H.323 Architecture and Design

CISCO SYSTEMS

ամնուսմիու

Course Number Presentation ID

© 2000. Cisco Systems, Inc.

1

IP Conferencing Protocols

H.323 ITU standard protocol Evolved from H.320 ISDN standard

Presentation_ID © 2000, Cisco Systems, Inc.

Cisco.com

H.323 Hierarchy

AV App	Ter	minal Control and Management			Data App	
G.7XX H.26X		Terminal to Gatekeeper Signaling (RAS)	H.225.0 Call Signaling	H.245		T.120
RTP Unreliat	RTCP		Reliable Transport (TCP)			
Network Layer (IP)						
Link Layer						
Physical Layer						

H.323 Sub-Protocols

H.225/Q.931 for call signaling

TCP-based variant of ISDN call signaling

• RAS for gatekeeper access

UDP-based client-server protocol

• H.245 session control protocol

TCP-based, capabilities negotiation, conference control

• RTP

Codec-independent media transport

Presentation_ID © 2000, Cisco Systems, Inc.

H.323 Signaling

5

H.323 Networks

H.323 Devices

Terminals and MCUs

- Terminals can be full-function PCs or internet appliances
- Video/voice or voice-only
- Enterprise or SOHO through a NAS.
- Some terminals can manage small conferences
- Large conferences handled through a multipoint control unit (MCU).

Presentation_ID © 200

© 2000, Cisco Systems, Inc.

H.323 MCU's

- MCU mixes many point to point calls
- Star call topology
- MC does signaling negotiation
- MP does media stream mixing
- Conferences look like endpoint aliases

H.323 MCU intrazone call

Cisco.com

Gateways

- Required for interoperability between video/audio standards (H.323, H.320, H.324, POTs)
- Conversion of protocols between standards
- Audio/video format conversion (transcoding) where necessary

H.320/323 Addressing

Direct Inward Dial (DID)

Gateway acts as "PBX" attached to Multiple Subscriber Network (MSN)

DID numbers mapped to E.164 aliases

- Signaling for ISDN subaddressing
- TCS-4 signaling supports alphanumeric H.323 aliases (H.320 BAS codes)
- IVR-style DTMF address prompting
- Operator- or user-assisted address prompting

Gatekeepers

- Policy component for H.323 terminals, proxies, and gateways
- Logically separate from the H.323 endpoints
 - H.323 ITU Specification Gatekeeper mandatory services are: Address translation Admissions control Zone management Gatekeeper optional services are: Call control signaling Call authorization Bandwidth management and reservation

Proxies

- "H.323-to-H.323 gateway"
- Fast packet switching for video/audio
- Provides enterprise isolation and security
- Separates enterprise QoS from backbone QoS
- Applies H.323-specific routing policies
- A gateway between Cisco-unaware devices and Cisco conferencing infrastructure components.

Presentation_ID © 2000, Cisco Systems, Inc.

Multimedia Conference Manager

QoS Requirements for H.323

Bandwidth - Delay - Jitter - Packet loss

- Bandwidth must be maintained for streaming audio/video
- One-way audio delay <200-400 msec for interactive use
- Audio/video bandwidth requirements fairly uniform
- Audio must be played even with or after video, never before
- Packet loss requirements vary

Cisco IOS® Router MCM

Gatekeeper Zone Design

- One gatekeeper per zone
- Gatekeeper zones are logical in nature
- Network topology, administrative scope both factors in zone design
- Availability of resources like gateways and proxies may affect partitioning of zones
- Consider how H.323 zones and DNS domains interact

H.323 Naming

- Names are dynamic, not bound to a specific terminal, so they can follow a user
- E.164 names for gateway support between H.323 and PSTN-based standards
- H.323 IDs, URLs, and Email names are all text strings. For user-friendly access between H.323 terminals

Finding Names in Other Zones

Finding Names in Other Zones

(Voice release)

H.323 Name Space Design

- Terminals should be assigned E.164 addresses for inbound gateway support.
- Consistent naming enhances interzone usability.
- Consider using a user's Email name for H.323-IDs, Email-IDs, or URLs.

Presentation_ID © 2000, Cisco Systems, Inc.

Directory Gatekeeper - Network Scaling

Cisco.com

Finding Names in Other Zones

Directory GK

- Directory-Gatekeeper = Super Gatekeeper = LRQ-forwarding
- GKs point to Directory-GK; no full mesh needed between GKs
- Limit of 5 hops for an LRQ:

Allows up to a 4-tier GK hierarchy

Dedicated vs. Shared Dir-GK is a network design decision

Local zones and "LRQ forwarding zones" can be mixed

 Dir-GK does not maintain states about the forwarded-LRQ calls

Presentation_ID © 2000, Cisco Systems, Inc.

H.323 Deployment Needs

- Bandwidth and manageable QoS
- Administration and network management
- Scalability
- Interoperability with other videoconferencing standards
- Safety and security

Presentation_ID © 2000, Cisco Systems, Inc.

Cisco.com