

Computer Engineering
2004

Curriculum Guidelines for Undergraduate

Degree Programs in Computer Engineering

A Report in the Computing Curricula Series

The Joint Task Force on Computing Curricula
IEEE Computer Society

Association for Computing Machinery

2004 December 12

This material is based in part on work supported by the
National Science Foundation Grant Number 0229748

Computing Curriculum – Computer Engineering Curriculum Report
Final Report 2004 December 12

Copyright © 2004 by the IEEE Computer Society

ALL RIGHTS RESERVED
This copyrighted material may not be reproduced, transmitted, translated, nor stored, in whole or in part, by any
means, electronic or mechanical, including photocopying, digital scan, or multimedia recording, for any purpose,
including storage and retrieval, without the express written permission of the authors, or their assigns as specified
below, except as provided herein for published review or comment. Assignment of all rights for publication in any
form, printed or electronic, is granted fully and equally to the sponsoring organizations including the Association for
Computing Machinery.

- ii -

Computing Curriculum – Computer Engineering Curriculum Report
Final Draft 2004 October 12

Executive Summary

 This report presents curriculum guidelines for undergraduate degree programs in computer
engineering. It draws upon recent efforts in computing curricula developed by the IEEE
Computer Society, the Association for Computing Machinery, and the Association for
Information Systems. These efforts resulted in published curricula recommendations in
computer science [ACM/IEEECS, 2001], information systems [ACM/AIS, 2002], and software
engineering [ACM/IEEECS, 2004]. Recommendations for information technology should
appear in 2006.

Computer engineering as an academic field encompasses the broad areas of computer science
and electrical engineering. Computer engineering is defined in this report as follows.

Computer engineering is a discipline that embodies the science and technology of design, construction,
implementation, and maintenance of software and hardware components of modern computing systems and
computer-controlled equipment. Computer engineering has traditionally been viewed as a combination of
both computer science (CS) and electrical engineering (EE).

Hence, this unique combination prepares students for careers that deal with computer systems
from design through implementation. Computing systems are components of a wide range of
products such as fuel injection systems in vehicles, medical devices such as x-ray machines,
communication devices such as cell phones, and household devices such as alarm systems and
washing machines. Designing computing systems and computing components of products,
developing and testing their prototypes, and implementing them to market are examples of what
computer engineers would do.

This report provides some background on the computer engineering field and explains how
the field evolved. It describes the expectations of graduates of the discipline and shows how
those graduates differ from other computing disciplines. It describes the expected background,
knowledge, and skills employers expect to see from graduates of computer engineering
programs. These include the ability to design computer systems, the realization of the
importance of practicing as professionals, and having the breadth and depth of knowledge
expected of a practicing engineer. It also discusses how programs in computer engineering may
have to stand up to the scrutiny of validation and accreditation by government or private
agencies.

The report includes four sample curricula that illustrate a methodology an institution mught
use to develop a curriculum in computer engineering based on its locale, mission, and particular
goals for its students. The sample curricula are grounded on a fundamental body of knowledge
from which an institution may develop a curriculum to fit its needs. This body of knowledge
contains broad knowledge areas that are applicable to all computer engineering programs
worldwide. Each knowledge area comprises a set of knowledge units. Within each knowledge
unit, a set of topics provide the details of study; a set of learning outcomes complements each
knowledge unit. Within each knowledge area, some knowledge units are identified as “core”,
and should appear in every implemented curriculum, while the remaining knowledge units are

- iii -

Computing Curriculum – Computer Engineering Curriculum Report
Final Draft 2004 October 12

elective. Core units represent the minimal knowledge or depth a program should cover in each
area; however, a curriculum containing only core units would not constitute a complete
curriculum in computer engineering.

A computer engineering program should contain sufficient coursework at the introductory,
intermediate, and advanced levels based on the aforementioned body of knowledge of computer
engineering. Programs should augment this coursework by a judicious selection of elective
courses that build upon that foundation. Breadth and depth in science and mathematics are
important to this discipline. As already mentioned, a design component is essential to the
program, and typically culminates with a capstone or senior project. The curriculum should also
emphasize professional practice, legal and ethical issues, and the social context in which
graduates implement engineering designs. Problem solving and critical thinking skills, oral and
written communication skills, teamwork, and a variety of laboratory experiences are essential to
the study of computer engineering.

These recommendations support the design of computer engineering curricula that will
prepare graduates to function at entry-level positions in industry for continued career growth or
to enter graduate programs for advanced study. The recommendations reflect input from
industrial and educational institutions. This report is the result of a cooperative effort of the
professionals involved. Its intent is to provide interested parties and educational institutions
worldwide a flexible way to implement a strong program in computer engineering. We trust that
we have achieved that goal.

- iv -

Computing Curriculum – Computer Engineering Curriculum Report
Final Draft 2004 October 12

CE2004 Task Force Members

David Soldan (Chair)*
James Aylor

Alan Clements
Gerald Engel

Ron Hoelzeman
Esther A. Hughes

Joseph L.A. Hughes*
John Impagliazzo*
Richard C. Jaeger

Robert Klenke
Douglas A. Lyon

Andrew McGettrick*
Victor P. Nelson*

Daniel J. Neebel
Ivor Page

Gregory D. Peterson
N. Ranganathan

Robert Sloan
Pradip K. Srimani*
Mitchell D. Theys*

Wayne Wolf
Murali Varanasi

Kansas State University
University of Virginia
University of Teesside – England
University of Connecticut
University of Pittsburgh
Virginia Commonwealth University
Georgia Institute of Technology
Hofstra University
Auburn University
Virginia Commonwealth University
Fairfield University
University of Strathclyde – Scotland
Auburn University
Loras College
University of Texas – Dallas
University of Tennessee – Knoxville
University of South Florida
University of Illinois – Chicago
Clemson University
University of Illinois – Chicago
Princeton University
University of South Florida

* Primary Authors and Editors of the Final Report

- v -

Computing Curriculum – Computer Engineering Curriculum Report
Final Draft 2004 October 12

Reviewers

The Computer Engineering Task Force thanks the following individuals for their comments and
suggestions in the development of this report.

NAME AFFILIATION
Nizar Al-Holou University of Detroit Mercy, United States

Yury A. Bogoyavlenskiy University of Petrozavodsk, Russian Federation
Kevin W. Bowyer University of Notre Dame, United States

Annette Bunker Utah State University, United States
James M. Conrad UNC Charlotte, United States

Susan E. Conry Clarkson University, United States
James A. Davis Iowa State University, United States

R. James Duckworth Worchester Polytechnic Institute, United States
Jose G. Delgado-Frias Washington State University, United States

Lalinda Fernando Rockwell Collins, United States
Edward F. Gehringer North Carolina State University, United States

Ian Greenshields University of Connecticut, United States
David R. Kaeli Northeastern University, United States

Ashfaq A. Khokar University of Delaware, United States
James McDonald Monmouth University, United States

Rafic Makki United Arab Emirates University
Hossein S. Moussavinezhad Western Michigan University, United States

Yale N. Patt University of Texas-Austin, United States
Hardy J. Pottinger University of Missouri-Rolla, United States

S.S.S.P. Rao Indian Institute of Technology, Bombay, India
Albert Reuther MIT Lincoln Laboratory, United States

Fred U. Rosenberger Washington University, United States
Kenneth L. Short SUNY Stony Brook, United States

Adit D. Singh Auburn University, United States
Mani Soma University of Washington, United States

