The GNU Privacy Handbook

The GNU Privacy Handbook
Copyright © 1999 by The Free Software Foundation

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation
License, Version 1.1 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-
Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation
License".

Please direct questions, bug reports, or suggestions concerning this manual to the maintainer, Mike jashley (<
ley@acm.org >). When referring to the manual please specify which version of the manual you have by using this version
string:$Name: vi_1 $.

Contributors to this manual include Matthew Copeland, Joergen Grahn, and David A. Wheeler. J Horacio MG has
translated the manual to Spanish.

Table of Contents

o eI TToRSIE=T1 =X N g
GEMETAHNG BBV KEYDL........vovveeeeeeseeeresesseesesesseeesssesesssssssseesssseseseessesesesssesesesessssseeeseeeessesesss e g
(GENETANNG A TEVOCAHON CEFITITALEcvvvoeeseseeeeeereessesssessseceeseseesessssssseesssesesssssessseseeeeseees g
EEXCIANGINGKEYS ...vvve e eeeeeeeeeseessssssseeesesseeee s eeeesssee s eeesssee s s ressseseseeessesseesesesssesesss e g
Lo LTS EEN STV e1 o= g

LT TSI TATOREN STV STIToR < g

Encrypiing and decrypting documants
MaKing and veritying signatures.
| @1 XS o [aT=T0 I [S1STU T L] 1] Fo T
| BT F=Tel A=T0 [T [0 LA EE N0

ISV TTIITIETTIC D TETS vt euteete ettt cee ettt et e ettt et et e st e s heete st e eae e beeaeesesaeesbesbeeseenbeebeensesaeensesbesssenbesseensesseenees
PO T REY CIDIIETS ...t e eteetectiecteeee sttt e te ettt et e et e st e sbeete st e eae e beeaeesesaeensesbeebeenbeebeensesaeensesbesseenbesseensesseanees

VSIS IS IO AT=T T TOT T T T T TTTT
DIQ O 8S....cocennnn

LLTUSTIN @ KEY'S OWIIBL..ceuuiiiiiiiiii it s s a s r e e e e e s e s s s s s raa s aannaaa s
[USING TTUST IO VAIUATE KEYS. .. veveeeeeeeieeeiesiesieesieeteetesteeseestesseestestesssessesseessesaeesestesssensessessessssnens

B Daily use of GnuPG.............

DEHAIA YOUF SECURITT TIEEIAS. ..o eeeree s eeseees e eeesesesesseeseses s eessee s eeeeessesesseee e seseee e
COOSIIE A REY SIZE . vvrveeseseeeeee st esssessesseeseeesseseessee s ess e see e eesee e seesee e
PTOTECTNT YOUF DFIVATE REY. . eevrresesseerressssseesesessssessseessessesesesssssessese s essesssesseesees oo
SEIECHNG EXDIFATON TATES AN USING SUDKEYS -rrrsreerrresseseeereessssseesesesssssessesssesseeeeessss e 30
VIanaging your web of frust

BUIiNG YOUF Web Of TrUSt................

(SISTATE R ETAIV I CRIIO) T

B TODICS . evvveeeeeeeeeeseeeeeeseeeseeeeseeeeeesseeseesessseeeeesseeeeeesseeeeeeseeeeeese s eees e eeee e eee e s eee s e eeee s eeeeeeeeeeeeeees
ertlnq user mterlaces .. g

A_GNU Free Documentation I icens

L APPLICABITTTLY AND DEEINTTIONS

Y VERBATTM COP YN

b. COFYIN N QUAN T Y e &fe
A _MODIEICATIONS. 37

b CONMBINING DOCUMENT 5

OW 10 USE TNIS CICENSE TOT YOUT TOCUMBNLS....ceiiiitrieeeiiiiieeeessitteeesssiseeesssssseneesssssseeeessnsneeesssnsseneessns Sfs

List of Figures
B-I A NYDPOTNETCAI WED OF TTUSL .. +e e seeueeuertertesterteie ettt st se ettt se e se st b e be s bese e e ebesbesaeseenseneenesnesnans

Chapter 1. Getting Started

GnuPG is a tool for secure communication. This chapter is a quick-start guide that covers the core functionality
of GnuPG. This includes keypair creation, exchanging and verifying keys, encrypting and decrypting docu-
ments, and authenticating documents with digital signatures. It does not explain in detail the concepts behind
public-key cryptography, encryption, and digital signatures. This is covered in Chiapter 2. It also does not explain
how to use GnuPG wisely. This is covered in Chapfers 3and 4.

GnuPG uses public-key cryptography so that users may communicate securely. In a public-key system,
each user has a pair of keys consisting qiriwate keyand apublic key A user’s private key is kept secret;
it need never be revealed. The public key may be given to anyone with whom the user wants to communicate.
GnuPG uses a somewhat more sophisticated scheme in which a user has a primary keypair and then zero or more
additional subordinate keypairs. The primary and subordinate keypairs are bundled to facilitate key management
and the bundle can often be considered simply as one keypair.

Generating a new keypair
The command-line optioryen-key is used to create a new primary keypair.

alice% gpg —-gen-key

gpg (GnuPG) 0.9.4; Copyright (C) 1999 Free Software Foundation, Inc.
This program comes with ABSOLUTELY NO WARRANTY.

This is free software, and you are welcome to redistribute it

under certain conditions. See the file COPYING for details.

Please select what kind of key you want:
(1) DSA and ElGamal (default)
(2) DSA (sign only)
(4) ElGamal (sign and encrypt)

Your selection?

GnuPG is able to create several different types of keypairs, but a primary key must be capable of making
signatures. There are therefore only three options. Option 1 actually creates two keypairs. A DSA keypair is
the primary keypair usable only for making signatures. An ElIGamal subordinate keypair is also created for
encryption. Option 2 is similar but creates only a DSA keypair. Optibardates a single EIGamal keypair
usable for both making signatures and performing encryption. In all cases it is possible to later add additional
subkeys for encryption and signing. For most users the default option is fine.

You must also choose a key size. The size of a DSA key must be between 512 and 1024 bits, and an
ElGamal key may be of any size. GhuPG, however, requires that keys be no smaller than 768 bits. Therefore, if
Option 1 was chosen and you choose a keysize larger than 1024 bits, the ElIGamal key will have the requested
size, but the DSA key will be 1024 bits.

1. Option 3 is to generate an ElIGamal keypair that is not usable for making signatures.

Chapter 1. Getting Started

About to generate a new ELG-E keypair.
minimum keysize is 768 bits
default keysize is 1024 bits

highest suggested keysize is 2048 bits

What keysize do you want? (1024)

The longer the key the more secure it is against brute-force attacks, but for almost all purposes the default
keysize is adequate since it would be cheaper to circumvent the encryption than try to break it. Also, encryption
and decryption will be slower as the key size is increased, and a larger keysize may affect signature length. Once
selected, the keysize can never be changed.

Finally, you must choose an expiration date. If Option 1 was chosen, the expiration date will be used for
both the EIGamal and DSA keypairs.

Please specify how long the key should be valid.
0 = key does not expire
<n> = key expires in n days
<n>w = key expires in n weeks
<n>m = key expires in n months
<n>y = key expires in n years
Key is valid for? (0)

For most users a key that does not expire is adequate. The expiration time should be chosen with care,
however, since although it is possible to change the expiration date after the key is created, it may be difficult to
communicate a change to users who have your public key.

You must provide a user ID in addition to the key parameters. The user ID is used to associate the key
being created with a real person.

You need a User-ID to identify your key; the software constructs the user id
from Real Name, Comment and Email Address in this form:
"Heinrich Heine (Der Dichter) <heinrichh@duesseldorf.de>"

Real name:

Only one user ID is created when a key is created, but it is possible to create additional user IDs if you
want to use the key in two or more contexts, e.g., as an employee at work and a political activist on the side. A
user ID should be created carefully since it cannot be edited after it is created.

GnuPG needs a passphrase to protect the primary and subordinate private keys that you keep in your
possession.

You need a Passphrase to protect your private key.

Enter passphrase:

There is no limit on the length of a passphrase, and it should be carefully chosen. From the perspective of
security, the passphrase to unlock the private key is one of the weakest points in GnuPG (and other public-key
encryption systems as well) since it is the only protection you have if another individual gets your private key.
Ideally, the passphrase should not use words from a dictionary and should mix the case of alphabetic characters
as well as use non-alphabetic characters. A good passphrase is crucial to the secure use of GhnuPG.

Chapter 1. Getting Started

Generating a revocation certificate

After your keypair is created you should immediately generate a revocation certificate for the primary public
key using the optiongen-revoke . If you forget your passphrase or if your private key is compromised or lost,
this revocation certificate may be published to notify others that the public key should no longer be used. A
revoked public key can still be used to verify signatures made by you in the past, but it cannot be used to encrypt
future messages to you. It also does not affect your ability to decrypt messages sent to you in the past if you still
do have access to the private key.

alice% gpg —output revoke.asc —gen-revoke mykey

(-]

The argumeninykey must be &ey specifiereither the key ID of your primary keypair or any part of a user

ID that identifies your keypair. The generated certificate will be left in theéilmke.asc . If the -output

option is omitted, the result will be placed on standard output. Since the certificate is short, you may wish to
print a hardcopy of the certificate to store somewhere safe such as your safe deposit box. The certificate should
not be stored where others can access it since anybody can publish the revocation certificate and render the
corresponding public key useless.

