

Path Clearance

Earth Curvature

$$h = d_1 * d_2 / 1.5 * K$$

where h is the earth curvature in feet d_1 is the distance from first antenna, in miles d_2 is the distance from second antenna, in miles K = 4/3

Therefore,

$$\mathbf{h} = \mathbf{d}_1 * \mathbf{d}_2 / 2$$

First Fresnel Zone

 $\mathbf{R} = 72 ((\mathbf{d}_1 * \mathbf{d}_2) / \mathbf{D}_T * \mathbf{f})^{1/2}$

where R is the first Fresnel zone in ft D_T is the total path length in miles f is the frequency in GHz

Reflection Point

The formula for calculating the position of the reflection point on a path is;

For $K = 4/3$	$h_{\rm T}/d_1 - d_1/2 = h_{\rm R} * d_2 - d_2/2$
For $K = 2/3$	$\mathbf{h}_{\rm T} / \mathbf{d}_1 - \mathbf{d}_1 = \mathbf{h}_{\rm R} * \mathbf{d}_2 - \mathbf{d}_2$
For K = infinity	$\mathbf{d}_1 = \mathbf{D}_{\mathrm{T}} * \mathbf{h}_{\mathrm{T}} / (\mathbf{h}_{\mathrm{T}} + \mathbf{h}_{\mathrm{R}})$

where h_T and h_R are the transmitter and receiver heights in feet d_1 , d_2 and D_T are distances in miles infinity is for worst-case flat Earth propagation conditions

Fading Outages and Availability

The formula for calculating the Unavailability, U, of a path (due to multi-path fading) is;

$$U = a * b * 2.5 * 10^{-6} * f * D3 * 10^{-F/10}$$

where a is Climate (0.1 to 0.5) b is terrain (0.25 to 4) f is Frequency in GHz D is Path length in Miles F is Fade margin in dB

The formula for calculating the availability, A, of a path is;

$$A = (1-U) * 100\%$$

where U is Unavailability of a path