

Power Density

 $Pd = Pt * Gt / (4 * p * R^2)$

where Pd is the power per unit area at any point or the power density Pt is the total power transmitted Gt is the gain of the transmitting antenna R is the radius of the sphere

Receive Signal Level

 $RSL = Pt * Gt * Gr * (? / 4 * p * R)^{2}$

where Pt is the total power transmitted Gt is the gain of the transmitting antenna Gr is the gain of the receiving antenna R is the radius of the sphere

Free Space Loss

 $FSL = (? / 4 * p * R)^{2}$

where R is the radius in meters ? is the wavelength in meters or ? = C/f

Free Space Path Loss

 $L_f = 32.4 + 20 \ log_{10} \ R + 20 \ log_{10} \ f_c$

where R is the distance from cell site, in km f_c is the transmit frequency, in MHz L_f is the free space path loss, in dB

OR

 $L_{f} = 96.6 + 20 \log_{10} R + 20 \log_{10} f_{c}$

where R is the distance from cell site, in miles f_c is the transmit frequency, in GHz L_f is the free space path loss, in dB

Path Loss Between Points

 $L_{12} = 20 * \log (d_2/d_1)$

where the reference point is usually 1 mile or I km from the transmitter

RSL at a point = $RSL_{1 mi}$ + 20 log (distance at a point / reference distance)

where RSL_{1mi} is the 1-mile intercept reference distance is usually 10 miles