Exchanging keys

To communicate with others you must exchange public keys. To list the keys on your public keyring use the
command-line optioAist-keys

alice% gpg —list-keys
lusers/alice/.gnupg/pubring.gpg

pub 1024D/BB7576AC 1999-06-04 Alice (Judge) <alice@cyb.org>
sub 1024g/78E9A8FA 1999-06-04

Exporting a public key

To send your public key to a correspondent you must first export it. The command-line eptpon is
used to do this. It takes an additional argument identifying the public key to export. As wiiljetiresvoke
option, either the key ID or any part of the user ID may be used to identify the key to export.

alice% gpg —output alice.gpg —export alicef@cyb.org

The key is exported in a binary format, but this can be inconvenient when the key is to be sent though email
or published on a web page. GnuPG therefore supports a command-line-aption ? that causes output to be

2. Many command-line options that are frequently used can also be set in a configuration file.

Chapter 1. Getting Started

generated in an ASCII-armored format similar to uuencoded documents. In general, any output from GnuPG,
e.g., keys, encrypted documents, and signatures, can be ASCIl-armored by addangdhe option.

alice% gpg —armor —export alice@cyb.org
---BEGIN PGP PUBLIC KEY BLOCK---
Version: GnuPG v0.9.7 (GNU/Linux)

Comment: For info see http://www.gnupg.org

(-]
--END PGP PUBLIC KEY BLOCK---

Importing a public key
A public key may be added to your public keyring with tiveport option.

alice% gpg —import blake.gpg

gpg: key 9E98BC16: public key imported
gpg: Total number processed: 1

apg: imported: 1
alice% gpg —-list-keys
Jusers/alice/.gnupg/pubring.gpg

pub 1024D/BB7576AC 1999-06-04 Alice (Judge) <alice@cyb.org>
sub 1024g/78E9ASBFA 1999-06-04

pub 1024D/9E98BC16 1999-06-04 Blake (Executioner) <blake@cyb.org>
sub 1024g/5C8CBD41 1999-06-04

Once a key is imported it should be validated. GnuPG uses a powerful and flexible trust model that does
not require you to personally validate each key you import. Some keys may need to be personally validated,
however. A key is validated by verifying the key’s fingerprint and then signing the key to certify it as a valid
key. A key’s fingerprint can be quickly viewed with thiingerprint command-line option, but in order to
certify the key you must edit it.

alice% gpg —edit-key blake@cyb.org

pub 1024D/9E98BC16 created: 1999-06-04 expires: never trust: -/q
sub 1024g/5C8CBD41 created: 1999-06-04 expires: never
(1) Blake (Executioner) <blake@cyb.org>

Command> £pr
pub 1024D/9E98BC16 1999-06-04 Blake (Executioner) <blake@cyb.org>
Fingerprint: 268F 448F CCD7 AF34 183E 52D8 9BDE 1A08 9E98 BC16

A key's fingerprint is verified with the key's owner. This may be done in person or over the phone or
through any other means as long as you can guarantee that you are communicating with the key’s true owner. If
the fingerprint you get is the same as the fingerprint the key’s owner gets, then you can be sure that you have a
correct copy of the key.

Chapter 1. Getting Started

After checking the fingerprint, you may sign the key to validate it. Since key verification is a weak point in
public-key cryptography, you should be extremely careful amchyscheck a key’s fingerprint with the owner
before signing the key.

Command> sign

pub 1024D/9E98BC16 created: 1999-06-04 expires: never trust: -/q
Fingerprint: 268F 448F CCD7 AF34 183E 52D8 9BDE 1A08 9E98 BC16

Blake (Executioner) <blake@cyb.org>

Are you really sure that you want to sign this key
with your key: "Alice (Judge) <alice@cyb.org>"

Really sign?

Once signed you can check the key to list the signatures on it and see the signature that you have added.
Every user ID on the key will have one or more self-signatures as well as a signature for each user that has
validated the key.

Command> check

uid Blake (Executioner) <blake@cyb.org>
sig! 9E98BC16 1999-06-04 [self-signature]
sig! BB7576AC 1999-06-04 Alice (Judge) <alice@cyb.org>

Encrypting and decrypting documents

A public and private key each have a specific role when encrypting and decrypting documents. A public key may
be thought of as an open safe. When a correspondent encrypts a document using a public key, that document is
put in the safe, the safe shut, and the combination lock spun several times. The corresponding private key is the
combination that can reopen the safe and retrieve the document. In other words, only the person who holds the
private key can recover a document encrypted using the associated public key.

The procedure for encrypting and decrypting documents is straightforward with this mental model. If you
want to encrypt a message to Alice, you encrypt it using Alice’s public key, and she decrypts it with her private
key. If Alice wants to send you a message, she encrypts it using your public key, and you decrypt it with your
private key.

To encrypt a document the optieancrypt is used. You must have the public keys of the intended
recipients. The software expects the name of the document to encrypt as input; if omitted, it reads standard input.
The encrypted result is placed on standard output or as specified using the-optpon . The document is
compressed for additional security in addition to encrypting it.

alice% gpg —-output doc.gpg —encrypt -recipient blake@ecyb.org doc

The-recipient option is used once for each recipient and takes an extra argument specifying the public
key to which the document should be encrypted. The encrypted document can only be decrypted by someone

10

Chapter 1. Getting Started

with a private key that complements one of the recipients’ public keys. In particular, you cannot decrypt a
document encrypted by you unless you included your own public key in the recipient list.

To decrypt a message the optiatecrypt is used. You need the private key to which the message was
encrypted. Similar to the encryption process, the document to decrypt is input, and the decrypted result is output.

blake% gpg —output doc -decrypt doc.gpg

You need a passphrase to unlock the secret key for
user: "Blake (Executioner) <blake@cyb.org>"
1024-bit ELG-E key, ID 5C8CBD41, created 1999-06-04 (main key ID 9E98BC16)

Enter passphrase:

Documents may also be encrypted without using public-key cryptography. Instead, you use a symmetric
cipher to encrypt the document. The key used to drive the symmetric cipher is derived from a passphrase supplied
when the document is encrypted, and for good security, it should not be the same passphrase that you use to
protect your private key. Symmetric encryption is useful for securing documents when the passphrase does
not need to be communicated to others. A document can be encrypted with a symmetric cipher by using the
-symmetric option.

alice% gpg —-output doc.gpg -symmetric doc
Enter passphrase:

Making and verifying signatures

A digital signature certifies and timestamps a document. If the document is subsequently modified in any way, a
verification of the signature will fail. A digital signature can serve the same purpose as a hand-written signature
with the additional benefit of being tamper-resistant. The GnuPG source distribution, for example, is sighed so
that users can verify that the source code has not been modified since it was packaged.

Creating and verifying signatures uses the public/private keypair in an operation different from encryption
and decryption. A signature is created using the private key of the signer. The signature is verified using the
corresponding public key. For example, Alice would use her own private key to digitally sign her latest sub-
mission to the Journal of Inorganic Chemistry. The associate editor handling her submission would use Alice’s
public key to check the signature to verify that the submission indeed came from Alice and that it had not been
modified since Alice sent it. A consequence of using digital signatures is that it is difficult to deny that you made
a digital signature since that would imply your private key had been compromised.

The command-line optiorsign is used to make a digital signature. The document to sign is input, and
the signed document is output.

alice% gpg —output doc.sig -sign doc
You need a passphrase to unlock the private key for

user: "Alice (Judge) <alice@cyb.org>"
1024-bit DSA key, ID BB7576AC, created 1999-06-04

11

Chapter 1. Getting Started

Enter passphrase:

The document is compressed before being signed, and the output is in binary format.

Given a signed document, you can either check the signature or check the signature and recover the original
document. To check the signature use-thegify ~ option. To verify the signature and extract the document use
the-decrypt option. The signed document to verify and recover is input and the recovered document is output.

blake% gpg —-output doc -decrypt doc.sig
gpg: Signature made Fri Jun 4 12:02:38 1999 CDT using DSA key ID BB7576AC
gpg: Good signature from "Alice (Judge) <alice@cyb.org>"

Clearsigned documents

A common use of digital signatures is to sign usenet postings or email messages. In such situations it is undesir-
able to compress the document while signing it. The optitwarsign ~ causes the document to be wrapped
in an ASCIll-armored signature but otherwise does not modify the document.

alice% gpg -clearsign doc

You need a passphrase to unlock the secret key for
user: "Alice (Judge) <alice@cyb.org>"
1024-bit DSA key, ID BB7576AC, created 1999-06-04

---BEGIN PGP SIGNED MESSAGE---
Hash: SHAl

(]

---BEGIN PGP SIGNATURE---

Version: GnuPG v0.9.7 (GNU/Linux)
Comment: For info see http://www.gnupg.org

IEYEARECAAYFAjdYCQO0ACgkQJ9S6ULt1dqz6lwCfQ7wP6i/i8HhbcOSKF4ELYQB1
0CoA0OuqpRgEzr4kOkQqHRLE/b8/Rw2k

=y6kj

---END PGP SIGNATURE---

Detached signatures

A signed document has limited usefulness. Other users must recover the original document from the signed
version, and even with clearsigned documents, the signed document must be edited to recover the original.
Therefore, there is a third method for signing a document that creates a detached signature, which is a separate
file. A detached signature is created using-tteach-sig option.

alice% gpg —-output doc.sig —-detach-sig doc

You need a passphrase to unlock the secret key for
user: "Alice (Judge) <alice@cyb.org>"

12

Chapter 1. Getting Started

1024-bit DSA key, ID BB7576AC, created 1999-06-04

Enter passphrase:

Both the document and detached signature are needed to verify the signatuneerifihe option can be
to check the signature.

blake% gpg -verify doc.sig doc

gpg: Signature made Fri Jun 4 12:38:46 1999 CDT using DSA key ID BB7576AC
gpg: Good signature from "Alice (Judge) <alice@cyb.org>"

13

Chapter 2. Concepts

GnuPG makes uses of several cryptographic concepts inclagimmetric ciphergpublic-key ciphersandone-
way hashingYou can make basic use GnuPG without fully understanding these concepts, but in order to use it
wisely some understanding of them is necessary.