J. Carter M. Tiernan University of Texas at Arlington, United States
A. Yavuz-Oruc University of Maryland, United States

- vi -

Computing Curriculum – Computer Engineering Curriculum Report
Final Draft 2004 October 12

Contents

Chapter 1 Introduction

1.1 Overall Structure of the Computing Curricula Project
1.2 Overview of the CE2004 Process
1.3 Structure of the CE2004 Report

Chapter 2 Computer Engineering as a Discipline

2.1 Background
2.2 Evolution of the Field
2.3 Characteristics of Computer Engineering Graduates

2.3.1 Distinctions
2.3.2 Professionalism
2.3.3 Ability to Design
2.3.4 Breadth of Knowledge

2.4 Organizational Considerations
2.5 Preparation for Professional Practice
2.6 Program Evaluation and Accreditation

Chapter 3 Principles

Chapter 4 Overview of the Computer Engineering Body of Knowledge

4.1 The Body of Knowledge
4.2 Structure of the Body of Knowledge
4.3 Learning Outcomes
4.4 Core and Elective Knowledge Units
4.5 Knowledge Units and Time Required for Coverage
4.6 Core Hours and a Complete Program

Chapter 5 Integration of Engineering Practice into the Computer Engineering Curriculum

5.1 The Nature of Computer Engineering
5.2 Design in the Curriculum

5.2.1 Design Throughout the Curriculum
5.2.2 The Culminating Design Experience

5.3 The Laboratory Experience
5.4 The Role of Engineering Tools
5.5 Applications of Computer Engineering Principles
5.6 Complementary Skills
5.7 Communication Skills
5.8 Teamwork Skills
5.9 Student Learning and Assessment
5.10 Lifelong Learning
5.11 The Business Perspective
5.12 The Elements of an Engineering Education

Chapter 6 Professionalism and Computer Engineering

6.1 Introduction

- vii -

Computing Curriculum – Computer Engineering Curriculum Report
Final Draft 2004 October 12

6.2 Decisions in a Societal Context
6.3 Fostering Professionalism

Chapter 7 Curriculum Implementation Issues

7.1 General Considerations
7.2 Basic Computer Engineering Components

7.2.1 Introductory Courses and the Core
7.2.2 Intermediate Courses
7.2.3 Advanced Courses
7.2.4 Culminating Project
7.2.5 Engineering Professional, Ethical, and Legal Issues
7.2.6 Communication Skills

7.3 Course Material Presented by Other Departments
7.3.1 Mathematical Requirements
7.3.2 Science Requirements
7.3.3 Other Requirements

7.4 Degree Program Implementation: Strategies and Examples
7.4.1 Course Considerations
7.4.2 Elective Courses

7.5 Degree Titles and Organizational Structures
7.6 Sample Curricula

Chapter 8 Institutional Challenges

8.1 The Need for Local Adaptation
8.2 Principles for Curriculum Design
8.3 The Need for Adequate Laboratory Resources
8.4 Attracting and Retaining Faculty

Endnote References to this Report

Bibliography

Appendix A The Computer Engineering Body of Knowledge
 A.1 Introduction
 A.2 Structure of the Body of Knowledge
 A.3 Core and Elective Units
 A.4 Time Required to Cover a Knowledge Unit
 A.5 Summary of the Computer Engineering Body of Knowledge
 A.6 Comments on Knowledge Areas

 A.6.1 Comments on Algorithms
A.6.2 Comments on Computer Architecture and Organization
A.6.3 Comments on Computer Systems Engineering
A.6.4 Comments on Circuits and Signals
A.6.5 Comments on Database Systems
A.6.6 Comments on Digital Logic
A.6.7 Comments on Discrete Structures
A.6.8 Comments on Digital Signal Processing
A.6.9 Comments on Electronics
A.6.10 Comments on Embedded Systems
A.6.11 Comments on Human-Computer Interaction
A.6.12 Comments on Computer Networks

- viii -

Computing Curriculum – Computer Engineering Curriculum Report
Final Draft 2004 October 12

A.6.13 Comments on Operating Systems
A.6.14 Comments on Programming Fundamentals
A.6.15 Comments on Probability and Statistics
A.6.16 Comments on Social and Professional Issues
A.6.17 Comments on Software Engineering
A.6.18 Comments on VLSI Design and Fabrication

A.7 Details of the Body of Knowledge
CE-ALG Algorithms
CE-CAO Computer Architecture and Organization
CE-CSE Computer Systems Engineering
CE-CSG Circuits and Signals
CE-DBS Database Systems
CE-DIG Digital Logic
CE-DSC Discrete Structures
CE-DSP Digital Signal Processing
CE-ELE Electronics
CE-ESY Embedded Systems
CE-HCI Human-Computer Interaction
CE-NWK Computer Networks
CE-OPS Operating Systems
CE-PRF Programming Fundamentals
CE-PRS Probability and Statistics
CE-SPR Social and Professional Issues
CE-SWE Software Engineering
CE-VLS VLSI Design and Fabrication

Appendix B Computer Engineering Sample Curricula
 B.1 Format and Conventions
 B.2 Preparation to Enter the Profession
 B.3 Curricula Commonalities

B.4 Implementation A – Computer Engineering Program Administered by a Computer Science
Department

 B.4.1 Program Goals and Features
 B.4.2 Summary of Requirements
 B.4.3 Four-Year Curriculum Model for Curriculum A
 B.4.4 Mapping of the Computer Engineering BOK to Curriculum A
 B.4.5 Curriculum A – Course Summaries
B.5 Implementation B – Computer Engineering Program Administered by an Electrical and Computer

Engineering Department
B.5.1 Program Goals and Features

 B.5.2 Summary of Requirements
 B.5.3 Four-Year Curriculum Model for Curriculum B
 B.5.4 Mapping of the Computer Engineering BOK to Curriculum B
 B.5.5 Curriculum B – Course Summaries
B.6 Implementation C – Computer Engineering Program Administered Jointly by a Computer Science

Department and a Department or College of Engineering
B.6.1 Program Goals and Features

 B.6.2 Summary of Requirements
 B.6.3 Four-Year Curriculum Model for Curriculum C
 B.6.4 Mapping of the Computer Engineering BOK to Curriculum C
 B.6.5 Curriculum C – Course Summaries
B.7 Implementation D – Computer Engineering Program Representative of a Program in the United

Kingdom and Other Nations
B.7.1 Program Goals and Features

 B.7.2 Summary of Requirements

- ix -

Computing Curriculum – Computer Engineering Curriculum Report
Final Draft 2004 October 12

 B.7.3 Four-Year Curriculum Model for Curriculum D
 B.7.4 Three-Year Curriculum Model for Curriculum D
 B.7.5 Mapping of the Computer Engineering BOK to Three-Year Curriculum D
 B.7.6 Curriculum D – Course Summaries

- x -

Computing Curriculum – Computer Engineering Curriculum Report
Final Draft 2004 October 12

Chapter 1

Introduction

I

n the fall of 1998, the Computer Society of the Institute for Electrical and Electronics Engineers (IEEE-CS) and
the Association for Computing Machinery (ACM) established the Joint Task Force on “model Curricula for
Computing” (or CC for short) to undertake a major review of curriculum guidelines for undergraduate programs

in computing. The charter of the task force is as follows:

To review the Joint ACM and IEEE/CS Computing Curricula 1991 and develop a revised and enhanced
version that addresses developments in computing technologies in the past decade and will sustain through
the next decade.

