EECS 122, Lecture 24

Today's Topics: Intro to the Telephone Network

Problem Set 4

- Read: text 4.3
- Problems (chp. 4):
 -2, 8, 9, 10, 11
 due April 27

Kevin Fall, kfall@cs.berkeley.edu

Telephone Net Concepts

- > 1 billion telephones, > 200 million calls a day just on one carrier (AT&T)
- · Circuit switching
 - two-party, small end-to-end delay and jitter, reserved resources once call admitted
 - full duplex connections
- Intelligence placed within the network, not in end-systems (telephone sets) [contrast with Internet]

Recent History

- The important 1980's:
 - deployment of large digital switches
 - adaptation of computer-controlled switches to provide switching multiple data types
 - -deployment of fiber optic transmission media
- The breakup (Jan 1, 1984)
 - -AT&T -> 7 RBOCs plus AT&T and others
 - long-distance carriers (IXCs) open
 - local area (LATA) carriers (LECs) regulated

More Recent History

- The 1996 Telecom Act
 - removes numerous restrictions on LECs
 - LECs can provide long-distance and IXCs can provide local calling, if certain restrictions are met [like equal access to IXC, space sharing]

– players:

- ILECs (incumbent LECs; own COs and loops)
- CLECs (competitive LECs)
- "your competitor is your landlord"

Telephone Net Structure

- End systems (phones, faxes, etc)
- · Central offices (COs)
 - -local aggregation points for phone lines
 - -wire pair (local loop) to each telephone
 - most are analog, provide A/D conversion
- Exchanges
 - switches connecting end systems
 - -connect to back-bone (core) switches

The Details

- End systems
- Transmission
- Switching
- Signaling

End Systems

- Traditionally a telephone (POTS):
 - sound-to-electric transducer
 - -electric-to-sound transducer
 - -dialer, ringer, switch hook
- Echo issues:
 - with only 2 wires, side-tone (hearing yourself talk) must be limited but present
 - received sound may be echoed back (ok for small local delay, actively cancelled with circuitry at backbone switches [costly])

Newer End-Systems

- Digital local loops:
 - ISDN (BRI)
 - xDSL
- ISDN (BRI):
 - 2x64kb/s circuit channels
 - 1x16kb/s packet channel
- DSL:
 - up to 1Mb/s, possibly asymmetric, FDM with respect to POTS service

Transmission

- familiar characteristics: bandwidth, delay, attenuation
- attenuation addressed with regenerators:
 with optical fiber, every 5000km
 - non-electric optical amplification possible
- digital multiplexing:
 - -8000 samples/sec at 256 levels=64kb/s
 - mu-law encoding in US, Japan

TDM Operation

- TDM muxing of digital voice streams
- Common service is T1(line), DS1(std): -1.544Mb/s, 8000f/s at 193 bits/frame
 - -192/8 = 24 bytes(TDM'd calls)/frame + 1 bit
- Digital Signaling (DS) Hierarchy:
 - DS0 (64kb/s), DS1(1.544Mb/s), DS3(44.736Mb/s)
 - not exact multiples due to framing overheads

Plesiochronous Operation

- Almost synchronous: components generate data at nominally the same bit rate, but are allowed to vary by a bounded amount [used for DS2,3]
- Requires a good, but not perfect, clock
- Muxing uses bit interleaving; differences in clock rates are accommodated by justification or bit stuffing

Justification or (Pulse/Bit) Stuffing

- output channel rate higher than sum of input rates
- additional bits inserted to pad input rate
- allocations of input rates at output are at the minimum rate (no underflow), so slightly-fast inputs use up stuff bits
- need to read a whole frame to properly extract the individual inputs

Problems with Plesiochrony

- Each part of the world has its own (not directly inter-operable) format
- Justification spreads data from tributaries all across frame, making it difficult to add/drop data from a particular stream
- Hard to build switches that switch bundles of voice calls instead of individual ones [all must demux down to DS0 to find individual calls]

Synchronous Operation (SONET)

- If network was completely synchronous, no need for justification (in theory...)
- SONET defines a multiplexing hierarchy with exact multiples of data rates:
 - OC-3(155.52Mb/s), OC-12(622.08Mb/s), OC-24(1.24416Gb/s), OC-48(2.48832Gb/s)
- Assumes synchronized clock
- Uses byte interleaving across lesserspeed signals (tributaries)