This chapter introduces the basic cryptographic concepts used in GnuPG. Other books cover these topics in
much more detail. A good book with which to pursue further study is Bruce Schneier (http://www.counterpane.com/sc
“Applied Cryptography” (http://www.counterpane.com/applied.html).

Symmetric ciphers

A symmetric cipher is a cipher that uses the same key for both encryption and decryption. Two parties com-
municating using a symmetric cipher must agree on the key beforehand. Once they agree, the sender encrypts
a message using the key, sends it to the receiver, and the receiver decrypts the message using the key. As an
example, the German Enigma is a symmetric cipher, and daily keys were distributed as code books. Each day, a
sending or receiving radio operator would consult his copy of the code book to find the day’s key. Radio traffic
for that day was then encrypted and decrypted using the day’s key. Modern examples of symmetric ciphers
include 3DES, Blowfish, and IDEA.

A good cipher puts all the security in the key and none in the algorithm. In other words, it should be no
help to an attacker if he knows which cipher is being used. Only if he obtains the key would knowledge of the
algorithm be needed. The ciphers used in GhuPG have this property.

Since all the security is in the key, then it is important that it be very difficult to guess the key. In other
words, the set of possible keys, i.e., k&y spaceneeds to be large. While at Los Alamos, Richard Feynman was
famous for his ability to crack safes. To encourage the mystique he even carried around a set of tools including
an old stethoscope. In reality, he used a variety of tricks to reduce the number of combinations he had to try to a
small number and then simply guessed until he found the right combination. In other words, he reduced the size
of the key space.

Britain used machines to guess keys during World War 2. The German Enigma had a very large key space,
but the British built specialized computing engines, the Bombes, to mechanically try keys until the day’s key
was found. This meant that sometimes they found the day’s key within hours of the new key’s use, but it also
meant that on some days they never did find the right key. The Bombes were not general-purpose computers but
were precursors to modern-day computers.

Today, computers can guess keys very quickly, and this is why key size is important in modern cryptosys-
tems. The cipher DES uses a 56-bit key, which means that theré® asgible keys. 2 is 72,057,594,037,927,936
keys. This is a lot of keys, but a general-purpose computer can check the entire key space in a matter of days. A
specialized computer can check it in hours. On the other hand, more recently designed ciphers such as 3DES,
Blowfish, and IDEA all use 128-bit keys, which means there afégdssible keys. This is many, many more
keys, and even if all the computers on the planet cooperated, it could still take more time than the age of the
universe to find the key.

14

Chapter 2. Concepts

Public-key ciphers

The primary problem with symmetric ciphers is not their security but with key exchange. Once the sender and
receiver have exchanged keys, that key can be used to securely communicate, but what secure communication
channel was used to communicate the key itself? In particular, it would probably be much easier for an attacker
to work to intercept the key than it is to try all the keys in the key space. Another problem is the number of keys
needed. If there arepeople who need to communicate, th€n-1)/2keys are needed for each pair of people to
communicate privately. This may be OK for a small number of people but quickly becomes unwieldy for large
groups of people.

Public-key ciphers were invented to avoid the key-exchange problem entirely. A public-key cipher uses
a pair of keys for sending messages. The two keys belong to the person receiving the message. One key is a
public keyand may be given to anybody. The other key migate keyand is kept secret by the owner. A sender
encrypts a message using the public key and once encrypted, only the private key may be used to decrypt it.

This protocol solves the key-exchange problem inherent with symmetric ciphers. There is no need for the
sender and receiver to agree upon a key. All that is required is that some time before secret communication the
sender gets a copy of the receiver’s public key. Furthermore, the one public key can be used by anybody wishing
to communicate with the receiver. So omkeypairs are needed farmpeople to communicate secretly with one
another.

Public-key ciphers are based on one-way trapdoor functions. A one-way function is a function that is easy
to compute, but the inverse is hard to compute. For example, it is easy to multiply two prime numbers together to
get a composite, but it is difficult to factor a composite into its prime components. A one-way trapdoor function
is similar, but it has a trapdoor. That is, if some piece of information is known, it becomes easy to compute the
inverse. For example, if you have a number made of two prime factors, then knowing one of the factors makes
it easy to compute the second. Given a public-key cipher based on prime factorization, the public key contains
a composite number made from two large prime factors, and the encryption algorithm uses that composite to
encrypt the message. The algorithm to decrypt the message requires knowing the prime factors, so decryption
is easy if you have the private key containing one of the factors but extremely difficult if you do not have it.

As with good symmetric ciphers, with a good public-key cipher all of the security rests with the key.
Therefore, key size is a measure of the system’s security, but one cannot compare the size of a symmetric cipher
key and a public-key cipher key as a measure of their relative security. In a brute-force attack on a symmetric
cipher with a key size of 80 bits, the attacker must enumerate U3 keys to find the right key. In a brute-force
attack on a public-key cipher with a key size of 512 bits, the attacker must factor a composite number encoded
in 512 bits (up to 155 decimal digits). The workload for the attacker is fundamentally different depending on
the cipher he is attacking. While 128 bits is sufficient for symmetric ciphers, given today’s factoring technology
public keys with 1024 bits are recommended for most purposes.

Hybrid ciphers

Public-key ciphers are no panacea. Many symmetric ciphers are stronger from a security standpoint, and public-
key encryption and decryption are more expensive than the corresponding operations in symmetric systems.
Public-key ciphers are nevertheless an effective tool for distributing symmetric cipher keys, and that is how they
are used in hybrid cipher systems.

15

Chapter 2. Concepts

A hybrid cipher uses both a symmetric cipher and a public-key cipher. It works by using a public-key
cipher to share a key for the symmetric cipher. The actual message being sent is then encrypted using the key
and sent to the recipient. Since symmetric key sharing is secure, the symmetric key used is different for each
message sent. Hence it is sometimes called a session key.

Both PGP and GnuPG use hybrid ciphers. The session key, encrypted using the public-key cipher, and
the message being sent, encrypted with the symmetric cipher, are automatically combined in one package. The
recipient uses his private-key to decrypt the session key and the session key is then used to decrypt the message.

A hybrid cipher is no stronger than the public-key cipher or symmetric cipher it uses, whichever is weaker.

In PGP and GnuPG, the public-key cipher is probably the weaker of the pair. Fortunately, however, if an attacker
could decrypt a session key it would only be useful for reading the one message encrypted with that session key.
The attacker would have to start over and decrypt another session key in order to read any other message.

Digital signatures

A hash function is a many-to-one function that maps its input to a value in a finite set. Typically this set is a
range of natural numbers. A simple hash functiof(x3 = O for all integers<. A more interesting hash function
is f(x) =x mod37, which mapx to the remainder of dividing by 37.

A document’s digital signature is the result of applying a hash function to the document. To be useful, how-
ever, the hash function needs to satisfy two important properties. First, it should be hard to find two documents
that hash to the same value. Second, given a hash value it should be hard to recover the document that produced
that value.

Some public-key ciphetould be used to sign documents. The signer encrypts the document with his
private key. Anybody wishing to check the signature and see the document simply uses the signer’s public key
to decrypt the document. This algorithm does satisfy the two properties needed from a good hash function, but
in practice, this algorithm is too slow to be useful.

An alternative is to use hash functions designed to satisfy these two important properties. SHA and MD5
are examples of such algorithms. Using such an algorithm, a document is signed by hashing it, and the hash
value is the signature. Another person can check the signature by also hashing their copy of the document and
comparing the hash value they get with the hash value of the original document. If they match, it is almost
certain that the documents are identical.

Of course, the problem now is using a hash function for digital signatures without permitting an attacker
to interfere with signature checking. If the document and signature are sent unencrypted, an attacker could
modify the document and generate a corresponding signature without the recipient’s knowledge. If only the
document is encrypted, an attacker could tamper with the signature and cause a signature check to fail. A third
option is to use a hybrid public-key encryption to encrypt both the signature and document. The signer uses his
private key, and anybody can use his public key to check the signature and document. This sounds good but is
actually nonsense. If this algorithm truly secured the document it would also secure it from tampering and there
would be no need for the signature. The more serious problem, however, is that this does not protect either the

1. The cipher must have the property that the actual public key or private key could be used by the encryption algorithm as the public
key. RSA is an example of such an algorithm while EIGamal is not an example.