 As indicated in the charter, the goal of the CC effort is to revise Computing Curricula 1991 [ACM/IEEECS,
1991] so that it incorporates the developments of the past decade. Computing has changed dramatically over that
time in ways that have a profound effect on curriculum design and pedagogy. Moreover, the scope of what one calls
computing has broadened to the point that it is difficult to define it as a single discipline. Previous curricula reports
have attempted to merge such disciplines as computer science, computer engineering, and software engineering into
a single report about computing education. While such an approach may have seemed reasonable in the past, there
is no question that computing in the twenty-first century encompasses many vital disciplines with their own
identities and pedagogical traditions.

 Another part of the charter of this group includes supporting the community of professionals responsible for
developing and teaching a range of courses throughout the global community. Providing an international
perspective presents different challenges, but is an important ingredient given the global nature of computing related
developments.

1.1 Overall Structure of the Computing Curricula Project

Due to the broadening scope of computing—and the feedback received on the initial draft — the CC initiative
contains several reports. This report focuses specifically on computer engineering, referred to as “Computing
Curricula: Computer Engineering 2004” or simply CE2004. To encompass the different disciplines that are part of
the overall scope of computing, professional organizations have created additional committees to undertake similar
efforts in other areas. These areas include computer science (“Computing Curricula: Computer Science” or the
CCCS report [ACM/IEEECS, 2001] published in December 2001), information systems (“Computing Curricula:
Information Systems” or the IS2002 report [ACM/AIS, 2002] published in 2002), software engineering (“Computing
Curricula: Software Engineering” or the SE2004 report [ACM/IEEECS, 2004] published in 2004), and information
technology (“Computing Curricula: Information Technology” or the CCIT report currently under development).

 As the individual reports unfold to completion, representatives from the five computing disciplines have
produced an overview report that links them together. That overview report contains descriptions of the various
computing disciplines along with an assessment of the commonalities and differences that exist among them. It also
suggests the possibility of future curricular areas in computing. The structure of the series appears in Figure 1-1 as
taken from the overview report. The area of information technology is the newest component of the computing
curricula project.

- 1 -

Computing Curriculum – Computer Engineering Curriculum Report
Final Draft 2004 October 12

Overview
Report

Computer
Engineering
Curriculum

Report

Computer
Science

Curriculum
Report

Information
Systems

Curriculum
Report

Information
Technology
Curriculum

Report

Software
Engineering
Curriculum

Report

Future
Model

Curricula
Reports

 Figure 1.1: Computing curricula reports

1.2 Overview of the CE2004 Process

In their charter, the main CC Steering Committee gave individual groups freedom to produce reports that best reflect
the needs and requirements of their particular disciplines. However, the committee did request that groups address a
certain minimal number of matters and, consequently, that they should include certain components in the individual
reports. The minimal set includes:

 The body of knowledge (BOK) for the field; that is, the topics the field should cover,
 A set of courses that cover the body of knowledge in one or more ways,
 The core requirements for the discipline; that is, the requirements that would apply to all undergraduates, and
 The characteristics of graduates of degree programs

The Steering Committee viewed the set of requirements as minimal, as one of its goals was to avoid prescription.
The experts must have the freedom to act as they see fit. Yet there must be some commonality across the different
series of reports. The anticipation is that each report will exceed this minimal set in various ways.

 In pursuing this charter, it is natural that the Computer Engineering Task Force be cognizant of what the
Computer Science Task Force had already accomplished. The thrust of the Computer Engineering Task Force was
to build on work already completed, wherever possible.

 Despite the considerable growth of computer engineering as a discipline, the literature in computer engineering
curricular development is modest. There are a few contributions such as [Bennett, 1986], [EAB, 1986], and
[Langdon, et. al. 1986]. The focus of these was not curricular development, but issues such as resources and design
processes. These issues are still important and appear elsewhere in this document.

 To respond to the challenges of their charter, the Computer Engineering Task Force emerged from computer
engineering interests from different countries. In addition, there was some overlap with the original Computer
Science Task Force to ensure continuity. In discharging its duty, the Computer Engineering Task Force felt that it
was vital to involve the wider community; indeed, several consultative activities occurred to confirm the view
expressed in this volume. In addition, the task force used the World Wide Web [Aub] to allow any interested party
the opportunity to provide comment and suggestion. The published report has benefited from this wide and
important involvement

 Developing the recommendations in this report is primarily the responsibility of the CE2004 Task Force, the
members of which appear at the beginning of this report. Given the scale of the CE2004 project and the scope over
which it extends, it was necessary to secure the involvement of many other people, representing a wide range of
constituencies and areas of expertise.

- 2 -

Computing Curriculum – Computer Engineering Curriculum Report
Final Draft 2004 October 12

1.3 Structure of the CE2004 Report

This CE2004 report addresses computer engineering programs. The main body of the report consists of eight
chapters. Chapter 2 illustrates how computer engineering evolved as a discipline. It also highlights many of the
characteristics expected of a computer engineering graduate, especially their service to the public, their design
abilities, and their expected breadth of knowledge. It also suggests possible organizational structures, the
responsibility of professional practices, and program assessment. Chapter 3 articulates the principles that have
guided the work of the Computer Engineering Task Force and how these principles relate to CC2001. Chapters 4
and 5 present overviews of the computer engineering body of knowledge and curriculum recommendations. They
also articulate learning outcomes, the differences between core and elective knowledge units, the number of core
hours in the program, the importance of design and laboratory experiences, and various skills needed to become an
effective computer engineer. Chapter 6 highlights the importance of professionalism in the practice of computer
engineering. Chapter 7 provides a discussion on the issues affecting the implementation of a computer engineering
curriculum. These include the arrangement of courses within and external to the program and other implementation
considerations. Chapter 8 suggests some challenges that need reviewing when creating or continuing computer
engineering programs. This report provides two sets of references: those made within this report and a full set of
references related to all computing curricula programs.

 The bulk of the material in the report appears in two appendices. Appendix A addresses the body of knowledge
in detail for undergraduate computer engineering programs. It includes all the computing knowledge areas, their
associated knowledge units and related topics, student outcomes, and two related mathematics areas. Appendix B
illustrates sample curricula and course descriptions, as they might appear at different academic institutions. The
Task Force is hopeful that providing the body of knowledge, course descriptions, and sample curricula will help
departments to create effective curricula or to improve the curricula they already have.

- 3 -

Computing Curriculum – Computer Engineering Curriculum Report
Final Draft 2004 October 12

Chapter 2

Computer Engineering as a Discipline

T

his chapter presents some of the characteristics that distinguish computer engineering from other computing
disciplines. It provides some background of the field and shows how it evolved over time. It also highlights
some of the characteristics expected from its graduates, preparation for entering the curriculum, and student

outcomes and assessment. The chapter also highlights the importance of graduates to have a proper sense of
professionalism to ensure a proper perspective in the practice of computer engineering.

2.1 Background

Computer engineering is defined as the discipline that embodies the science and technology of design, construction,
implementation, and maintenance of software and hardware components of modern computing systems and
computer-controlled equipment. Computer engineering has traditionally been viewed as a combination of both
computer science (CS) and electrical engineering (EE). It has evolved over the past three decades as a separate,
although intimately related, discipline. Computer engineering is solidly grounded in the theories and principles of
computing, mathematics, science, and engineering and it applies these theories and principles to solve technical
problems through the design of computing hardware, software, networks, and processes.

