
so send window slides forward at theso send window slides forward at the
same time it might shrink or expandsame time it might shrink or expand

Sliding Windows w/Flow ControlSliding Windows w/Flow Control

•• Purposes of sliding window:Purposes of sliding window:
––guarantees the reliable and efficient deliveryguarantees the reliable and efficient delivery

of dataof data
––ensures data is delivered in order (or at leastensures data is delivered in order (or at least

corrected at receiver)corrected at receiver)
––provides for flow controlprovides for flow control

•• Flow control is implemented by changingFlow control is implemented by changing
the sender’s window based on thethe sender’s window based on the
receiver’s advertised windowreceiver’s advertised window

Example (send window, w=3)Example (send window, w=3)

6 7 8 9 10 11 12

Sent and ACK’d

Not yet able to
be sent

Send Window
Window Size=3

Sender now receives (ACK:8, win:2)

7

Example (Example (recvrecv ACK:8, win:2) ACK:8, win:2)

6 7 8 9 10 11 12

Sent and ACK’d

Not yet able to
be sent

Recv Window
Window Size=2

Window has “slid forward”, but has also become smaller
(by left window edge moving to the right). Window
“shrinkage” (moving right edge to the left) is usually
avoided.

Flow and Congestion ControlFlow and Congestion Control

•• Limiting the sender’s rateLimiting the sender’s rate
––based on receiver: flow controlbased on receiver: flow control
––based on network: congestion controlbased on network: congestion control

•• Congestion ControlCongestion Control
––try to limit the sender’s rate based on thetry to limit the sender’s rate based on the

ability of the network to deliver trafficability of the network to deliver traffic

ExampleExample

Sender ReceiverRouter

Output Queue

ExampleExample

Sender ReceiverRouter

Output Queue

ExampleExample

Sender ReceiverRouter

Output Queue

ExampleExample

Sender ReceiverRouter

Output Queue

8

ExampleExample

Sender ReceiverRouter

Output Queue

ACK:1,win:100

ExampleExample

Sender ReceiverRouter

Output Queue

ACK:1,win:100

ExampleExample

Sender ReceiverRouter

Output Queue

ExampleExample

Sender ReceiverRouter

Output Queue

ExampleExample

Sender ReceiverRouter

Output Queue

ExampleExample

Sender ReceiverRouter

Output Queue

9

ExampleExample

Sender ReceiverRouter

Output Queue

Results of CongestionResults of Congestion

•• Large queue occupancy implies:Large queue occupancy implies:
–– increased delayincreased delay
––possible increased jitterpossible increased jitter
–– increased loss probabilityincreased loss probability

•• Lost packet may trigger retransmissions:Lost packet may trigger retransmissions:
––sending more packets into the network whilesending more packets into the network while

it is running over capacity exacerbates theit is running over capacity exacerbates the
congestion problemcongestion problem

–– in the limit, leads to in the limit, leads to congestion collapsecongestion collapse

Congestion CollapseCongestion Collapse

•• Condition in which network is busy, butCondition in which network is busy, but
no (not much) useful work is beingno (not much) useful work is being
accomplishedaccomplished

•• Can occur with protocols that are notCan occur with protocols that are not
careful to avoid congesting the networkcareful to avoid congesting the network

•• Happened in real life in the Happened in real life in the ARPAnetARPAnet
about 1987 or so…about 1987 or so…

Dealing with CongestionDealing with Congestion

•• Need these to deal with congestion:Need these to deal with congestion:
––a way to determine the network is becominga way to determine the network is becoming

congested or is already congestedcongested or is already congested
––an algorithm to slow down during times ofan algorithm to slow down during times of

congestioncongestion
––a way to speed up if the network becomesa way to speed up if the network becomes

uncongesteduncongested

Detecting CongestionDetecting Congestion

•• Two approachesTwo approaches
––explicit: network tells youexplicit: network tells you
–– implicit: endpoint infers using traffic statisticsimplicit: endpoint infers using traffic statistics

•• On the Internet:On the Internet:
––TCP uses packet loss to indicate congestionTCP uses packet loss to indicate congestion

(an implicit approach)(an implicit approach)
–– ICMP Source Quench, and TCP ECNICMP Source Quench, and TCP ECN

(experimental) provide explicit signaling(experimental) provide explicit signaling

•• Do lost packets always mean congestion?Do lost packets always mean congestion?