16

Chapter 2. Concepts

signature or document from tampering. With this algorithm, only the session key for the symmetric cipher is
encrypted using the signer’s private key. Anybody can use the public key to recover the session key. Therefore,
it is straightforward for an attacker to recover the session key and use it to encrypt substitute documents and
signatures to send to others in the sender’s name.

An algorithm that does work is to use a public key algorithm to encrypt only the signature. In particular,
the hash value is encrypted using the signer’s private key, and anybody can check the signature using the public
key. The signed document can be sent using any other encryption algorithm including none if it is a public
document. If the document is modified the signature check will fail, but this is precisely what the signature
check is supposed to catch. The Digital Signature Standard (DSA) is a public key signature algorithm that
works as just described. DSA is the primary signing algorithm used in GnuPG.

17

Chapter 3. Key Management

Key tampering is a major security weakness with public-key cryptography. An eavesdropper may tamper with
a user’s keyrings or forge a user’s public key and post it for others to download and use. For example, suppose
Chloe wants to monitor the messages that Alice sends to Blake. She could mount what is czdiednathe
middleattack. In this attack, Chloe creates a new public/private keypair. She replaces Alice’s copy of Blake’s
public key with the new public key. She then intercepts the messages that Alice sends to Blake. For each
intercept, she decrypts it using the new private key, reencrypts it using Blake’s true public key, and forwards the
reencrypted message to Blake. All messages sent from Alice to Blake can now be read by Chloe.

Good key management is crucial in order to ensure not just the integrity of your keyrings but the integrity
of other users’ keyrings as well. The core of key management in GnuPG is the notion of signing keys. Key
signing has two main purposes: it permits you to detect tampering on your keyring, and it allows you to certify
that a key truly belongs to the person named by a user ID on the key. Key signatures are also used in a scheme
known as thewveb of trustto extend certification to keys not directly signed by you but signed by others you
trust. Responsible users who practice good key management can defeat key tampering as a practical attack on
secure communication with GnuPG.

Managing your own keypair

A keypair has a public key and a private key. A public key consists of the public portion of the master signing
key, the public portions of the subordinate signing and encryption subkeys, and a set of user IDs used to associate
the public key with a real person. Each piece has data about itself. For a key, this data includes its ID, when it
was created, when it will expire, etc. For a user ID, this data includes the name of the real person it identifies, an
optional comment, and an email address. The structure of the private key is similar, except that it contains only
the private portions of the keys, and there is no user ID information.

The command-line optioredit-key ~ may be used to view a keypair. For example,

chloe% gpg —edit-key chloe@cyb.org
Secret key is available.

pub 1024D/26B6AAE1l created: 1999-06-15 expires: never trust: -/u
sub 2048g/0CF8CB7A created: 1999-06-15 expires: never

sub 1792G/08224617 created: 1999-06-15 expires: 2002-06-14

sub 960D/B1F423E7 created: 1999-06-15 expires: 2002-06-14

(1) Chloe (Jester) <chloe@cyb.org>
(2) Chloe (Plebian) <chloe@tel.net>
Command>

The public key is displayed along with an indication of whether or not the private key is available. Infor-
mation about each component of the public key is then listed. The first column indicates the type of the key.
The keywordpub identifies the public master signing key, and the keywatd identifies a public subordinate
key. The second column indicates the key’s bit length, type, and ID. The typdoisa DSA key,g for an
encryption-only ElGamal key, an@for an EIGamal key that may be used for both encryption and signing. The
creation date and expiration date are given in columns three and four. The user IDs are listed following the keys.

18

Chapter 3. Key Management

More information about the key can be obtained with interactive commands. The cortoggteswitches
between the public and private components of a keypair if indeed both components are available.

Command> toggle

sec 1024D/26B6AAE1 created: 1999-06-15 expires: never

sbb 2048g/0CF8CB7A created: 1999-06-15 expires: never

sbb 1792G/08224617 created: 1999-06-15 expires: 2002-06-14
sbb 960D/B1F423E7 created: 1999-06-15 expires: 2002-06-14
(1) Chloe (Jester) <chloe@cyb.org>

(2) Chloe (Plebian) <chloe@tel.net>

The information provided is similar to the listing for the public-key component. The keyseardentifies
the private master signing key, and the keywsisd identifies the private subordinates keys. The user IDs from
the public key are also listed for convenience.

Key integrity

When you distribute your public key, you are distributing the public components of your master and subordinate
keys as well as the user IDs. Distributing this material alone, however, is a security risk since it is possible for an
attacker to tamper with the key. The public key can be modified by adding or substituting keys, or by adding or
changing user IDs. By tampering with a user ID, the attacker could change the user ID’s email address to have
email redirected to himself. By changing one of the encryption keys, the attacker would also be able to decrypt
the messages redirected to him.

Using digital signatures is a solution to this problem. When data is signed by a private key, the correspond-
ing public key is bound to the signed data. In other words, only the corresponding public key can be used to
verify the signature and ensure that the data has not been modified. A public key can be protected from tamper-
ing by using its corresponding private master key to sign the public key components and user IDs, thus binding
the components to the public master key. Signing public key components with the corresponding private master
signing key is calledelf-signingand a public key that has self-signed user IDs bound to it is calbedtdicate

As an example, Chloe has two user IDs and three subkeys. The signatures on the user IDs can be checked
with the commanaheckfrom the key edit menu.

chloe% gpg —edit-key chloe
Secret key is available.

pub 1024D/26B6AAE1l created: 1999-06-15 expires: never trust: -/u
sub 2048g/0CF8CB7A created: 1999-06-15 expires: never

sub 1792G/08224617 created: 1999-06-15 expires: 2002-06-14

sub 960D/B1F423E7 created: 1999-06-15 expires: 2002-06-14

(1) Chloe (Jester) <chloe@cyb.org>

(2) Chloe (Plebian) <chloe@tel.net>

Command> check

uid Chloe (Jester) <chloe@cyb.org>
sig! 26B6AAE1 1999-06-15 [self-signature]
uid Chloe (Plebian) <chloe@tel.net>

19

Chapter 3. Key Management

sig! 26B6AAE1 1999-06-15 [self-signature]

As expected, the signing key for each signature is the master signing key with Ix26B6AAEL. The
self-signatures on the subkeys are present in the public key, but they are not shown by the GnuPG interface.

Adding and deleting key components

Both new subkeys and new user IDs may be added to your keypair after it has been created. A user ID is added
using the commanddduid. You are prompted for a real name, email address, and comment just as when you
create an initial keypair. A subkey is added using the comnaalaékey. The interface is similar to the interface

used when creating an initial keypair. The subkey may be a DSA signing key, and encrypt-only EIGamal key,
or a sign-and-encrypt ElGamal key. When a subkey or user ID is generated it is self-sighed using your master
signing key, which is why you must supply your passphrase when the key is generated.

Additional user IDs are useful when you need multiple identities. For example, you may have an identity
for your job and an identity for your work as a political activist. Coworkers will know you by your work user
ID. Coactivists will know you by your activist user ID. Since those groups of people may not overlap, though,
each group may not trust the other user ID. Both user IDs are therefore necessary.

Additional subkeys are also useful. The user IDs associated with your public master key are validated
by the people with whom you communicate, and changing the master key therefore requires recertification.
This may be difficult and time consuming if you communicate with many people. On the other hand, it is
good to periodically change encryption subkeys. If a key is broken, all the data encrypted with that key will be
vulnerable. By changing keys, however, only the data encrypted with the one broken key will be revealed.

Subkeys and user IDs may also be deleted. To delete a subkey or user ID you must first select it using the
key or uid commands respectively. These commands are toggles. For example, the cokemnaralects the
second subkey, and invoki@y 2 again deselects it. If no extra argument is given, all subkeys or user IDs are
deselected. Once the user IDs to be deleted are selected, the conehaddctually deletes the user IDs from
your key. Similarly, the commandelkey deletes all selected subkeys from both your public and private keys.

For local keyring management, deleting key components is a good way to trim other people’s public keys
of unnecessary material. Deleting user IDs and subkeys on your own key, however, is not always wise since it
complicates key distribution. By default, when a user imports your updated public key it will be merged with
the old copy of your public key on his ring if it exists. The components from both keys are combined in the
merge, and this effectively restores any components you deleted. To properly update the key, the user must first
delete the old version of your key and then import the new version. This puts an extra burden on the people with
whom you communicate. Furthermore, if you send your key to a keyserver, the merge will happen regardless,
and anybody who downloads your key from a keyserver will never see your key with components deleted.
Consequently, for updating your own key it is better to revoke key components instead of deleting them.

Revoking key components

To revoke a subkey it must be selected. Once selected it may be revoked withkbg command. The key is
revoked by adding a revocation self-signature to the key. Unlike the command-line aptierevoke |, the
effect of revoking a subkey is immediate.

20

Command> revkey
Do you really want to revoke this key? y

You need a passphrase to unlock the secret key for
user: "Chloe (Jester) <chloe@cyb.org>"
1024-bit DSA key, ID B87DBA93, created 1999-06-28

pub 1024D/B87DBA93 created: 1999-06-28 expires: never trust: -/u
sub 2048¢/B7934539 created: 1999-06-28 expires: never

sub 1792G/4E3160AD created: 1999-06-29 expires: 2000-06-28

rev! subkey has been revoked: 1999-06-29

sub 960D/E1F56448 created: 1999-06-29 expires: 2000-06-28

(1) Chloe (Jester) <chloe@cyb.org>

(2) Chloe (Plebian) <chloe@tel.net>

A user ID is revoked differently. Normally, a user ID collects signatures that attest that the user ID describes
the person who actually owns the associated key. In theory, a user ID describes a person forever, since that
person will never change. In practice, though, elements of the user ID such as the email address and comment

may change over time, thus invalidating the user ID.