 Historically, the field of computer engineering has been widely viewed as “designing computers.” In reality,
the design of computers themselves has been the province of relatively few highly skilled engineers whose goal was
to push forward the limits of computer and microelectronics technology. The successful miniaturization of silicon
devices and their increased reliability as system building blocks has created an environment in which computers
have replaced the more conventional electronic devices. These applications manifest themselves in the proliferation
of mobile telephones, personal digital assistants, location-aware devices, digital cameras, and similar products. It
also reveals itself in the myriad of applications involving embedded systems, namely those computing systems that
appear in applications such as automobiles, large-scale electronic devices, and major appliances.

 Increasingly, computer engineers are involved in the design of computer-based systems to address highly
specialized and specific application needs. Computer engineers work in most industries, including the computer,
aerospace, telecommunications, power production, manufacturing, defense, and electronics industries. They design
high-tech devices ranging from tiny microelectronic integrated-circuit chips, to powerful systems that utilize those
chips and efficient telecommunication systems that interconnect those systems. Applications include consumer
electronics (CD and DVD players, televisions, stereos, microwaves, gaming devices) and advanced microprocessors,
peripheral equipment, systems for portable, desktop and client/server computing, and communications devices
(cellular phones, pagers, personal digital assistants). It also includes distributed computing environments (local and
wide area networks, wireless networks, internets, intranets), and embedded computer systems (such as aircraft,
spacecraft, and automobile control systems in which computers are embedded to perform various functions). A
wide array of complex technological systems, such as power generation and distribution systems and modern
processing and manufacturing plants, rely on computer systems developed and designed by computer engineers.

 Technological advances and innovation continue to drive computer engineering. There is now a convergence of
several established technologies (such as television, computer, and networking technologies) resulting in widespread
and ready access to information on an enormous scale. This has created many opportunities and challenges for
computer engineers. This convergence of technologies and the associated innovation lie at the heart of economic
development and the future of many organizations. The situation bodes well for a successful career in computer
engineering.

- 4 -

Computing Curriculum – Computer Engineering Curriculum Report
Final Draft 2004 October 12

2.2 Evolution of the Field

As noted previously, computer engineering evolved from the disciplines of electrical engineering and computer
science. Initial curricular efforts in computer engineering commonly occurred as a specialization within EE
programs, extending digital logic design to the creation of small-scale digital systems and, eventually, the design of
microprocessors and computer systems.

 In the United States, the first computer engineering program accredited by ABET (formerly the Accreditation
Board for Engineering and Technology) was at Case Western Reserve University in 1971. As of October 2004,
ABET has accredited over 170 computer engineering or similarly named programs. Table 2-1 summarizes the
growth in programs by title and year of initial ABET accreditation (or change of program name). As a point of
comparison, there are approximately 300 accredited electrical engineering programs.

Table 2-1
Summary of ABET-accredited computer engineering programs in the U.S. - as of October 2004

Year of Initial Accreditation

Program Name
Before
1980

1980 to
1989

1990 to
1999

2000 to
2004 Totals

Computer Engineering 10 32 44 54 140
Computer Systems Engineering 2 2 0 1 5
Electrical and Computer Engineering
(includes programs previously named EE) 2 4 0 5 11

Computer Science and Engineering 2 6 1 3 12
Other titles 0 2 1 2 5

Totals 16 46 46 51 173

 One would expect that the growth trend in computer engineering will increase as computing and electronic
technologies become more complex. The evolution may take many forms, including (a) an expanded content from
computer science, (b) collaboration with the emerging software engineering discipline on application-focused
projects and embedded systems with a greater emphasis on design and analysis tools to manage complexity, or (c)
re-integration with electrical engineering, as computer-based systems become dominant in areas such as control
systems and telecommunications.

2.3 Characteristics of Computer Engineering Graduates

With the ubiquity of computers and computer-based systems in the world today, computer engineers must be
versatile in the knowledge drawn from standard topics in computer science and electrical engineering as well as the
foundations in mathematics and sciences. Because of the rapid pace of change in the computing field, computer
engineers must be life-long learners to maintain their knowledge and skills within their chosen discipline.

2.3.1 Distinctions

An important distinction should be made between computer engineers, electrical engineers, other computer
professionals, and engineering technologists. While such distinctions are sometimes ambiguous, computer
engineers generally should satisfy the following three characteristics.

1. Possess the ability to design computers and computer-based systems that include both hardware and
software to solve novel engineering problems, subject to trade-offs involving a set of competing goals and
constraints. In this context, “design” refers to a level of ability beyond “assembling” or “configuring”
systems.

2. Have a breadth of knowledge in mathematics and engineering sciences, associated with the broader scope
of engineering and beyond that narrowly required for the field.

- 5 -

Computing Curriculum – Computer Engineering Curriculum Report
Final Draft 2004 October 12

3. Acquire and maintain a preparation for professional practice in engineering.

 Electrical engineering spans a wide range of areas, including bioengineering, power engineering, electronics,
telecommunications and digital systems. Related to the field of computer engineering, electrical engineers concern
themselves primarily with the physical aspects of electronics including circuits, signal analysis, and microelectronic
devices. Computer scientists concern themselves primarily with the theoretical and algorithmic aspects of
computing with a focus on the theoretical underpinnings of computing. Software engineers have a focus on the
principles underlying the development and maintenance of correct (often large-scale) software throughout its
lifecycle. Information systems specialists encompass the acquisition, deployment, and management of information
resources for use in organizational processes. Information technology specialists would focus on meeting the needs
of users within an organizational and societal context through the selection, creation, application, integration, and
administration of computing technologies. Computer engineering technologists support engineers by installing and
operating computer-based products, and maintaining those products.

2.3.2 Professionalism

The public has entrusted in engineers a level of responsibility because the systems they design (whether x-ray
machines, air traffic control systems, or nuclear power plants) affect the public directly and indirectly. Therefore, it
is incumbent upon computer engineers to exercise the utmost conscientiousness in their designs and
implementations of computing systems. As such, graduates should have an understanding of the responsibilities
associated with engineering practice, including the professional, societal, and ethical context in which they do their
work. Such responsibilities often involve complicated trade-offs involving fiscal and social contexts. This social
context encompasses a range of legal and economic issues such as intellectual property rights, security and privacy
issues, liability, technological access, and global implications and uses of technologies.

 Professionalism and ethics are critical elements, since the focus of engineering on design and development
makes social context paramount to studies in the field. Computer engineering students must learn to integrate
theory, professional practice, and social constructs in their engineering careers. It is incumbent upon all computer
engineers to uphold the tenets of their profession and to adhere to the codes of professional practice. The public
expects engineers to follow prescribed rules of professional practice and to not engage in activities that would
tarnish their image or that of their practicing colleagues. Because of the importance of this topic, Chapter 6 of this
report is devoted to an expanded discussion on professional practice and responsibilities.

2.3.3 Ability to Design

Engineering draws heavily on the ability to design. The International Technology Education Association (ITEA)
defines engineering design as “The systematic and creative application of scientific and mathematical principles to
practical ends such as the design, manufacture, and operation of efficient and economical structures, machines,
processes, and systems.” [ITEA] Other definitions are possible such as the creative ability required for the
development of better devices, systems, processes, and new products. Many reasons prompt new designs such as
seeking to exploit new developments in related technologies or to develop improvements on existing products (e.g.
making products less expensive, safer, more flexible, or lighter in weight). Identifying deficiencies or weaknesses in
existing products is another motivation for engineering design. Of course, novel ideas are especially important.

