EECS 122, Lecture 22
Today 3 Topics:
TCP Congestion Control
Fast Retransmit
Round-Trip Estimation & Time-out

Silly Window Syndrome

Kevin Fall, kfall@cs.berkeley.edu

TCP Slow Start

« Slow-start is a TCP behavior used to get
to packet equilibrium

= Slow-start increases the congestion
window exponentially, rather than
linearly

<« Why called slow-start then?

—well, it is considerably slower than what used
to happen (start based only on the receiver3
advertised window)

TCP Slow Start

= For each ACK received, increase the
congestion window by 1

= Results in cwnd pattern of: 1, 2, 4, 8, 16,
32, ...

—takes time proportional to log, W to reach
window of W, [longer if ACKs delayed]

TCP Slow Start

cwnd

Number of RTTs

TCP Slow Start

Increase by 1
packet per ACK

‘ Time

W

Sender Receiver

TCP Congestion Behaviors

= Two algorithms:
—slow-start: getting to equilibrium

—congestion avoidance: searching for new
available bandwidth in path (and reacting to
congestion)

« The two behaviors are mutually exclusive
for any single point in time, but each TCP
implements both:

—establish an operating point to switch
between the two algorithms (ssthresh)

TCP Slow-Start & Congestion

Slow-Start Threshold (ssthresh) Avoidance
= Need a way to determine whether the
TCP should do slow-start or congestion

. ssthresh
avoidance

.

< New variable (ssthresh):

—if cwnd <= ssthresh, do slow-start

cwnd

—if cwnd > ssthresh, do congestion avoidance

= ssthresh is initialized to a large value,
after a congestion signal, cwnd is divided Nurmb fRTT‘
in half, and ssthresh is set to cwnd umber ot RETs

ssthresh and cwnd maintenance Detecting Loss with TCP

= Congestion window is normally divided = TCP uses lost packets as indicators of
on congestion indications (packet dops), congestion
and grows linearly if above ssthresh

« Two methods
« ssthresh is reset to cwnd after it is

—timer expiring
reduced to keep a marker of the last i
R . —fast retransmit
operating point
= Fast retransmit:
« 50, when do we ever enter slow-start

after a connection has started? —because of cumulative ACK, out-of-order

data received at receiver may generate
duplicate ACKs (“tupacks™)

Duplicate ACKs Fast Retransmit

= We arrange for TCPs receiving out-of-

= Heuristic at sender to trigger
order packets to respond immediately

retransmissions w/out timeouts
with one ACK per packet: . .
. perp = To avoid retransmitting due to small re-
—receiver gets: 5, 6, 7, 8, 10, 11, 12, 13 ordering, look for 3 DUPACKS
—ACKs: 6, 8,[4 dupacks]
)]) = S0, on 3rd dupack for packet n,
= Provides a hint to sender that packet 9 is retransmit n+1, and send more if send
probably missing at receiver and that 4 window allows
packets have arrived after 8 arrived))
= |f only one packet lost, fills receiver3
« [think about re-ordering!]

“hole”; resulting in ACK for top of window

Fast Retransmit Example

Send 2..6
3is lost

ACK 2, Send 7—

3xACK 2 {
Re-send 3 7

ACK 7 —» Time
Send 8..12 {

Sender Receiver

Fast RTX Observations

= Fast retransmit can repair modest packet
lost without requiring a retransmission
timer to expire

= Because it requires 3 dupacks to fire,
doesn Tt work so well with small windows
(because there wont be enough ACKs
generated at the receiver)

= With large numbers of dropped packets,
similar problem (not enough ACKs)

Congestion Action on Loss

= TCP has different behaviors, depending
on the way it detects loss (RFC2001):
—RTX timer expires:
«ssthresh = MAX(MIN(win,cwnd)/2,2)
«cwnd = 1 (initiates slow-start)
—fast retransmit (fast recovery):
«ssthresh = MAX(MIN(win,cwnd)/2,2)
«cwnd = ssthresh + 3

«each additional dupack increments cwnd by 1
—fast recovery
— (cwnd = ssthresh on new ACK)

TCP Congestion Behavior
(summary)

« Slow-start:

—new connection, after idle time, after RTX
timer expires

—set cwnd=1, grow window exponentially
—searches quickly for operating point

= Congestion avoidance:
—normal operations, fast RTX/recovery
—divide operating point in 1/2 after loss
—searches slowly for new bandwidth

Setting TCP3 RTX Timers

= Slow-start is invoked as a result of a
timer expiring (resetting the world)

= Recall we need some way of setting this
timer, but TCP must work both in local as
well as very long delay environments

=« Need a way to set the timer based on the
connection 3 round-trip time:
—how to measure the RTT?