The OpenPGP specification does not support user ID revocation, but a user ID can effectively be revoked
by revoking the self-signature on the user ID. For the security reasons degcribed previously, correspondents will

not trust a user ID with no valid self-signature.

Chapter 3. Key Management

A signature is revoked by using the commaadsig. Since you may have signed any number of user IDs,
the user interface prompts you to decide for each signature whether or not to revoke it.

Command> revsig
You have signed these user IDs:
Chloe (Jester) <chloe@cyb.org>
signed by B87DBA93 at 1999-06-28
Chloe (Plebian) <chloe@tel.net>
signed by B87DBA93 at 1999-06-28
user ID: "Chloe (Jester) <chloe@cyb.org>"
signed with your key B87DBA93 at 1999-06-28
Create a revocation certificate for this signature? (y/N)n
user ID: "Chloe (Plebian) <chloe@tel.net>"
signed with your key B87DBA93 at 1999-06-28
Create a revocation certificate for this signature? (y/N)y
You are about to revoke these signatures:
Chloe (Plebian) <chloe@tel.net>
signed by B87DBA93 at 1999-06-28
Really create the revocation certificates? (y/N)y

You need a passphrase to unlock the secret key for
user: "Chloe (Jester) <chloe@cyb.org>"
1024-bit DSA key, ID B87DBA93, created 1999-06-28

pub 1024D/B87DBA93 created: 1999-06-28 expires: never trust: -/u
sub 20489g/B7934539 created: 1999-06-28 expires: never
sub 1792G/AE3160AD created: 1999-06-29 expires: 2000-06-28

21

Chapter 3. Key Management

rev! subkey has been revoked: 1999-06-29
sub 960D/E1F56448 created: 1999-06-29 expires: 2000-06-28
(1) Chloe (Jester) <chloe@cyb.org>
(2) Chloe (Plebian) <chloe@tel.net>

A revoked user ID is indicated by the revocation signature on the ID when the signatures on the key’s user
IDs are listed.

Command> check

uid Chloe (Jester) <chloe@cyb.org>

sig! B87DBA93 1999-06-28 [self-signature]
uid Chloe (Plebian) <chloe@tel.net>
rev! B87DBA93 1999-06-29 [revocation]
sig! B87DBA93 1999-06-28 [self-signature]

Revoking both subkeys and self-signatures on user IDs adds revocation self-signatures to the key. Since
signatures are being added and no material is deleted, a revocation will always be visible to others when your
updated public key is distributed and merged with older copies of it. Revocation therefore guarantees that ev-
erybody has a consistent copy of your public key.

Updating a key’s expiration time

The expiration time of a key may be updated with the commexyire from the key edit menu. If no key
is selected the expiration time of the primary key is updated. Otherwise the expiration time of the selected
subordinate key is updated.

A key’s expiration time is associated with the key's self-signhature. The expiration time is updated by delet-
ing the old self-signature and adding a new self-signature. Since correspondents will not have deleted the old
self-signature, they will see an additional self-signature on the key when they update their copy of your key. The
latest self-signature takes precedence, however, so all correspondents will unambiguously know the expiration
times of your keys.

Validating other keys on your public keyring

In Chapter[Jl a procedure was given to validate your correspondents’ public keys: a correspondent’s key is
validated by personally checking his key’s fingerprint and then signing his public key with your private key. By
personally checking the fingerprint you can be sure that the key really does belong to him, and since you have
signed they key, you can be sure to detect any tampering with it in the future. Unfortunately, this procedure is
awkward when either you must validate a large number of keys or communicate with people whom you do not
know personally.

GnuPG addresses this problem with a mechanism popularly known agthef trust In the web of trust
model, responsibility for validating public keys is delegated to people you trust. For example, suppose
- Alice has signed Blake’s key, and
- Blake has signed Chloe’s key and Dharma’s key.

22

Chapter 3. Key Management

If Alice trusts Blake to properly validate keys that he signs, then Alice can infer that Chloe’s and Dharma’s
keys are valid without having to personally check them. She simply uses her validated copy of Blake’s public
key to check that Blake's signatures on Chloe’s and Dharma’s are good. In general, assuming that Alice fully
trusts everybody to properly validate keys they sign, then any key signed by a valid key is also considered valid.
The root is Alice’s key, which is axiomatically assumed to be valid.

Trust in a key’s owner

In practice trust is subjective. For example, Blake’s key is valid to Alice since she signed it, but she may not
trust Blake to properly validate keys that he signs. In that case, she would not take Chloe’s and Dharma'’s key
as valid based on Blake’s signatures alone. The web of trust model accounts for this by associating with each
public key on your keyring an indication of how much you trust the key’s owner. There are four trust levels.

unknown
Nothing is known about the owner’s judgment in key signing. Keys on your public keyring that you do not
own initially have this trust level.

none
The owner is known to improperly sign other keys.

marginal
The owner understands the implications of key signing and properly validates keys before signing them.

full
The owner has an excellent understanding of key signing, and his signature on a key would be as good as
your own.
A key’s trust level is something that you alone assign to the key, and it is considered private information. It
is not packaged with the key when it is exported; it is even stored separately from your keyrings in a separate
database.
The GnuPG key editor may be used to adjust your trust in a key’s owner. The commtamst idn this
example Alice edits her trust in Blake and then updates the trust database to recompute which keys are valid
based on her new trust in Blake.

alice% gpg —-edit-key blake

pub 1024D/8B927C8A created: 1999-07-02 expires: never trust: g/f
sub 1024g/C19EA233 created: 1999-07-02 expires: never

(1) Blake (Executioner) <blake@cyb.org>

Command> trust

pub 1024D/8B927C8A created: 1999-07-02 expires: never trust: g/f
sub 1024g/C19EA233 created: 1999-07-02 expires: never

(1) Blake (Executioner) <blake@cyb.org>

Please decide how far you trust this user to correctly

23

Chapter 3. Key Management

verify other users’ keys (by looking at passports,
checking fingerprints from different sources...)?

Don't know

| do NOT trust

| trust marginally

I trust fully

please show me more information
= back to the main menu

1
2
3
4
s
m

Your decision? 3

pub 1024D/8B927C8A created: 1999-07-02 expires: never trust: m/f
sub 1024g/C19EA233 created: 1999-07-02 expires: never
(1) Blake (Executioner) <blake@cyb.org>

Command> quit

(-]

Trust in the key’s owner and the key's validity are indicated to the right when the key is displayed. Trust
in the owner is displayed first and the key’s validity is secofithe four trust/validity levels are abbreviated:
unknown §), none (), marginal @), and full). In this case, Blake’s key is fully valid since Alice signed
it herself. She initially has an unknown trust in Blake to properly sign other keys but decides to trust him
marginally.

Using trust to validate keys

The web of trust allows a more elaborate algorithm to be used to validate a key. Formerly, a key was considered
valid only if you signed it personally. A more flexible algorithm can now be used: &kisyconsidered valid if
it meets two conditions:

1.itis signed by enough valid keys, meaning

« you have signed it personally,
- it has been signed by one fully trusted key, or
- it has been signed by three marginally trusted keys; and
2.the path of signed keys leading frdfnback to your own key is five steps or shorter.
The path length, number of marginally trusted keys required, and number of fully trusted keys required may be
adjusted. The numbers given above are the default values used by GnuPG.

1. GnuPG overloads the word “trust” by using it to mean trust in an owner and trust in a key. This can be confusing. Sometimes trust in
an owner is referred to asvner-trustto distinguish it from trust in a key. Throughout this manual, however, “trust” is used to mean
trust in a key’s owner, and “validity” is used to mean trust that a key belongs to the human associated with the key ID.

24

Chapter 3. Key Management

shows a web of trust rooted at Alice. The graph illustrates who has signed who's keys. The table
shows which keys Alice considers valid based on her trust in the other members of the web. This example as-
sumes that two marginally-trusted keys or one fully-trusted key is needed to validate another key. The maximum
path length is three.

When computing valid keys in the example, Blake and Dharma’s are always considered fully valid since
they were signed directly by Alice. The validity of the other keys depends on trust. In the first case, Dharma
is trusted fully, which implies that Chloe’s and Francis’s keys will be considered valid. In the second example,
Blake and Dharma are trusted marginally. Since two marginally trusted keys are needed to fully validate a key,
Chloe’s key will be considered fully valid, but Francis’s key will be considered only marginally valid. In the
case where Chloe and Dharma are marginally trusted, Chloe’s key will be marginally valid since Dharma’s key
is fully valid. Francis’s key, however, will also be considered marginally valid since only a fully valid key can be
used to validate other keys, and Dharma’s key is the only fully valid key that has been used to sign Francis’s key.
When marginal trust in Blake is added, Chloe’s key becomes fully valid and can then be used to fully validate
Francis’s key and marginally validate Elena’s key. Lastly, when Blake, Chloe, and Elena are fully trusted, this is
still insufficient to validate Geoff’s key since the maximum certification path is three, but the path length from
Geoff back to Alice is four.

