¹ EECS 122, Lecture 24

Today's Topics: Intro to the Telephone Network

Kevin Fall, kfall@cs.berkeley.edu

² Problem Set 4

- Read: text 4.3
- Problems (chp. 4):
 - 2, 8, 9, 10, 11
 - due April 27

³ Telephone Net Concepts

- > 1 billion telephones, > 200 million calls a day just on one carrier (AT&T)
- Circuit switching
 - two-party, small end-to-end delay and jitter, reserved resources once call admitted
 - full duplex connections
- Intelligence placed within the network, not in endsystems (telephone sets) [contrast with Internet]

⁴ Recent History

- The important 1980's:
 - deployment of large digital switches
 - adaptation of computer-controlled switches to provide switching multiple data types
 - deployment of fiber optic transmission media

- The breakup (Jan 1, 1984)
 - AT&T -> 7 RBOCs plus AT&T and others
 - long-distance carriers (IXCs) open
 - local area (LATA) carriers (LECs) regulated

⁵ More Recent History

- The 1996 Telecom Act
 - removes numerous restrictions on LECs
 - LECs can provide long-distance and IXCs can provide local calling, if certain restrictions are met [like equal access to IXC, space sharing]
 - players:
 - ILECs (incumbent LECs; own COs and loops)
 - CLECs (competitive LECs)
 - "your competitor is your landlord"

• C Telephone Net Structure

- End systems (phones, faxes, etc)
- Central offices (COs)
 - local aggregation points for phone lines
 - wire pair (local loop) to each telephone
 - most are analog, provide A/D conversion
- Exchanges
 - switches connecting end systems
 - connect to back-bone (core) switches

⁷ Telephone Net Structure

- Backbone switches
 - (near) fully-connected set of switches
 - < 500 (vs 10000 exchanges)
- Simplified architecture picture:
- Bierarchical Addressing Example

- To route: 512-224-3213
 - must pass through backbone handling 512 area code and 224 exchange
 - may also pass through others
- Special area codes (700,800,888,900)
 - number used as index into table
 - table contains actual telephone number
 - table may be modified by time of day, etc
- [•] The Details
 - End systems
 - Transmission
 - Switching
 - Signaling
- ¹⁰ End Systems
 - Traditionally a telephone (POTS):
 - sound-to-electric transducer
 - electric-to-sound transducer
 - dialer, ringer, switch hook
 - Echo issues:
 - with only 2 wires, side-tone (hearing yourself talk) must be limited but present
 - received sound may be echoed back (ok for small local delay, actively cancelled with circuitry at backbone switches [costly])

¹¹ Newer End-Systems

- Digital local loops:
 - ISDN (BRI)
 - xDSL
- ISDN (BRI):

- 2x64kb/s circuit channels
- 1x16kb/s packet channel
- DSL:
 - up to 1Mb/s, possibly asymmetric, FDM with respect to POTS service

¹² Transmission

- familiar characteristics: bandwidth, delay, attenuation
- attenuation addressed with regenerators:
 - with optical fiber, every 5000km
 - non-electric optical amplification possible
- digital multiplexing:
 - 8000 samples/sec at 256 levels=64kb/s
 - mu-law encoding in US, Japan

¹³ DM Operation

- TDM muxing of digital voice streams
- Common service is T1(line), DS1(std):
 - 1.544Mb/s, 8000f/s at 193 bits/frame
 - 192/8 = 24 bytes(TDM'd calls)/frame + 1 bit
- Digital Signaling (DS) Hierarchy:
 - DS0 (64kb/s), DS1(1.544Mb/s), DS3(44.736Mb/s)
 - not exact multiples due to framing overheads

¹⁴ Plesiochronous Operation

- Almost synchronous: components generate data at nominally the same bit rate, but are allowed to vary by a bounded amount [used for DS2,3]
- Requires a good, but not perfect, clock
- Muxing uses bit interleaving; differences in clock rates are accommodated by *justification* or *bit*

stuffing

¹⁵ Justification or (Pulse/Bit) Stuffing

- output channel rate higher than sum of input rates
- additional bits inserted to pad input rate
- allocations of input rates at output are at the minimum rate (no underflow), so slightly-fast inputs use up stuff bits
- need to read a whole frame to properly extract the individual inputs
- ¹⁶ Problems with Plesiochrony
 - Each part of the world has its own (not directly inter-operable) format
 - Justification spreads data from tributaries all across frame, making it difficult to add/drop data from a particular stream
 - Hard to build switches that switch bundles of voice calls instead of individual ones [all must demux down to DS0 to find individual calls]

¹⁷ Synchronous Operation (SONET)

- If network was completely synchronous, no need for justification (in theory...)
- SONET defines a multiplexing hierarchy with exact multiples of data rates:
 - OC-3(155.52Mb/s), OC-12(622.08Mb/s), OC-24(1.24416Gb/s), OC-48(2.48832Gb/s)
- Assumes synchronized clock
- Uses byte interleaving across lesser-speed signals (tributaries)
- ¹⁸ Benefits of SONET

- Creates a standard muxing format for any number of 51.84Mb/s signals
- Creates an optical standard for interconnecting multiple-vendor equip.
- Creates standard operation, administration, and maintenance (OAM)
- Defines synchronous muxing format for lowerspeed (DS1, 2, etc) signals

