EECS 122, Lecture 20
Today 3 Topics:
Packet Scheduling
Buffer Management

Congestion Control

Kevin Fall, kfall@cs.berkeley.edu

Congestion Control Model

—Reduced model includes:
«data source(s)
«data sink

«the router in front of the slowest link

(bottleneck router), its queue and queuing
discipline

Source Router w/queue Sink

Congestion Control Model

I m
O—CGm——0O
D

Source Router w/queue Sink

< Reduced Model Parameters:
- | : arrival rate
- m service rate
—D: total round-trip delay (RTT)
—B: buffer at bottleneck router

Congestion Control Model

I m

O O
D

Source Router w/queue Sink

= Observations:
- | >m: buffer overrun if persistent
- | <m: empty buffer
- | and mare not constant

- only know mafter a delay (near the RTT)

Relationship to Window Sizes

I m

O O
D

Source Router w/queue Sink

—recall, throughput is ~ w/RTT

—so0, need (I =w/RTT) <=m

—or: w <= (D n) [bandwidth-delay product]
—equality achieves maximum utilization

In the case of a window-based protocol:

Goal of Congestion Control

I m
O O
D
Source Router w/queue Sink
= So, the goal of congestion control is to:

—keep B at least minimally occupied (with stat
mux, will keep link fully utilized)

—not allow | >mto persist




What Happens at a Router

- Router3 job is to classify a packet
(determine where it is going, and
possibly other information)

- Packets often must wait at an output
queue before being sent

- Questions: How are these queues
maintained? How many of them exist?
Does any of this really matter?

What Happens at a Router

- So, really two key questions:
- what sort of packet scheduling is used:
- multiple queues?
- special resources/priorities?
- what sort of buffer management is used:
- on overload, what packets are discarded?
- possible to discard prior to overload?

FIFO Queues

O—CGm—O0

Source Router w/FIFO Sink

- most simple scheduling and buffer
management discipline

—classifier is NULL (no special marking)

- always service head-of-line (FCFS)

- new arrivals to full buffer are dropped (also
called “trop-tail™)

Observations on FIFO

- pushes responsibility of congestion
control to edges of network

- no sensitivity to type/class of traffic

- A theoretical result [Kleinrock75]:

- a scheduling discipline can reduce a
particular connection 3 mean delay,
compared with FCFS, only at the expense of
another connection

Variants on FIFO

- multiple FIFOs w/priority

- FIFO scheduling with alternative buffer
management/discard policies (e.g. drop
from head, random drop)

Traffic-Sensitive Queuing

- Problem with simple FIFO is no sensitivity
to traffic class/type

- Two issues:

- not clear that congestion control can be
completely effective if implemented only at
endpoints

- lack of per-flow separation allows ill-behaved
flows to harm the performance of reactive
flows




Fair Queuing (and R/R)
HERRENGY

m = / Round-Rabin
]]]]] > Scheduler
-

- To provide flow isolation, give each flow
its own queue and perform round-robin
scheduling between them

- Provides local fairness among flows using
end-to-end congestion control algorithms
and same packet size

FQ Details

- Packet-by-packet RR fails to give equal
bw partitioning when different packet
sizes are used

- So, really want bit-by-bit round-robin
(not practical, instead try to simulate)

- Compute when a packet would have
finished (using bit-rr), then use this to
order the list of outgoing packets

FQ Details

- Proceed as follows:

- S[i]: start xmit time for pkt i, F[i]: finish xmit
time for pkt i, A[i]: arrival time pkt i

- P[i]: time to xmit pkt i (in bit ticks)
- F[i] = S[i] + P[]
- F[i] = MAX(F[i-11, A[i]) + P[i]
- Use F[i] for each packet of each flow as a

deadline, and emit packets earliest
deadline first (work-conserving)

Observations on FQ

- work-conserving
- for n flows, each gets <= 1/n bw of link

- can extend FQ to weighted FQ (WFQ) to
provide different service between queues
(but router must known weight vector)

General Packet Handling Model

= Model for packet handling at router:

—packet classification (queue selection)