The web of trust model is a flexible approach to the problem of safe public key exchange. It permits you
to tune GnuPG to reflect how you use it. At one extreme you may insist on multiple, short paths from your key
to another ke in order to trust it. On the other hand, you may be satisfied with longer paths and perhaps as
little as one path from your key to the other K€y Requiring multiple, short paths is a strong guaranteekhat
belongs to whom your think it does. The price, of course, is that it is more difficult to validate keys since you
must personally sign more keys than if you accepted fewer and longer paths.

Figure 3-1. A hypothetical web of trust

Blaka
Ali e Chloes —p Elota —a GCacff
Dharma
Fraticia
|trust validity
marginal full marginal full
Dharma Blake, Chloe, Dharma,
Francis

Blake, Dharma Francis Blake, Chloe, Dharma
Chloe, Dharma Chloe, Francis Blake, Dharma

25

Chapter 3. Key Management

|trust validity
marginal full marginal full
Blake, Chloe, Dharma Elena Blake, Chloe, Dharma,
Francis
Blake, Chloe, Elena Blake, Chloe, Elena,
Francis

Distributing keys

Ideally, you distribute your key by personally giving it to your correspondents. In practice, however, keys are
often distributed by email or some other electronic communication medium. Distribution by email is good
practice when you have only a few correspondents, and even if you have many correspondents, you can use an
alternative means such as posting your public key on your World Wide Web homepage. This is unacceptable,
however, if people who need your public key do not know where to find it on the Web.

To solve this problem public key servers are used to collect and distribute public keys. A public key received
by the server is either added to the server's database or merged with the existing key if already present. When a
key request comes to the server, the server consults its database and returns the requested public key if found.

A keyserver is also valuable when many people are frequently signing other people’s keys. Without a
keyserver, when Blake sign’s Alice’s key then Blake would send Alice a copy of her public key signed by him
so that Alice could add the updated key to her ring as well as distribute it to all of her correspondents. Going
through this effort fulfills Alice’s and Blake’s responsibility to the community at large in building tight webs of
trust and thus improving the security of PGP. It is nevertheless a nuisance if key signing is frequent.

Using a keyserver makes the process somewhat easier. When Blake signs Alice’s key he sends the signed
key to the key server. The key server adds Blake’s signature to its copy of Alice’s key. Individuals interested
in updating their copy of Alice’s key then consult the keyserver on their own initiative to retrieve the updated
key. Alice need never be involved with distribution and can retrieve signatures on her key simply by querying a
keyserver.

One or more keys may be sent to a keyserver using the command-line egatioirkeys . The option
takes one or more key specifiers and sends the specified keys to the key server. The key server to which to
send the keys is specified with the command-line optiegserver . Similarly, the optionrecv-keys is
used to retrieve keys from a keyserver, but the optieov-keys requires a key ID be used to specify the
key. In the following example Alice updates her public key with new signatures from the keysenter
server.pgp.com and then sends her copy of Blake’s public key to the same keyserver to contribute any new
signatures she may have added.

alice% gpg —keyserver certserver.pgp.com —-recv-key O0xBB7576AC

gpg: requesting key BB7576AC from certserver.pgp.com ...
gpg: key BB7576AC: 1 new signature

26

Chapter 3. Key Management

gpg: Total number processed: 1

gpg: new signatures: 1

alice% gpg -keyserver certserver.pgp.com -send-key blake@cyb.org
gpg: success sending to ’'certserver.pgp.com’ (status=200)

There are several popular keyservers in use around the world. The major keyservers synchronize them-
selves, so it is fine to pick a keyserver close to you on the Internet and then use it regularly for sending and
receiving keys.

27

Chapter 4. Daily use of GnuPG

GnuPG is a complex tool with technical, social, and legal issues surrounding it. Technically, it has been designed
to be used in situations having drastically different security needs. This complicates key management. Socially,
using GnuPG is not strictly a personal decision. To use GnuPG effectively both parties communicating must use
it. Finally, as of 1999, laws regarding digital encryption, and in particular whether or not using GnuPG is legal,
vary from country to country and is currently being debated by many national governments.

This chapter addresses these issues. It gives practical advice on how to use GnuPG to meet your security
needs. It also suggests ways to promote the use of GnuPG for secure communication between yourself and your
colleagues when your colleagues are not currently using GnuPG. Finally, the legal status of GnuPG is outlined
given the current status of encryption laws in the world.

Defining your security needs

GnuPG is a tool you use to protect your privacy. Your privacy is protected if you can correspond with others
without eavesdroppers reading those messages.

How you should use GnhuPG depends on the determination and resourcefulness of those who might want to
read your encrypted messages. An eavesdropper may be an unscrupulous system administrator casually scanning
your mail, it might be an industrial spy trying to collect your company’s secrets, or it might be a law enforcement
agency trying to prosecute you. Using GnuPG to protect against casual eavesdropping is going to be different
than using GnuPG to protect against a determined adversary. Your goal, ultimately, is to make it more expensive
to recover the unencrypted data than that data is worth.

Customizing your use of GhuPG revolves around four issues:

» choosing the key size of your public/private keypair,
. protecting your private key,

. selecting expiration dates and using subkeys, and

« managing your web of trust.

A well-chosen key size protects you against brute-force attacks on encrypted messages. Protecting your
private key prevents an attacker from simply using your private key to decrypt encrypted messages and sign
messages in your name. Correctly managing your web of trust prevents attackers from masquerading as people
with whom you communicate. Ultimately, addressing these issues with respect to your own security needs is
how you balance the extra work required to use GnuPG with the privacy it gives you.

Choosing a key size

Selecting a key size depends on the key. In OpenPGP, a public/private keypair usually has multiple keys. At
the least it has a master signing key, and it probably has one or more additional subkeys for encryption. Using
default key generation parameters with GnuPG, the master key will be a DSA key, and the subkeys will be
ElGamal keys.

DSA allows a key size up to 1024 bits. This is not especially good given today’s factoring technology, but
that is what the standard specifies. Without question, you should use 1024 bit DSA keys.

28

Chapter 4. Daily use of GhuPG

ElGamal keys, on the other hand, may be of any size. Since GnuPG is a hybrid public-key system, the public
key is used to encrypt a 128-bit session key, and the private key is used to decrypt it. Key size nevertheless affects
encryption and decryption speed since the cost of these algorithms is exponential in the size of the key. Larger
keys also take more time to generate and take more space to store. Ultimately, there are diminishing returns on
the extra security a large key provides you. After all, if the key is large enough to resist a brute-force attack,
an eavesdropper will merely switch to some other method for obtaining your plaintext data. Examples of other
methods include robbing your home or office and mugging you. 1024 bits is thus the recommended key size. If
you genuinely need a larger key size then you probably already know this and should be consulting an expert in
data security.

Protecting your private key

Protecting your private key is the most important job you have to use GnuPG correctly. If someone obtains
your private key, then all data encrypted to the private key can be decrypted and signatures can be made in your
name. If you lose your private key, then you will no longer be able to decrypt documents encrypted to you in
the future or in the past, and you will not be able to make signatures. Losing sole possession of your private key
is catastrophic.

Regardless of how you use GhuPG you should store the public Key'sS revocation cartificate and a backup
of your private key on write-protected media in a safe place. For example, you could burn them on a CD-ROM
and store them in your safe deposit box at the bank in a sealed envelope. Alternatively, you could store them on
a floppy and hide it in your house. Whatever you do, they should be put on media that is safe to store for as long
as you expect to keep the key, and you should store them more carefully than the copy of your private key you
use daily.

To help safeguard your key, GnuPG does not store your raw private key on disk. Instead it encrypts it using
a symmetric encryption algorithm. That is why you need a passphrase to access the key. Thus there are two
barriers an attacker must cross to access your private key: (1) he must actually acquire the key, and (2) he must
get past the encryption.

Safely storing your private key is important, but there is a cost. Ideally, you would keep the private key
on a removable, write-protected disk such as a floppy disk, and you would use it on a single-user machine not
connected to a network. This may be inconvenient or impossible for you to do. For example, you may not own
your own machine and must use a computer at work or school, or it may mean you have to physically disconnect
your computer from your cable modem every time you want to use GnuPG.

This does not mean you cannot or should not use GnuPG. It means only that you have decided that the data
you are protecting is important enough to encrypt but not so important as to take extra steps to make the first
barrier stronger. It is your choice.

A good passphrase is absolutely critical when using GnuPG. Any attacker who gains access to your private
key must bypass the encryption on the private key. Instead of brute-force guessing the key, an attacker will
almost certainly instead try to guess the passphrase.

The motivation for trying passphrases is that most people choose a passphrase that is easier to guess than a
random 128-bit key. If the passphrase is a word, it is much cheaper to try all the words in the dictionaries of the
world’s languages. Even if the word is permuted, e.g., k3wldood, it is still easier to try dictionary words with
a catalog of permutations. The same problem applies to quotations. In general, passphrases based on natural-

29

Chapter 4. Daily use of GhuPG

language utterances are poor passphrases since there is little randomness and lots of redundancy in natural
language. You should avoid natural language passphrases if you can.

A good passphrase is one that you can remember but is hard for someone to guess. It should include
characters from the whole range of printable characters on your keyboard. This includes uppercase alphabetics
characters, numbers, and special characters suchrad| . Be creative and spend a little time considering your
passphrase; a good choice is important to ensure your privacy.