 Design is fundamental to all engineering. For the computer engineer, design relates to software and hardware
components of modern computing systems and computer-controlled equipment. Computer engineers apply the
theories and principles of science and mathematics to design hardware, software, networks, and processes and to
solve technical problems. Continuing advances in computers and digital systems have created opportunities for
professionals capable of applying these developments to a broad range of applications in engineering.
Fundamentally, it is about making well-considered choices or trade-offs, subject to given constraints. These relate
to such matters as structure and organization, techniques, technologies, methodologies, interfaces, as well as the
selection of components. The outcome needs to exhibit desirable properties and these tend to relate to simplicity
and elegance. Chapter 5 presents a more detailed discussion of design and related laboratory experiences.

2.3.4 Breadth of Knowledge

- 6 -

Computing Curriculum – Computer Engineering Curriculum Report
Final Draft 2004 October 12

Because of the breadth of the computer-engineering field, curricular content may vary widely among programs, or
even among students in the same program. Computer-related coursework typically comes from computer
organization and architecture, algorithms, programming, databases, networks, software engineering, and
communications. Electrical engineering related coursework typically comes from circuits, digital logic,
microelectronics, signal processing, electromagnetics, and integrated circuit design. Foundational topics typically
include basic sciences, mathematics for both discrete and continuous domains, and applications of probability and
statistics.

 At one extreme, a degree program in computer engineering might provide opportunities for its students to study
a wide range of topics spanning the entire field. At another extreme, there may be programs that focus on one
specific aspect of computer engineering and cover it in great depth. The graduates from such programs will
typically tend to seek opportunities in the specialist area they studied, whether it is multimedia systems
development, computer design, network design, safety-critical systems, pervasive computing, or whatever other
specialties emerge and become important. One common measure for differentiating among computer engineering
programs is the relative amount of emphasis placed on topics that are commonly associated with either electrical
engineering or computer science programs.

 Despite differences in emphasis and content, there are certain common elements that one should expect of any
computer engineering program. The Body of Knowledge, described in Chapter 4, identifies topical areas that one
may reasonably expect in all programs, as opposed to those that are often included in some programs or those that
one might consider elective or specialized topics. From a higher-level perspective, however, one can reasonably
expect several characteristics of all computer engineering graduates. These include:

 System Level Perspective – Graduates should appreciate the concept of a computer system, the design of the
hardware and software for that system, and the processes involved in constructing or analyzing it. They
should have an understanding of its operation that goes to a greater depth than a mere external appreciation of
what the system does or the way(s) in which one uses it.

 Depth and Breadth – Graduates should have familiarity with topics across the breadth of the discipline, with
advanced knowledge in one or more areas.

 Design Experiences – Graduates should have completed a sequence of design experiences, encompassing
hardware and software elements, building on prior work, and including at least one major project.

 Use of Tools – Graduates should be capable of utilizing a variety of computer-based and laboratory tools for
the analysis and design of computer systems, including both hardware and software elements.

 Professional Practice – Graduates should understand the societal context in which engineering is practiced,
as well as the effects of engineering projects on society.

 Communication Skills – Graduates should be able to communicate their work in appropriate formats (written,
oral, graphical) and to critically evaluate materials presented by others in those formats.

2.4 Organizational Considerations

The administration of computer engineering programs falls within a variety of organizational structures. Currently,
computer engineering programs are rarely organized as separate academic departments. They often appear in
colleges or schools of engineering, either within an electrical engineering department, within a combined
engineering department, or within an electrical and computer engineering department. In such cases, the expectation
is a strong emphasis on circuits and electronic components. Computer engineering programs also appear in areas
such as computer science departments, colleges of arts and sciences, schools or divisions of information technology,
or co-sponsored by multiple entities. In these cases, the programs often relate more to the issues of theory,
abstraction, and organization rather than those of a more applied nature.

 As noted in Table 2-1, the most common degree title for these programs is “Computer Engineering.” Other
titles may reflect program specializations, organizational structures, historical constraints, or other factors. The
principles presented in this report apply to all computer engineering programs regardless of their organizational
structure or official degree title.

- 7 -

Computing Curriculum – Computer Engineering Curriculum Report
Final Draft 2004 October 12

2.5 Preparation for Professional Practice

Unlike professions such as law and medicine, engineering generally does not require an advanced degree for
employment in the field. Thus, undergraduate programs in computer engineering must include not only basic
knowledge within the field, but the ability to apply it to the solution of realistic projects. This preparation
encompasses several areas.

Section 2.3.2 defined the professionalism and ethics that are fundamental characteristics of a computer
engineering graduate. Preparation for professional practice requires graduates to have an understanding of their
responsibilities associated with engineering practice, as well as an ability to apply these principles to specific
situations. Professionalism should be a constant theme that pervades the entire curriculum. In particular, the social
context of engineering should be integrated into the teaching of engineering design, including the use of best
practices and trade-offs among technical, fiscal, and social requirements.

In addition to professionalism, appropriate preparation encompasses both technical (design ability, laboratory
experiences, use of engineering tools) and non-technical (teamwork, communication) elements. Chapter 5 of this
report provides a detailed discussion on the integration of these issues into the curriculum.

2.6 Program Evaluation and Accreditation

Processes for program evaluation must accommodate the variations among computer engineering programs. Such
evaluation is critical to ensure that graduates have the proper preparation and that programs are evolving to meet the
emerging requirements of the field. Often, professional societies and governments look toward an external
assessment of programs to ensure that graduates achieve minimally what professional organizations expect of them.

 Within the United States, ABET accreditation is widely recognized and accepted. The current engineering
criteria [ABET, 2004] are intended to ensure that all accredited programs satisfy a minimum set of criteria common
to all engineering disciplines and criteria specific to each discipline. A key element of this process is a requirement
that each program engage in an ongoing process of self-assessment and continuous improvement. Programs should
demonstrate that all graduates achieve a set of program outcomes based on the program’s educational objectives.
The ABET criteria are broadly defined. They leave the interpretation of what constitutes the appropriate knowledge
for a given discipline to the professional societies affiliated with that discipline. We anticipate that this report will
provide guidance to accrediting agencies on the appropriate technical content of computer engineering programs.

 In the United Kingdom, benchmarking of degrees has developed in recent years as part of governmental quality
assurance efforts. Each institution is required to demonstrate that their degrees meet the requisite benchmark
standards for that discipline. One example of these benchmark standards is [UKQAA, 2000]. This benchmarking
defines both threshold (minimal) and modal (average) expectations with respect to demonstrated student knowledge,
skills, and judgment. The Engineering Council UK has overall responsibility for the accreditation of engineering
degrees within the United Kingdom. Its basic responsibilities include setting standards (of competence and
commitment) for the accreditation of engineering degrees and approving nominating bodies that carry out detailed
accreditation on its behalf. In general, the British Computer Society (BCS) carries out accreditation of computing
degree programs and the Institute of Electrical Engineers (IEE) carries out the accreditation of electronic and
electrical engineering degree programs. Degree programs in computer engineering could be accredited by either
society, though perhaps more often by IEE. However, joint accreditation by both societies is common.

Many countries have established their own processes for evaluation and/or accreditation through governmental
or professional societies. Additionally, for over twenty years ABET has been evaluating programs outside of the
United States to determine if they are substantially equivalent to meeting the ABET accreditation criteria [ABET,
2003]. Mutual recognition of the evaluation and/or accreditation process exists through the mechanisms of the
Washington Accord [Washington], the Sydney Accord [Sydney], the Dublin Accord [Dublin], FEANI [FEANI], and
the International Register of Professional Engineers [IRPE].