—how to set the RTX timer based on this?

Measuring the RTT

= Should be very simple:
—when sending a packet, jot down the time
—when receive the ACK for it, take the
difference and call that the RTT
< Problem:

—in TCP, no way to tell whether an ACK was
for an original or retransmitted packet

—called “acknowledgement ambiguity””

Karn3 Algorithm

< Really two parts...

= To solve ACK ambiguity:

—do not measure the RTT for segments that
have been retransmitted (simple)

< On a timeout:
—network is telling you it is having trouble

—so0, double RTX timer (up to 64x) on each
subsequent timeout (64s max)

Estimating the RTT

= To estimate the connection 3 round-trip
time, TCP uses an exponentially weighted
moving average (like RED):

W =om +(1-0)W_,

= Also called a low-pass filter

= Requires only 1 word of memory

EWMA Example

\
| b/ | Vx

2

Properties of the EWMA

= Also sometimes expressed as:

W =o(m -W_,) +W,
= This form is useful because it involves
only one multiply (computationally

expensive as compared with add or
subtract)

TCP RTT Measurement

= Early TCPs used just the mean RTT
estimate and set the timer to be 2x this
estimate...the 2 accounting for some
amount of variance

= In large-variance networks, though, this
might not be enough. How to measure
the variability of the RTT as well...?

= Perhaps the standard deviation...

Measuring Variability

<= Most common measure of sample
variability is sample variance S° [square
of the standard deviation]:
(m-X)*
SZ i=1
n-1
= Not very efficient for a protocol
implementation due to the square root
needed to get the sample std. deviation

Measuring Variability

= Alternative is to use the mean deviation
(or mean absolute deviation--MAD):
Im-XI|
MD=1%1
n
= No need to square or take square root.
Units are same as mean. Not commonly
used because of less nice predictive
properties than standard deviation.

Setting the TCP RTX Timeout

« TCP uses a combination of the mean and
mean deviation estimators:

—RTT = (1-g)*RTT + g * [rtt sample]

—D = (1-h)*D + h * |sample - RTT]|

—g = 0.125 (27-3), h = 0.25 (2™-2)

—efficiently implemented using fixed point
arithmetic

= S0, 95% of the time would expect:

—(RTT-2D)<(actual RTT)<(RTT+2D) if normal

Setting the TCP RTX Timeout

« But RTTs dont seem to be Gaussian, so
additional “fuzz”’is used:

—RTO=RTT+4*D
< In addition, many TCPs use an imprecise

clock that only “ticks”’every 500ms. All

RTT measurements (and timeouts) use
this tick rate.

= Only a single timer maintained usually

Silly Window Syndrome

= Recall TCP is a window-based protocol

= What happens if a receiver with a small
buffer advertises it, and sender quickly
fills it with a small amount of data?

—inefficient use of bandwidth by sending high-
overhead “tinygrams™’

« \What to do?

—want a way to “Save up’’enough to send,
and do so only when “Worth it””

Nagle 3 Algorithm

= Purpose is to avoid inefficient use of
bandwidth

= Sender operation:

—buffer all user data if any unacknowledged
data is outstanding

—ok to send if all ACKd or have a full packet
(MSS) size worth of data to send

= Receiver operation

—ok to send if can open recv window enough

Receive Side SWS Avoidance

= Receiver resists advertising a window
bigger than it is currently advertising

(which might be zero) unless it can be
increased by at least

MIN(one MSS, 0.5 * receiver 3 available buffer)

= Same bit of logic ensures that window
shrinkage does not occur

Properties of Nagle Algorithm

= Applies only to small packets. For bulk
data transfers, always have a full MSS to
send

= Algorithm is self-clocking:

—basically does Stop&Wait for small packets

—on LAN, small RTT implies not much wait,
but inefficient

—on WAN, large implies more wait, but more
efficient on long links [where it counts most]

Impact of Nagle Algorithm

= When small delay is needed, Nagle
algorithm can cause unwanted packet
delays

= Applications can disable this algorithm:
int one = 1;

set sockopt (sock, |PPROTO TCP, TCP_NCDELAY, &one,
si zeof (one))

Where we are so far with TCP

= Important algorithms
—congestion avoidance
—slow start
—round-trip time estimation
—Karn 3 timer backoff
—silly window avoidance/Nagle

= We don 1 yet know about connection
establishment (next time...)