Selecting expiration dates and using subkeys

By default, a DSA master signing key and an ElIGamal encryption subkey are generated when you create a new
keypair. This is convenient, because the roles of the two keys are different, and you may therefore want the keys
to have different lifetimes. The master signing key is used to make digital signatures, and it also collects the
signatures of others who have confirmed your identity. The encryption key is used only for decrypting encrypted
documents sent to you. Typically, a digital signature has a long lifetime, e.g., forever, and you also do not want
to lose the signatures on your key that you worked hard to collect. On the other hand, the encryption subkey
may be changed periodically for extra security, since if an encryption key is broken, the attacker can read all
documents encrypted to that key both in the future and from the past.

It is almost always the case that you will not want the master key to expire. There are two reasons why
you may choose an expiration date. First, you may intend for the key to have a limited lifetime. For example, it
is being used for an event such as a political campaign and will no longer be useful after the campaign is over.
Another reason is that if you lose control of the key and do not have a revocation certificate with which to revoke
the key, having an expiration date on the master key ensures that the key will eventually fall into disuse.

Changing encryption subkeys is straightforward but can be inconvenient. If you generate a new keypair
with an expiration date on the subkey, that subkey will eventually expire. Shortly before the expiration you will
add a new subkey and publish your updated public key. Once the subkey expires, those who wish to correspond
with you must find your updated key since they will no longer be able to encrypt to the expired key. This may be
inconvenient depending on how you distribute the key. Fortunately, however, no extra signatures are necessary
since the new subkey will have been signed with your master signing key, which presumably has already been
validated by your correspondents.

The inconvenience may or may not be worth the extra security. Just as you can, an attacker can still read
all documents encrypted to an expired subkey. Changing subkeys only protects future documents. In order to
read documents encrypted to the new subkey, the attacker would need to mount a new attack using whatever
techniques he used against you the first time.

Finally, it only makes sense to have one valid encryption subkey on a keyring. There is no additional
security gained by having two or more active subkeys. There may of course be any number of expired keys on a
keyring so that documents encrypted in the past may still be decrypted, but only one subkey needs to be active
at any given time.

Managing your web of trust

As with protecting your private key, managing your web of trust is another aspect of using GnuPG that requires
balancing security against ease of use. If you are using GnuPG to protect against casual eavesdropping and

30

Chapter 4. Daily use of GhuPG

forgeries then you can afford to be relatively trusting of other people’s signatures. On the other hand, if you are
concerned that there may be a determined attacker interested in invading your privacy, then you should be much
less trusting of other signatures and spend more time personally verifying signatures.

Regardless of your own security needs, though, you steduldys be carefulvhen signing other keys. Itis
selfish to sign a key with just enough confidence in the key’s validity to satisfy your own security needs. Others,
with more stringent security needs, may want to depend on your signature. If they cannot depend on you then
that weakens the web of trust and makes it more difficult for all GnuPG users to communicate. Use the same
care in signing keys that you would like others to use when you depend on their signatures.

In practice, managing your web of trust reduces to assigning trust to others and tuning the options
marginals-needed and-completes-needed . Any key you personally sign will be considered valid, but
except for small groups, it will not be practical to personally sign the key of every person with whom you
communicate. You will therefore have to assign trust to others.

Itis probably wise to be accurate when assigning trust and then use the options to tune how careful GnuPG
is with key validation. As a concrete example, you may fully trust a few close friends that you know are careful
with key signing and then marginally trust all others on your keyring. From there, you magyoseietes-
needed to 1 and-marginals-needed to 2. If you are more concerned with security you might choose values
of 1 and3 or 2 and3 respectively. If you are less concerned with privacy attacks and just want some reasonable
confidence about validity, set the valuedtandl. In general, higher numbers for these options imply that more
people would be needed to conspire against you in order to have a key validated that does not actually belong
to the person whom you think it does.

Building your web of trust

Wanting to use GnuPG yourself is not enough. In order to use to communicate securely with others you must
have a web of trust. At first glance, however, building a web of trust is a daunting task. The people with whom
you communicate need to use GndPénd there needs to be enough key signing so that keys can be consid-
ered valid. These are not technical problems; they are social problems. Nevertheless, you must overcome these
problems if you want to use GnuPG.

When getting started using GnuPG it is important to realize that you need not securely communicate with
every one of your correspondents. Start with a small circle of people, perhaps just yourself and one or two others
who also want to exercise their right to privacy. Generate your keys and sign each other’s public keys. This is
your initial web of trust. By doing this you will appreciate the value of a small, robust web of trust and will be
more cautious as you grow your web in the future.

In addition to those in your initial web of trust, you may want to communicate securely with others who
are also using GnuPG. Doing so, however, can be awkward for two reasons: (1) you do not always know when
someone uses or is willing to use GnuPG, and (2) if you do know of someone who uses it, you may still have
trouble validating their key. The first reason occurs because people do not always advertise that they use GnuPG.

1. In this section, GnuPG refers to the GnuPG implementation of OpenPGP as well as other implementations such as NAl's PGP
product.

31

Chapter 4. Daily use of GhuPG

The way to change this behavior is to set the example and advertise that you use GnuPG. There are at least three
ways to do this: you can sign messages you mail to others or post to message boards, you can put your public key
on your web page, or, if you put your key on a keyserver, you can put your key ID in your email signature. If you
advertise your key then you make it that much more acceptable for others to advertise their keys. Furthermore,
you make it easier for others to start communicating with you securely since you have taken the initiative and
made it clear that you use GnuPG.

Key validation is more difficult. If you do not personally know the person whose key you want to sign,
then it is not possible to sign the key yourself. You must rely on the signatures of others and hope to find
a chain of signatures leading from the key in question back to your own. To have any chance of finding a
chain, you must take the initiative and get your key signed by others outside of your initial web of trust.
An effective way to accomplish this is to participate in key signing parties. If you are going to a confer-
ence look ahead of time for a key signing party, and if you do not see one being held, offer to hold one
(http://wvww.herrons.com/kb2nsx/keysign.html). You can also be more passive and carry your fingerprint with
you for impromptu key exchanges. In such a situation the person to whom you gave the fingerprint would verify
it and sign your public key once he returned home.

Keep in mind, though, that this is optional. You have no obligation to either publicly advertise your key
or sign other people’s keys. The power of GnuPG is that it is flexible enough to adapt to your security needs
whatever they may be. The social reality, however, is that you will need to take the initiative if you want to grow
your web of trust and use GnuPG for as much of your communication as possible.

Using GnuPG legally

The legal status of encryption software varies from country to country, and law regarding encryption software is
rapidly evolving. Bert-Japp Koops (http://cwis.kub.nl/~frw/people/koops/bertjaap.htm) has an excellent Crypto
Law Survey (http://cwis.kub.nl/~frw/people/koops/lawsurvy.htm) to which you should refer for the legal status
of encryption software in your country.

32

Chapter 5. Topics

This chapter covers miscellaneous topics that do not fit elsewhere in the user manual. As topics are added, they
may be collected and factored into chapters that stand on their own. If you would like to see a particular topic
covered, please suggest it. Even better, volunteer to write a first draft covering your suggested topic!

Writing user interfaces

Alma Whitten (http://www.cs.cmu.edu/~alma) and Doug Tygar (http://www.cs.berkeley.edu/~tygar) have done

a study (http://reports-archive.adm.cs.cmu.edu/anon/1998/abstracts/98-155.html) on NAl's PGP 5.0 user inter-

face and came to the conclusion that novice users find PGP confusing and frustrating. In their human factors

study, only four out of twelve test subjects managed to correctly send encrypted email to their team members,

and three out of twelve emailed the secret without encryption. Furthermore, half of the test subjects had a

technical background.

These results are not surprising. PGP 5.0 has a nice user interface that is excellent if you already understand
how public-key encryption works and are familiar with the web-of-trust key management model specified by
OpenPGP. Unfortunately, novice users understand neither public-key encryption nor key management, and the
user interface does little to help.

You should certainly read Whitten and Tygar’s report if you are writing a user interface. It gives specific
comments from each of the test subjects, and those details are enlightening. For example, it would appear that
many of subjects believed that a message being sent to other people should be encrypted to the test subject’s
own public key. Consider it for a minute, and you will see that it is an easy mistake to make. In general, novice
users have difficulty understanding the different roles of the public key and private key when using GnuPG. As
a user interface designer, you should try to make it clear at all times when one of the two keys is being used.
You could also use wizards or other common GUI techniques for guiding the user through common tasks, such
as key generation, where extra steps, such as generating a key revocation certification and making a backup, are
all but essential for using GnuPG correctly. Other comments from the paper include the following.

« Security is usually a secondary goal; people want to send email, browse, and so on. Do not assume users will
be motivated to read manuals or go looking for security controls.

« The security of a networked computer is only as strong as its weakest component. Users need to be guided
to attend to all aspects of their security, not left to proceed through random exploration as they might with a
word processor or a spreadsheet.

- Consistently use the same terms for the same actions. Do not alternate between synonyms like “encrypt” and
“encipher”.

« For inexperienced users, simplify the display. Too much information hides the important information. An
initial display configuration could concentrate on giving the user the correct model of the relationship between
public and private keys and a clear understanding of the functions for acquiring and distributing keys.