- 8 -

Computing Curriculum – Computer Engineering Curriculum Report
Final Draft 2004 October 12

 In general, institutions tend to use accreditation as a vehicle to provide evidence of quality that they can use in
marketing activities; most institutions offering engineering degrees will have some form of recognition in
accreditation terms. Graduation from an accredited engineering program is typically a prerequisite step towards
professional registration or licensure. Currently, some jobs demand accredited degree status or professional
licensure, although this requirement is not as widespread in computing-related fields as in some other engineering
fields.

While accreditation and benchmarking standards typically refer to the minimum or average graduate, the
expectation is that computer engineering programs also will provide opportunities for the best students to achieve
their full potential. Such students will be creative and innovative in their application of the principles covered in the
curriculum; they will be able to contribute significantly to the analysis, design, and development of complex
systems; and they will be able to exercise critical evaluation and review of both their own work and the work of
others.

- 9 -

Computing Curriculum – Computer Engineering Curriculum Report
Final Draft 2004 October 12

Chapter 3

Principles

C

Omputer Engineering is a growing and important area of endeavor. The Computer Engineering Task Force
established a set of principles to guide its work that reflects in part those that appeared in the Computer
Science Report. They appear here with appropriate rewording and modification to reflect better the tenets

expected from a computer engineering program. The presentation here is not in order of priority.

1. Computer engineering is a broad and developing field. The original CC Steering Committee had taken the

view that a single report, covering primarily computer science, could not address the full range of issues that
colleges and universities have to consider as they seek to address their computing curricula, and that a different
task force should develop a separate report addressing computer engineering.

2. Computer engineering is a distinct discipline with its own body of knowledge, its own ethos, and its own
practices. That discipline embodies the science and the technology of specification, design, construction,
implementation, and maintenance of the hardware and software components of modern computer systems and
computer-controlled equipment.

3. Computer engineering draws its foundations from a wide variety of other disciplines. Computer engineering
education is solidly grounded in the theories and principles of computing, mathematics, and engineering, and it
applies these theoretical principles to design hardware, software, networks and computerized equipment and
instruments to solve technical problems in diverse application areas.

4. The rapid evolution of computer engineering requires an ongoing review of the corresponding curriculum.
Given the pace of change in the discipline, the professional associations in this discipline must establish an
ongoing review process that allows the timely update of the individual components of the curriculum
recommendations.

5. Development of a computer engineering curriculum must be sensitive to changes in technology, new
developments in pedagogy, and the importance of lifelong learning. In a field that evolves as rapidly as
computer engineering, educational institutions must adopt explicit strategies for responding to change.
Computer engineering education must seek to prepare students for lifelong learning that will enable them to
move beyond today’s technology to meet the challenges of the future.

6. The Computer Engineering Task Force should seek to identify the fundamental skills and knowledge that all
computer engineering graduates must possess. Computer engineering is a broadly based discipline. The final
report must seek to identify the common concepts and skills of the discipline.

7. The required core of the body of knowledge should be as small as reasonably possible. The Task Force should
make every effort to keep that core to a minimum to allow flexibility, customization, and choice in other parts
of the curriculum to enable creation of individualized programs.

8. Computer engineering must include appropriate and necessary design and laboratory experiences. A computer
engineering program should include “hands-on” experience in designing, building, and testing both hardware
and software systems.

9. The computer engineering core acknowledges that engineering curricula are often subject to accreditation,
licensure, or governmental constraints. This computer engineering report recognizes existing external
constraints and is intended to provide guidance for their evolution.

- 10 -

Computing Curriculum – Computer Engineering Curriculum Report
Final Draft 2004 October 12

10. The computer engineering curriculum must include preparation for professional practice as an integral
component. These practices encompass a wide range of activities including management, ethics and values,
written and oral communication, working as part of a team, and remaining current in a rapidly changing
discipline.

11. The computer engineering report must include discussions of strategies and tactics for implementation along
with high-level recommendations. Although it is important for computing curricula to articulate a broad vision
of computing education, the success of any curriculum depends heavily on implementation details. To
accomplish this, the report should provide sample curricula models.

12. The development of the final report must contain a broad base. To be successful, the process of creating the
computer engineering recommendations must include participation from many different constituencies
including industry, government, and the full range of higher educational institutions involved in computer
engineering education.

13. The computer engineering final report must strive to be international in scope. Despite the fact that curricular

requirements differ from country to country, this report must be useful to computing educators throughout the
world. Although educational practice in the United States may influence curriculum, the report makes every
effort to ensure that the curriculum recommendations are sensitive to national and cultural differences so that
they will be widely applicable throughout the world.

- 11 -

Computing Curriculum – Computer Engineering Curriculum Report
Final Draft 2004 October 12

Chapter 4

Overview of the Computer Engineering
Body of Knowledge

D

eveloping any curriculum for undergraduate study in computer engineering should reflect the current needs
of computer engineering students. The curriculum should also reflect current educational practice and
suggest improvements where necessary. The discussion that follows attempts to accomplish this in

preparing a body of knowledge commensurate with producing competent computer engineering graduates.

4.1 The Body of Knowledge

The Computer Engineering Task Force has sought to assemble a modern curriculum by first defining the primary
disciplines that make up the body of knowledge for computer engineering. Some of these discipline areas contain
material that should be part of all computer engineering curricula. These are the 18 knowledge areas, including two
covering related mathematics topics, listed in Table 4.1. Other areas contain material that might, or might not, be
part of such curricula, depending on the specific educational objectives of a program. Some of these are listed in
Chapter 7, but are not described in detail in this report.

Table 4.1
CE2004 Discipline Areas Containing Core Material

CE-ALG* Algorithms
CE-CAO Computer Architecture and Organization
CE-CSE Computer Systems Engineering
CE-CSG Circuits and Signals
CE-DBS Database Systems
CE-DIG Digital Logic
CE-DSP Digital Signal Processing
CE-ELE Electronics
CE-ESY Embedded Systems
CE-HCI* Human-Computer Interaction
CE-NWK Computer Networks
CE-OPS* Operating Systems
CE-PRF* Programming Fundamentals
CE-SPR* Social and Professional Issues
CE-SWE* Software Engineering
CE-VLS VLSI Design and Fabrication
---------- -------------------------------------
CE-DSC* Discrete Structures
CE-PRS Probability and Statistics

* Consult the CC2001 Computer Science report for more detail

 After defining the above areas, each task force member designed and reviewed initial drafts defining the body
of knowledge for one or more areas. In some cases, new members joined the task force to cover areas of expertise
outside of those originally represented. Subsequently, a second task force member reviewed and revised each initial
draft. After each revision, the entire task force reviewed the resulting draft for comment. At the completion of this

- 12 -

Computing Curriculum – Computer Engineering Curriculum Report
Final Draft 2004 October 12

process, the entire task force met as a group to review the draft body of knowledge, with follow-up modifications
made as appropriate.

 The task force released the resulting document for public review. It solicited reviews at a number of meetings,
conferences, and other sources. The task force held an NSF-sponsored workshop in November 2002 in conjunction
with the Frontiers in Education Conference [FIE’02] in Boston. Reviewers from academia and industry participated
in the workshop and provided comments on the preliminary versions of the body of knowledge. Members from the
task force presented and discussed the body of knowledge at a variety of conferences through panel discussions and
poster sessions. Presentations to date appear in Table 4.2. The entire CE2004 project has been available at [Aub]
since 2002.