¹⁹ Complications of SONET

- SONET can handle aggregations of lower-speed plesiochronous signals, so still need a form of justification
- SONET has overhead:
 - about 27/810 bytes (about 3%)
- SONET is complicated:
 - recall 2-D frame format & pointer offset
- SONET requires good clock (+/-1 in 10^11)

²⁰ Switching

- Telephone switch is actually two parts:
 - switching hardware (moves data)
 - switch controller (handles set up/clearing)
 - (we covered most of the issues already)
- Controllers known as overlay network
- Messaging between controllers form signaling network, with its own protocol

²¹ Simple Signaling

 Tones or pulses from end system interpreted at switch controller

- If intra-exchange call, rings bell on receiver, sets up billing record
- If inter-exchange, sends set-up message to switch controller on nearest backbone
- Controller not directly involved in the forwarding of voice samples (control versus data plane)
- ²² Simplified Controller FSM
- ²³ Common Channel Inter-office Signaling (CCIS)
 - Older phone network used in-channel & in-band signaling between controllers using tones (discovered by *phone phreaks*)
 - Current system uses out-of-band signaling
 - more secure and flexible
 - uses packet switching
 - messages use SS7 protocol
- ²⁴ Signaling System 7
 - Covers call establishment, routing and enhanced services (conference calls, etc)
 - Entire protocol stack
 - SCCP (analogous to TCP)
 - MTP-3 (analogous to IP)
 - MTP-{2,1} (datalink, physical)
 - predates ISO; hard to extend
 - Q.931 standard defines ISDN-UP semantics (call control, admission, etc)

²⁵ C Routing Structure

• calls are routed as closely as possible (within

exchanges, between exchanges in same area, or through backbone if necessary)

- (near) fully-connected backbone makes routing decision fairly straightforward
- hierarchical area/prefix/number format provides global uniqueness and scaling

²⁶ Telephone Network Routing

- COs or tandem switches connect to [multiple] core switches (toll switches). Multiple cores from various IXCs.
- Dense connectivity within core provides for reasonably simple routing:
 - if src/dst in same CO, connect them
 - if src/dst in same LEC, use 1-hop path between COs
 - otherwise, call to (one of) the core(s)
- ²⁷ Internet vs Telco Routing
 - Phone call traffic relatively easy to predict (both load and time), so can pre-select paths
 - Telephone switches/links very reliable
 - Centralized control over core
 - Highly connected with multiple equal-cost paths
 - QoS for each path (but same for all)

²⁸ Dynamic Non-Hierarchical Routing (DNHR)

- 10 time periods each day
- each toll switch assigned a primary (1-hop) path to another toll switch and a list of alternate (2-hop) paths [by time]
- try 1-hop path first, then try others in order (called crankback)

 crankback useful when routing supports QoS but wants small connection rejection rate

²⁹ The Erlang Map

- used to compute blocking probability on a trunk group given load, capacity
- DNHR assigns alternate paths to toll switches to minimize blocking probability
- So, path depends on expected load which depends on the path selection!
- How to deal with this:
 - system of equations (Erlang Map)
 - unique fixed-point solution (Erlang fixed point)

³⁰ Serlang Formula

- B(k)=blocking probability on trunk k
- B(k) = E(L(k), C(k)), E() is Erlang formula
- L(k)=load on link k, C(k) is capacity link k
- r=set of links, v(r)=load on route r
- Approximate L(k) by:
- ³¹ Intuition
 - v(r) is the intrinsic load on router r
 - each (1-B(j)) is a "thinning" of the load, so load on trunk k is just the "thinned" sum of the loads on all routes that share trunk k
 - B(k) depends on some other B(j)'s through the B()=E() equation and eqn.
 - So, each B(k) is implicitly defined by the others, forming the Erlang map
- ³² Metastability in DNHR

- Solution of Erlang map is the long-term mean blocking probability
- This mean is usually the mean of two values b and b
- Two values more representative of operating states of the network using DNHR. Why?
- ³³ Metastability in DNHR
- ³⁴ Metastability in DNHR
- ³⁵ Metastability in DNHR
- ³⁶ Metastability in DNHR
 - System can reach a stable point in which most or all traffic is taking 2-hop paths when it could all be taking 1-hop paths
 - undesirable because can lead to high blocking probability with moderate load
 - can be prevented by reserving part of each link bandwidth for 1-hop calls (called trunk reservation). May increase individual blocking probability, but leads to overall smaller blocking probability
- ³⁷ Other Techniques
 - TSMR (Trunk Status Map Routing)
 - in DNRH, alternative paths updated about once a week based on traffic studies
 - each switch measures load, tells central computer
 - periodic alternate path recomputation by central computer

³⁸ Other Techniques

- RTNR (Real-Time Network Routing)
 - current-generation routing algorithm (replaced DNHR in ATT switches in 1991)
 - distributed control
 - each switch measure load on all outgoing trunks
 - to make decision, originator asks destination for its trunk loading list, takes logical AND of the two lists and chooses path (which is symmetric)
 - about 1 or 2 blocked in core (of 260 million)