Benefits of SONET

- Creates a standard muxing format for any number of 51.84Mb/s signals
- Creates an optical standard for interconnecting multiple-vendor equip.
- Creates standard operation, administration, and maintenance (OAM)
- Defines synchronous muxing format for lower-speed (DS1, 2, etc) signals

Switching

- Telephone switch is actually two parts:
 switching hardware (moves data)
 - switch controller (handles set up/clearing)
 - (we covered most of the issues already)
- Controllers known as overlay network
- Messaging between controllers form signaling network, with its own protocol

Simple Signaling

- Tones or pulses from end system interpreted at switch controller
- If intra-exchange call, rings bell on receiver, sets up billing record
- If inter-exchange, sends set-up message to switch controller on nearest backbone
- Controller not directly involved in the forwarding of voice samples (control versus data plane)

Common Channel Inter-office Signaling (CCIS)

- Older phone network used in-channel & in-band signaling between controllers using tones (discovered by *phone phreaks*)
- Current system uses out-of-band signaling
 - more secure and flexible
 - uses packet switching
 - messages use SS7 protocol

Signaling System 7

- Covers call establishment, routing and enhanced services (conference calls, etc)
- · Entire protocol stack
 - SCCP (analogous to TCP)
 - -MTP-3 (analogous to IP)
 - -MTP-{2,1} (datalink, physical)
 - -predates ISO; hard to extend
- Q.931 standard defines ISDN-UP semantics (call control, admission, etc)

Routing Structure

- calls are routed as closely as possible (within exchanges, between exchanges in same area, or through backbone if necessary)
- (near) fully-connected backbone makes routing decision fairly straightforward
- hierarchical area/prefix/number format provides global uniqueness and scaling

Telephone Network Routing

- COs or tandem switches connect to [multiple] core switches (toll switches). Multiple cores from various IXCs.
- Dense connectivity within core provides for reasonably simple routing:
 - if src/dst in same CO, connect them
 - if src/dst in same LEC, use 1-hop path between COs
 - otherwise, call to (one of) the core(s)

Internet vs Telco Routing

- Phone call traffic relatively easy to predict (both load and time), so can preselect paths
- Telephone switches/links very reliable
- · Centralized control over core
- Highly connected with multiple equal-cost paths
- QoS for each path (but same for all)

Dynamic Non-Hierarchical Routing (DNHR)

- 10 time periods each day
- each toll switch assigned a primary (1hop) path to another toll switch and a list of alternate (2-hop) paths [by time]
- try 1-hop path first, then try others in order (called *crankback*)
- crankback useful when routing supports QoS but wants small connection rejection rate

The Erlang Map

- used to compute blocking probability on a trunk group given load, capacity
- DNHR assigns alternate paths to toll switches to minimize blocking probability
- So, path depends on expected load which depends on the path selection!
- How to deal with this:
 - system of equations (Erlang Map)
 - unique fixed-point solution (Erlang fixed point)

Erlang Formula

- B(k)=blocking probability on trunk k
- B(k)=E(L(k),C(k)), E() is Erlang formula
- L(k)=load on link k, C(k) is capacity link k
- r=set of links, v(r)=load on route r
- Approximate L(k) by: $L(k) = \sum_{r:k \in r} v(r) \prod_{j \in r - \{k\}} (1 - B(j))$

Intuition

- v(r) is the intrinsic load on router r
- each (1-B(j)) is a "thinning" of the load, so load on trunk k is just the "thinned" sum of the loads on all routes that share trunk k
- B(k) depends on some other B(j)'s through the B()=E() equation and eqn.
- So, each B(k) is implicitly defined by the others, forming the Erlang map

Metastability in DNHR

- Solution of Erlang map is the long-term mean blocking probability
- This mean is usually the mean of two values $b_{\mbox{\tiny high}}$ and $b_{\mbox{\tiny low}}$
- Two values more representative of operating states of the network using DNHR. Why?

Other Techniques

- TSMR (Trunk Status Map Routing)
 - in DNRH, alternative paths updated about once a week based on traffic studies
 - each switch measures load, tells central computer
 - periodic alternate path recomputation by central computer

Other Techniques

- RTNR (Real-Time Network Routing)
 - current-generation routing algorithm (replaced DNHR in ATT switches in 1991)
 - distributed control
 - each switch measure load on all outgoing trunks
 - to make decision, originator asks destination for its trunk loading list, takes logical AND of the two lists and chooses path (which is symmetric)
 - about 1 or 2 blocked in core (of 260 million)