

HomeRF: Bringing Wireless Connectivity Home

Jim Lansford Wireless Systems Architect Intel Corporation Technical Committee Chair Home RF Working Group

March 9, 1999

Where does wireless fit?

Part of the home intranet mix

Why wireless? Portability and "No new wires"

- Core home networking capabilities, including internet, anywhere in and around the home
- Share wireless voice and data
- Review incoming messages
- Activate other home electronic systems by voice
- Needed in countries where phone lines cannot be used
 Intel's

Home Networking Solutions Designed for the Home User

- •"No new wires"
- Simple to Install
- •Easy to Use
- Low Cost: ~\$200 for 2 PCs

 Bandwidth To Support Common Home Applications

Industry Standards

Home Networking Needs 1 Mbps

intel.

HomeRF[™] Working Group Mission Statement

To enable the existence of a broad range of interoperable consumer devices, by establishing an open industry specification for unlicensed RF digital communications for PCs and consumer devices anywhere, in and around the home.

Establishing SWAP-CA

Shared Wireless Access Protocol - Cordless Access

70+ Member Companies

Broad, cross industry support

- Communications
- Consumer Electronics
- Home Control/Home Automation
- Networking
- Peripherals
- Personal Computer
- Semiconductors/Components
- Software

Partial Membership Roster

(70+ companies are now Participants)

- 3COM
- Alps •
- Advanced Micro Devices
 Interval Research
- Aironet
- Apple
- **Broadcom Corporation**
- Butterfly Communications
- Casio
- Cirrus Logic
- **Cisco Systems**
- Compag •
- Ericsson Enterprise **Networks**
- Fujitsu
- Harris Semiconductor
- **Hewlett-Packard**
- Hosiden
- IBM

Intel

- Intellon
- - Industrial Tech. Research
 - •iReady Systems
 - •Kansai Denki
 - LG Electronics
 - Matsushita Electronics
 - Matsushita Works
 - Microsoft
 - Mitsubishi
 - Motorola
 - National Semiconductor
 - •NEC Corporation
 - Nortel
 - •Oki
 - Ositis Software

- Primax
- **Philips Consumer Communications (PCC)**
- Proxim
- **Raytheon Wireless Solutions**
- **RF Monolithics**
- **RF Micro Devices**
- **Rockwell Semiconductor Systems**
- Samsung Electronics
- Sharp
- ShareWave
- Siemens
- **Siemens Microelectronics**
- Silicon Wave
- **Symbionics**
- Symbol
- **Texas Instruments**
- WebGear

int_{el}.

SWAP Product Development The following member companies are developing SWAP products:

- Butterfly Communications
- Compaq
- Hewlett-Packard
- IBM
- Intel
- iReady

- Microsoft
- Motorola
- Proxim
- OTC Telecom
- **RF Monolithics**
- Samsung
- Symbionics

intel

The SWAP Network

HomeRF Origins

802.11 Uses CSMA/CA Good for Data DECT Uses TDMA Good for Voice

Labs

SWAP

TDMA + CSMA/CA

Good for Voice & Data

Optimized for small networks (in home) Simplified radio & protocol to reduce cost

Both voice and data are important for home RF

Why a new protocol?

- It handles voice like DECT or PHS, but...
 - Frequency hopping
 - ♦20 ms frames (better for data)
 - interleaved up and down links
 - Retransmission (single)
- It handles data like 802.11, but...
 - Relaxed PHY layer specs to reduce cost
 - ♦ Beacons to manage isochronous traffic
 - Simplified protocol (no PCF)

•IP data at up to 2Mb/s and supports cordless telephony

Intel's

SWAP Features

- Range: >50 meters indoors
- Speed: dual speed supports TCP/IP traffic at over 1Mb/s
- Voice: High quality voice channels with retransmission
 - High quality cordless telephones
 - Voice recognition

Device Types

Fridge pad

Isochronous (I node)

> minimum latency telephones, etc.

Asynchronous (A node)
> TCP/IP traffic

•CP - Connection point...can manage a network or act as an A node

- Can be <u>USB</u>, PCI, PC-Card, Device Bay, etc.
- CP can place calls even when PC is down

PHY Features

- Nominal 100 mW transmit power
- Minimum receiver sensitivity of -76 dBm (2FSK)
 - range >50 m in typical homes/yards
 - -85 dBm sensitivity typical
- Cost effective filter requirements
 - ♦Use MAC to reduce PHY cost
 - Makes single-chip integration simpler

MAC Features

- MAC provides good support for voice and data
- Leverages existing DECT technology for voice
- Excellent integration with TCP/IP networking protocols
 - easy integration with Ethernet
 - Supports broadcast, multicast and fragmenting
- Data security Basic/Enhanced levels of encryption
 - Basic: 24-bit Network ID and Frequency Hopping
 - Enhanced: Basic + LFSR algorithm
- Extensive power management for ultra-portable devices

Optimizes existing technology for home use

Intel's

The PC interface

- SWAP's PC connection is designed for use under Windows 98^{*}, Windows2000^{*}, and beyond
 - ♦ Wake on ring
 - Connection Oriented NDIS (NDIS 5...for Windows2000^{*})
 - ♦ A nodes appear as Ethernet devices
 - I nodes become Connection Oriented clients

* Third party brands and marks are property of their respective owners.

PC Software Architecture Diagram

Voice: Robust clarity

- Superframe structure controlled by Beacon
- TDMA slot pairs allocated by the Control Point
- Voice data transmitted in the slots in CFP #2
 - Any voice data to be retransmitted is sent:
 - In CFP1, after a hop
- intel frequency/time diversity & low latency

- CSMA/CA during the contention period
- Efficient for small networks
- Tolerant of interference
- Data for entire frame if no voice

intel.

Encryption Algorithm

- Open, royalty free published in open literature over 30 years ago
- Low gate count
- Fast "warm up"
- Required for CP in the US market, optional for other devices and geographies
- Robust
- Similar concept to GSM A5 algorithm, but "stronger"

intel

Usage - Voice Control

Fridge pad

Data traffic can also be active

- Handset initiates voice transfer to PC
- Application accepts streaming audio from CP
- Application performs speech recognition and sends commands back down stack
- For automatic call placement, CP dials number and connects handset
- Handset PSTN
 connection remains until
 call teardown
 Intel's

Usage - ISP Sharing

- PC initiates ISP connection (modem, ISDN, UDSL, Cable, etc.)
- Applications on host PC can access ISP immediately
- Remote A nodes access ISP through NAT and TCP/IP
- Remote A nodes can also share files and printers
- Ad hoc peer-peer transfers between nodes do not require resources of "server" PC

Intel's

Timeline

HomeRF Summary

- Home RF Working group developing open, royalty free spec
- Over 80 member companies
- NOW is the time to begin implementation plans
- More info (including membership) at www.homerf.org
- \$4,800 membership fee