Table 4.2
CE2004 Presentations

Date Conference or meeting Type

2002 June 16-19 American Society for Engineering Education – Montreal, Canada [ASEE’02] Panel

2002 November 6-9 Frontiers in Education – Boston, USA [FIE’02] Panel
2003 February 19-23 SIGCSE Technical Symposium – Reno, USA [SIGCSE’03] Panel

2003 March Electrical and Computer Engineering Department Heads Association – Hawaii, USA Panel
2003 June 22-25 American Society for Engineering Education – Nashville, USA [ASEE’03] Panel

2003 June 29 – July 2 Innovation and Technology in Computer Science Education – Thessaloniki, Greece [ITiCSE’03] Poster
2003 November 5-8 Frontiers in Education - Denver , USA [FIE’03] Panel &Paper

2004 March 3-7 SIGCSE Technical Symposium – Norfolk, USA [SIGCSE’04] Panel
2004 June 20-23 American Society for Engineering Education – Salt Lake City, USA [ASEE’04] Paper

2004 October 20-23 Frontiers in Education – Savannah, USA [FIE’04] Panel & Paper
2005 February SIGCSE Technical Symposium – St. Louis, USA [SIGCSE’05] BOAF

4.2 Structure of the Body of Knowledge

The body of knowledge has a hierarchical organization comprising three levels described as follows.

 The highest level of the hierarchy is the knowledge area, which represents a particular disciplinary sub-field.
A three-letter abbreviated tag identifies each area, such as CE-DIG for “Digital Logic” and CE-CAO for
“Computer Architecture and Organization.”

 Each knowledge area is broken down into smaller divisions called knowledge units, which represent
individual thematic modules within an area. A numeric suffix added to the area name identifies each
knowledge unit. For example, CE-CAO3 is a knowledge unit on “Memory System Organization and
Architecture” within the CE-CAO knowledge area.

 A set of topics, which are the lowest level of the hierarchy, further subdivides each knowledge unit. A group
of learning outcomes addresses the related technical skills associated with each knowledge unit. Section 4.3
expands the discussion on learning outcomes. For example, CE-CAO3 contains nine topics, such as “Virtual
Memory Systems”.

 To differentiate knowledge areas and knowledge units in computer engineering from those that may have the
same or similar names in the other four curriculum areas associated with this computing curriculum project, the
prefix “CE-” accompanies all knowledge areas and units in computer engineering. Reflecting the examples above,
therefore, tags such as CE-DIG for knowledge areas and CE-CAO3 for knowledge units appear throughout the
report.

4.3 Learning Outcomes

To capture the various skills associated with obtaining knowledge, this report uses the phrase learning outcomes as a
component of each knowledge unit. The emphasis on learning is important. The concept of learning outcomes is a
mechanism for describing not just knowledge and relevant practical skills, but also personal and transferable skills.

- 13 -

Computing Curriculum – Computer Engineering Curriculum Report
Final Draft 2004 October 12

Outcomes can be associated with a knowledge unit, a class, a course, or even a degree program. Teachers can use
them to convey different aspects of the ethos of a course or area of study.

 Any specification of a course will include both knowledge and associated learning outcomes. In designing
courses, some designers start with knowledge while others start with the learning outcomes. In reality, a
combination of the two approaches appears most appropriate. In addition, a certain duality exists between the
elements of knowledge and the related learning outcomes or objectives. Different people will place different levels
of emphasis on each. For this document, the view is that they are complementary.

 Since learning outcomes imply assessment and since assessment guides learning, teachers should exercise
considerable care in selecting and formulating these. Excessive numbers of very detailed learning outcomes can
lead to bureaucracy and tedium, which is highly undesirable. The existence of these outcomes must not inhibit
course development; it should enhance that activity.

 Learning outcomes are part of knowledge units and can be part of modules, which constitute the formal units of
assessment. The number of learning outcomes per knowledge unit or module should be a small number—at most
four or five. The learning outcomes for a module will naturally build on the knowledge units and the associated
practical skills. They tend to be of the form:

Demonstrate the acquisition of competence; that is, show the ability to apply knowledge and
practical skills to solve a problem.

Of course, the ways of demonstrating skills can be many and varied; in particular, they can involve a range of
communication and other skills. In this way, imaginative approaches to assessment can lead to the assessment of a
range of skills in a well-conceived assignment.

4.4 Core and Elective Knowledge Units

As computer engineering evolves, the number of topics required in the undergraduate curriculum is growing. Over
the last decade, computer engineering has expanded to such an extent that it is no longer possible to add new topics
without taking others away. One of the goals in proposing curricular recommendations is to keep the required
component of the body of knowledge as small as possible.

 To implement this principle, the Computer Engineering Task Force has defined a minimal core comprising
those knowledge units for which there is broad consensus that the corresponding material is essential to anyone
obtaining an undergraduate degree in computer engineering. The core is considered essential, independent of the
specific program degree title or organizational structure. Knowledge units presented as part of an undergraduate
program, but which fall outside the core, are elective to the curriculum. Based on program goals, an institution may
deem many elective units and areas as essential and require them for its program.

 In discussing the recommendations during their development, the Task Force has found that it helps to
emphasize the following important points.

 The core is not a complete curriculum.
The intention of the core is minimal and it does not constitute a complete undergraduate curriculum. Every
undergraduate program must include additional elective knowledge units from the body of knowledge. This
report does not define what those units should be; that decision is the choice of each institution. A complete
curriculum must also contain supporting areas covered through courses in mathematics, natural sciences,
business, humanities, and/or social sciences. Chapter 7 presents some detail in this area.

 Core units are not necessarily limited to a set of introductory courses taken early in the undergraduate
curriculum.
Many of the knowledge units defined as core are indeed introductory. However, some core knowledge can
appear only after students have developed significant background in the field. For example, the Task Force
believes that all students must develop a significant application at some point during their undergraduate

- 14 -

Computing Curriculum – Computer Engineering Curriculum Report
Final Draft 2004 October 12

program. The material that is essential to successful management of projects at this scale is obviously part of
the core, since it is required of all students. At the same time, the project course experience is very likely to
come toward the end of a student's undergraduate program. Similarly, introductory courses may include
elective knowledge units together with the coverage of core material. From a practical point of view, the
designation core simply means required and says nothing about the level of the course in which it appears.

4.5 Knowledge Units and Time Required for Coverage

To provide readers a sense of the time required to cover a particular unit, this report defines a metric that establishes
a standard of measurement. Choosing such a metric has proven difficult, because no standard measure has global
recognition. For consistency with the computer science report and earlier curriculum reports, the Task Force has
chosen to express time in hours, corresponding to the in-class time required to present that material in a traditional
lecture-oriented format. To dispel any potential confusion, however, it is important to underscore the following
observations about the use of lecture hours as a measure.

 The Task Force does not seek to endorse the lecture format. Even though this report refers to a metric with
its roots in a classical lecture-oriented form, the Task Force believes there are other styles - particularly given
recent improvements in educational technology - that can be at least as effective. For some of these styles,
the notion of hours may be difficult to apply. Even so, the time specifications should at least serve as a
comparative measure, in the sense that a five-hour unit will presumably take roughly five times as much time
to cover as a one-hour unit, independent of the teaching style.

 The hours specified do not include time spent outside of a class. The time assigned to a unit does not include
the instructor's preparation time or the time students spend outside of class. As a general guideline, the
amount of out-of-class work for a student is approximately two to three times the in-class time. Thus, a unit
that is listed as requiring three hours will typically entail a total of nine to twelve hours (three in-class hours
and six to nine outside hours) of student effort.

