

acticom_802.1x: Authentication in WLAN-based Wireless Access Networks

Frank Fitzek acticom GmbH Am Borsigturm 42 13507 Berlin Germany security@acticom.de

acticom mobile networks

• IEEE802.1x

- defines authentication of network ports in non-shared 802 media environments
- devices: supplicant (client), authenticator (network access server) and backend authentication server
 - supplicant (mobile device) requesting service
 - authenticator blocks network access until an exchange of authentication PDUs has succeeded
 - backend authentication server offering authentication information via RADIUS interface
- authentication container
 - Extensible Authentication Protocol (EAP) defined in RFC2284 to convey arbitrary authentication mechanisms without the need to implement each mechanism on the authenticator

- Container protocols:
 - EAP-over-LAN (defined in IEEE802.1x standards document) encapsulated EAP messages in ethernet frames
 - EAP over RADIUS (defined in RFC2869) encapsulates EAP messages in RADIUS PDUs

 Sequence for authenticating a wireless device using MD5 challenge/response

IEEE802.1x/EAP in a wireless environment

- from a users perspective:
 - offers (re-)authentication without user interaction even when handover events occur
- from the network operators perspective:
 - uses existing backend authentication infrastructure
 - builtin feature in most WLAN-802.11 hardware equipment nowadays
- open issues:
 - EAPoL requires encryption on the air interface for secure operation / WEP(2), missing Message Integrity Checks (MIC), think of EAPoL-START/LOGOFF messages (DoS)
 - mutual authentication required to prevent rogue APs from "offering" service to customers (data privacy)

EAP-TLS

EAP-Transport Layer Security

- Transport Layer Security (TLS RFC2246) designed to prevent eavesdropping, replay attacks, message tampering, IETF successor to Secure Socket Layer
- EAP-TLS (RFC2716) defines a mechanism to use TLS handshaking phase for mutual authentication within EAP
- certificate management required for secure operation, an example:

Protected EAP (PEAP)

- draft-standard: draft-josefsson-pppext-eap-tls-eap-02.txt
- extend TLS connection, once encrypted channel is established, start second EAP auth process inside tunnel
- TLS handshake phase authenticates network operator to customer
- customer is authenticated in second EAP authentication phase running in TLS connection using any EAP auth mechanism (MD5, Generic Token Card, One-Time-Password)
- draft posted by RSA, Microsoft, Cisco
- lightweight on client side, optional hiding of user identity for improved privacy, quick reauthentication, general key generation mechanism for data connections

- Drawbacks of Protected EAP without WEP/WEP2
 - a supplicant leaving a Basic Service Set (BSS) by user interacticon sends EAPoL-Logoff message, authenticator blocks traffic
 - Logoff might be used as a Denial-of-Service attack by third party
 - PEAP connection is terminated once the backend auth server signals success or failure of the auth operation, continue PEAP/TLS-connection until EAPoL-Logoff message has been exchanged ! Handover ?
 - handover events leave the authenticator in state –AUTHENTICATED-, third party might use sniffed MAC address to gain access without being authorized until reauthentication occurs

 \rightarrow handover **reauthentication gap**

data privacy

- Data privacy
 - integration of WEP/WEP2 and keys generated during TLS connection
 - base station terminates PEAP connection, keying material locally available
 - backend auth server terminates PEAP connection, keying material must be conveyed to base station

 → interface, protocol ?
 problem statement: draft-aboba-pppext-key-problem-01.txt
 - dynamic key management on base stations per station required to separate client devices from each other
 - IP security
 - standardized security mechanism, widely supported
 - integrated on proxying device between authenticator and backend auth server, terminates PEAP connection

acticom mobile networks

www.acticom.de security@acticom.de

Am Borsigturm 42 13507 Berlin Germany

The only situation we recommend to be wired!