Designing an effective user interface for key management is even more difficult. The OpenPGP web-of-
trust model is unfortunately quite obtuse. For example, the specification imposes three arbitrary trust levels onto
the user: none, marginal, and complete. All degrees of trust felt by the user must be fit into one of those three
cubbyholes. The key validation algorithm is also difficult for non-computer scientists to understand, particularly

33

Chapter 5. Topics

the notions of “marginals needed” and “completes needed”. Since the web-of-trust model is well-specified and

cannot be changed, you will have to do your best and design a user interface that helps to clarify it for the user. A

definite improvement, for example, would be to generate a diagram of how a key was validated when requested

by the user. Relevant comments from the paper include the following.

« Users are likely to be uncertain on how and when to grant accesses.

« Place a high priority on making sure users understand their security well enough to prevent them from mak-
ing potentially high-cost mistakes. Such mistakes include accidentally deleting the private key, accidentally
publicizing a key, accidentally revoking a key, forgetting the pass phrase, and failing to back up the key rings.

34

Appendix A. GNU Free Documentation License

Version 1.1, March 2000
Copyright (C) 2000 Free Software Foundation, Inc. 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other written document “free" in the sense of
freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying it,
either commercially or noncommercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications made by others.

This License is a kind of "copyleft”, which means that derivative works of the document must themselves
be free in the same sense. It complements the GNU General Public License, which is a copyleft license designed
for free software.

We have designed this License in order to use it for manuals for free software, because free software needs
free documentation: a free program should come with manuals providing the same freedoms that the software
does. But this License is not limited to software manuals; it can be used for any textual work, regardless of
subject matter or whether it is published as a printed book. We recommend this License principally for works
whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work that contains a notice placed by the copyright holder saying it
can be distributed under the terms of this License. The "Document”, below, refers to any such manual or work.
Any member of the public is a licensee, and is addressed as "you".

A "Modified Version" of the Document means any work containing the Document or a portion of it, either
copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals exclu-
sively with the relationship of the publishers or authors of the Document to the Document’s overall subject
(or to related matters) and contains nothing that could fall directly within that overall subject. (For example, if
the Document is in part a textbook of mathematics, a Secondary Section may not explain any mathematics.)
The relationship could be a matter of historical connection with the subject or with related matters, or of legal,
commercial, philosophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of
Invariant Sections, in the notice that says that the Document is released under this License.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover
Texts, in the notice that says that the Document is released under this License.

A "Transparent” copy of the Document means a machine-readable copy, represented in a format whose
specification is available to the general public, whose contents can be viewed and edited directly and straight-
forwardly with generic text editors or (for images composed of pixels) generic paint programs or (for drawings)

35

Appendix A. GNU Free Documentation License

some widely available drawing editor, and that is suitable for input to text formatters or for automatic translation

to a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent file format
whose markup has been designed to thwart or discourage subsequent modification by readers is not Transparent.
A copy that is not "Transparent” is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input
format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming simple
HTML designed for human modification. Opaque formats include PostScript, PDF, proprietary formats that can
be read and edited only by proprietary word processors, SGML or XML for which the DTD and/or processing
tools are not generally available, and the machine-generated HTML produced by some word processors for
output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed
to hold, legibly, the material this License requires to appear in the title page. For works in formats which do not
have any title page as such, "Title Page" means the text near the most prominent appearance of the work'’s title,
preceding the beginning of the body of the text.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially, provided
that this License, the copyright notices, and the license notice saying this License applies to the Document are
reproduced in all copies, and that you add no other conditions whatsoever to those of this License. You may not
use technical measures to obstruct or control the reading or further copying of the copies you make or distribute.
However, you may accept compensation in exchange for copies. If you distribute a large enough number of
copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies of the Document numbering more than 100, and the Document’s license notice
requires Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts:
Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly
and legibly identify you as the publisher of these copies. The front cover must present the full title with all words
of the title equally prominent and visible. You may add other material on the covers in addition. Copying with
changes limited to the covers, as long as they preserve the title of the Document and satisfy these conditions,
can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed
(as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either
include a machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy
a publicly-accessible computer-network location containing a complete Transparent copy of the Document, free
of added material, which the general network-using public has access to download anonymously at no charge
using public-standard network protocols. If you use the latter option, you must take reasonably prudent steps,

36

Appendix A. GNU Free Documentation License

when you begin distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus
accessible at the stated location until at least one year after the last time you distribute an Opaque copy (directly
or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing
any large number of copies, to give them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3
above, provided that you release the Modified Version under precisely this License, with the Modified Version
filling the role of the Document, thus licensing distribution and modification of the Modified Version to whoever
possesses a copy of it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those
of previous versions (which should, if there were any, be listed in the History section of the Document).
You may use the same title as a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifi-
cations in the Modified Version, together with at least five of the principal authors of the Document (all of
its principal authors, if it has less than five).

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public permission to use the
Modified Version under the terms of this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the
Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section entitled "History", and its title, and add to it an item stating at least the title, year, new
authors, and publisher of the Modified Version as given on the Title Page. If there is no section entitled
"History" in the Document, create one stating the title, year, authors, and publisher of the Document as
given on its Title Page, then add an item describing the Modified Version as stated in the previous sentence.

J.Preserve the network location, if any, given in the Document for public access to a Transparent copy of the
Document, and likewise the network locations given in the Document for previous versions it was based
on. These may be placed in the "History" section. You may omit a network location for a work that was
published at least four years before the Document itself, or if the original publisher of the version it refers
to gives permission.

K. In any section entitled "Acknowledgements" or "Dedications"”, preserve the section’s title, and preserve in
the section all the substance and tone of each of the contributor acknowledgements and/or dedications given
therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section num-
bers or the equivalent are not considered part of the section titles.

M. Delete any section entitled "Endorsements”. Such a section may not be included in the Modified Version.

N. Do not retitle any existing section as "Endorsements” or to conflict in title with any Invariant Section.

37

Appendix A. GNU Free Documentation License

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections
and contain no material copied from the Document, you may at your option designate some or all of these
sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version’s license
notice. These titles must be distinct from any other section titles.

You may add a section entitled "Endorsements”, provided it contains nothing but endorsements of your
Modified Version by various parties—for example, statements of peer review or that the text has been approved
by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a
Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover
Text and one of Back-Cover Text may be added by (or through arrangements made by) any one entity. If the
Document already includes a cover text for the same cover, previously added by you or by arrangement made
by the same entity you are acting on behalf of, you may not add another; but you may replace the old one, on
explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names
for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined in
section 4 above for modified versions, provided that you include in the combination all of the Invariant Sections
of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in
its license notice.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections
may be replaced with a single copy. If there are multiple Invariant Sections with the same name but different
contents, make the title of each such section unique by adding at the end of it, in parentheses, the nhame of the
original author or publisher of that section if known, or else a uniqgue number. Make the same adjustment to the
section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections entitled "History" in the various original documents,
forming one section entitled "History"; likewise combine any sections entitled "Acknowledgements", and any
sections entitled "Dedications". You must delete all sections entitled "Endorsements."

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License, and
replace the individual copies of this License in the various documents with a single copy that is included in the
collection, provided that you follow the rules of this License for verbatim copying of each of the documents in
all other respects.

You may extract a single document from such a collection, and distribute it individually under this License,
provided you insert a copy of this License into the extracted document, and follow this License in all other
respects regarding verbatim copying of that document.

38

Appendix A. GNU Free Documentation License

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works, in
or on a volume of a storage or distribution medium, does not as a whole count as a Modified Version of the
Document, provided no compilation copyright is claimed for the compilation. Such a compilation is called an
"aggregate"”, and this License does not apply to the other self-contained works thus compiled with the Document,
on account of their being thus compiled, if they are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the
Document is less than one quarter of the entire aggregate, the Document’s Cover Texts may be placed on covers
that surround only the Document within the aggregate. Otherwise they must appear on covers around the whole
aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document under
the terms of section 4. Replacing Invariant Sections with translations requires special permission from their
copyright holders, but you may include translations of some or all Invariant Sections in addition to the original
versions of these Invariant Sections. You may include a translation of this License provided that you also include
the original English version of this License. In case of a disagreement between the translation and the original
English version of this License, the original English version will prevail.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under this
License. Any other attempt to copy, modify, sublicense or distribute the Document is void, and will automatically
terminate your rights under this License. However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License
from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to
address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a
particular numbered version of this License "or any later version" applies to it, you have the option of following
the terms and conditions either of that specified version or of any later version that has been published (not as
a draft) by the Free Software Foundation. If the Document does not specify a version number of this License,
you may choose any version ever published (not as a draft) by the Free Software Foundation.

39

Appendix A. GNU Free Documentation License

How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document and put the
following copyright and license notices just after the title page:
Copyright (c) YEAR YOUR NAME. Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.1 or any later version published by the Free Software
Foundation; with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being LIST, and with
the Back-Cover Texts being LIST. A copy of the license is included in the section entitled "GNU Free Documentation
License".

If you have no Invariant Sections, write "with no Invariant Sections" instead of saying which ones are
invariant. If you have no Front-Cover Texts, write "no Front-Cover Texts" instead of "Front-Cover Texts being
LIST"; likewise for Back-Cover Texts.

If your document contains nontrivial examples of program code, we recommend releasing these examples
in parallel under your choice of free software license, such as the GNU General Public License, to permit their
use in free software.

40