—scheduling

—buffer management for each queue

Active Buffer Management

= We have seen both active and passive
scheduling (FQ and FCFS)

« Similar issues with buffer management

= Drop-tail is simple, passive buffer
management technique

= Active techniques allow for reaction prior
to buffer exhaustion

= One example: RED gateways




Random Early Detection (RED)

= Active buffer management technique

= Key components:
—underlying FIFO packet queue
—measure of time-averaged queue occupancy
—randomization

= |dea is that when congestion is
imminent, notify sources they should
reduce their sending rates

RED Operation

= Time-averaged queue occupancy
measure is based on an exponentially-
weighted moving average (EWMA):
—avg = (1-w) * avg + w * (new sample)
—w is “Weight”’(gain constant), ~0.002

« Two thresholds:

—minth: min threshold to initiate random
drop/mark

—maxth: max threshold to use random
drop/mark

RED Operation

= On packet arrival, do the following:

—avg < minth: queue packet normally

—avg > maxth: drop/mark packet

—minth < avg < maxth: mark/drop w/prob p
= Probability p given by:

—t = maxp*(avg-minth)/(maxth-minth)

—p = t/(1-cnt*t)

—gives initial p on [0..maxp]

—cnt is pkt cnt since last random mark/drop

RED Characteristics

= Uses early mark/drop to notify sources
prior to buffer overrun; randomization
tends to distribute notifications across
sources

= Drop/mark probability is roughly
proportional to a flow 3 bandwidth
utilization at router

= Underlying buffer size usually
considerably bigger than maxth to
accommodate short-term bursts

Congestion Avoidance & Control
=« \We have now seen actions taken at
routers/switches to affect traffic flow

= We may also use techniques at sources
to limit their load on the network, or
combine approaches

= Several ways of doing this...

Congestion Control Taxonomies

- Several ways of characterizing
approaches...

- open loop or closed loop

- network enforced or host enforced




Open Loop Congestion Control

- source establishes traffic descriptor with
network describing its needs

- net typically reserves resources and
performs enforcement:
- admission control for new connections
- policing at edges for data

- challenges: choosing the traffic

descriptor, choosing scheduling discipline
at routers, performing admission control

Closed Loop Congestion Control

- network does not reserve resources (no
such capability, or want stat. muxing)

- source adjusts its traffic volume based on
feedback from network or sink:
- explicit or implicit state measurement
- rate-based or window-based
- hop-by-hop or end-to-end

Perspective on Approaches

- Most common approach today is
feedback-based closed-loop congestion
control with enforcement at the edges

- Functionality beyond best-effort service
(class of service, quality of service) may
involve support similar to that in open
loop congestion control systems

- For now, we will proceed with studying
the predominant closed-loop approach...

Evaluation Criteria

- Effectiveness

- want to fully utilize links in network, but
filling all queues increases end-to-end delay

- how to measure throughput/delay tradeoff?

- Fairness

- how do multiple flows share a common
network?

- if we assume fair means equal, how to
measure if a set of flows are receiving equal
treatment?

Effectiveness

- Throughput/delay tradeoff

- with stat muxing (and a work-conserving
service discipline), outgoing link is always
fully utilized if any packet present

- want to avoid empty queues, but larger
queues mean larger delays
- Network power:
- Power = (Throughput)a/ (Delay)
-0<ax<l1

Network Power

Optimal Load
—

Power

Traffic Load




Jain'3 Fairness Index

- A definition for fairness:
- 0 <=f() <=1, given flow throughputs x

- locally equal partitioning of bandwidth
achieves index of 1. If only k of n flows
receive equal bw (and others get none),
index is k/n

- what about different-length flows? (p.401)

Congestion Control with TCP

- Congestion control added to TCP in late
80s as a result of congestion collapse
problem

- ldea:

- host figures out how many packets it can
safely inject into network

- each received indicates 1 (or possibly more)
packets have been removed from network,
allowing host to inject another

- self-clocking property ensures stability

Challenges for TCP

- How to determine how many packets to
inject into network?

- Too many: overrun buffers
- too few: underutilization of link
- Additional problems:

- available bandwidth changes over time as
new connections start and terminate

- More next time...