 The hours listed for a unit represent a minimum level of coverage. One should interpret the time
measurements assigned to each knowledge unit as the minimum amount of time necessary to enable a student
to perform the learning outcomes for that unit. It may be appropriate to spend more time on a knowledge unit
than the mandated minimum.

 The 420 core hours specified do not include time for laboratories, design, math, science, etc. These activities
and subjects should be added to the 420 core hours as necessary to provide supporting material and
preparation for engineering practice.

The number of hours shown should be sufficient to ensure familiarity with the topics, but not necessarily to achieve
expertise in that area. The number of core hours was deliberately kept to a minimum to allow programs the
flexibility to emphasize selected areas in accordance with the specific objectives, prerequisite structure, and level of
student preparation in that program. Therefore, the actual time devoted to a particular core topic will vary from
program to program, with some programs spending more than the specified minimum number of hours on selected
core topics, while devoting only the minimum level of coverage to others.

4.6 Core Hours and a Complete Program

The knowledge units designated as core constitute only a fraction (approximately 30%) of the total body of
knowledge. Different computer engineering programs can have different program objectives and as a result, will
have different emphases. The remainder of a specific program at an institution usually will require specific
additional knowledge units that complement the core areas, as well as elective hours chosen by individual students.
Thus, each local program should seek to encompass that portion of the body of knowledge relevant to its program
goals.

- 15 -

Computing Curriculum – Computer Engineering Curriculum Report
Final Draft 2004 October 12

A summary of the body of knowledge—showing the areas, units, which units are core, and the minimum time
required for each—appears in Table 4.3. It consists of 18 knowledge areas; 16 relate directly to computer
engineering and 2 relate to mathematics (discrete structures, probability and statistics). The Computer Engineering
Task Force has singled out these two mathematics areas as core because some programs may not consider them
essential to computer engineering, as they would consider calculus. The details of the body of knowledge for
computer engineering appear in Appendix A.

The core hours as specified in Table 4.3 total 420 hours of computer engineering and 66 hours of mathematics.
Recall that an hour refers to a lecture hour and not a credit hour. Assuming a 15-week semester, a typical three-
credit-hour course would have about 42 lecture hours for presentation of material. That is, approximately 14 lecture
hours are equivalent to 1 semester credit hour. The 420 core computer engineering hours are thus roughly
equivalent to ten three-credit-hour courses or 30 semester credit hours. The 30 semester credit hours are
approximately one quarter of the 128 credit hours included in a typical four-year engineering program. The 420
core hours leave ample room for the addition of laboratory courses, a culminating design project, and electives that
allow an institution to customize their program.

 In the United States, for example, ABET accreditation criteria currently requires one and one-half years
(approximately 48 semester hours) of engineering topics; it also requires one year (32 semester hours) of
mathematics and basic science. The 48 semester hours are equivalent to 672 contact hours. Therefore, the 420 core
hours listed in Table 4.3 would constitute approximately two-thirds of the required minimum engineering content.
Programs often categorize the discrete structures area and the probability and statistics area as mathematics rather
than engineering or computing areas.

 Figure 4.1 illustrates a four-year model program. It includes one year of mathematics and science, one year of
computer engineering core, one-half year of computer engineering electives, one-half year of additional engineering
studies, and one year of general studies. The model is adaptable to any worldwide system of study. In those
countries where general studies precede university studies, a three-year model can be created, as shown in Figure
4.2, by removing the year of general studies and introductory mathematics and science. Appendix B includes
examples of both four-year and three-year curricula.

- 16 -

Computing Curriculum – Computer Engineering Curriculum Report
Final Draft 2004 October 12

Table 4.3

The Computer Engineering Body of Knowledge

Computer Engineering Knowledge Areas and Units
CE-ALG Algorithms [30 core hours]

 CE-ALG0 History and overview [1]
*CE-ALG1 Basic algorithmic analysis [4]
*CE-ALG2 Algorithmic strategies [8]
*CE-ALG3 Computing algorithms [12]
*CE-ALG4 Distributed algorithms [3]
*CE-ALG5 Algorithmic complexity [2]
*CE-ALG6 Basic computability theory

CE-CAO Computer Architecture and Organization [63 core
hours]

CE-CAO0 History and overview [1]
CE-CAO1 Fundamentals of computer architecture [10]
CE-CAO2 Computer arithmetic [3]
CE-CAO3 Memory system organization and architecture [8]
CE-CAO4 Interfacing and communication [10]
CE-CAO5 Device subsystems [5]
CE-CAO6 Processor systems design [10]
CE-CAO7 Organization of the CPU [10]
CE-CAO8 Performance [3]
CE-CAO9 Distributed system models [3]
CE-CAO10 Performance enhancements

CE-CSE Computer Systems Engineering [18 core hours]
CE-CSE0 History and overview [1]
CE-CSE1 Life cycle [2]
CE-CSE2 Requirements analysis and elicitation [2]
CE-CSE3 Specification [2]
CE-CSE4 Architectural design [3]
CE-CSE5 Testing [2]
CE-CSE6 Maintenance [2]
CE-CSE7 Project management [2]
CE-CSE8 Concurrent (hardware/software) design [2]
CE-CSE9 Implementation
CE-CSE10 Specialized systems
CE-CSE11 Reliability and fault tolerance

CE-CSG Circuits and Signals [43 core hours]
CE-CSG0 History and overview [1]
CE-CSG1 Electrical Quantities [3]
CE-CSG2 Resistive Circuits and Networks [9]
CE-CSG3 Reactive Circuits and Networks [12]
CE-CSG4 Frequency Response [9]
CE-CSG5 Sinusoidal Analysis [6]
CE-CSG6 Convolution [3]
CE-CSG7 Fourier Analysis
CE-CSG8 Filters
CE-CSG9 Laplace Transforms

CE-DBS Database Systems [5 core hours]

 CE-DBS0 History and overview [1]
*CE-DBS1 Database systems [2]
*CE-DBS2 Data modeling [2]
*CE-DBS3 Relational databases
*CE-DBS4 Database query languages
*CE-DBS5 Relational database design
*CE-DBS6 Transaction processing
*CE-DBS7 Distributed databases
*CE-DBS8 Physical database design

CE-DIG Digital Logic [57 core hours]
CE-DIG0 History and overview [1]
CE-DIG1 Switching theory [6]
CE-DIG2 Combinational logic circuits [4]
CE-DIG3 Modular design of combinational circuits [6]
CE-DIG4 Memory elements [3]
CE-DIG5 Sequential logic circuits [10]
CE-DIG6 Digital systems design [12]
CE-DIG7 Modeling and simulation [5]
CE-DIG8 Formal verification [5]
CE-DIG9 Fault models and testing [5]

 CE-DIG10 Design for testability
CE-DSP Digital Signal Processing [17 core hours]
CE-DSP0 History and overview [1]
CE-DSP1 Theories and concepts [3]
CE-DSP2 Digital spectra analysis [1]
CE-DSP3 Discrete Fourier transform [7]
CE-DSP4 Sampling [2]
CE-DSP5 Transforms [2]
CE-DSP6 Digital filters [1]
CE-DSP7 Discrete time signals
CE-DSP8 Window functions
CE-DSP9 Convolution

 CE-DSP10 Audio processing
 CE-DSP11 Image processing

CE-ELE Electronics [40 core hours]
CE-ELE0 History and overview [1]
CE-ELE1 Electronic properties of materials [3]
CE-ELE2 Diodes and diode circuits [5]
CE-ELE3 MOS transistors and biasing [3]
CE-ELE4 MOS logic families [7]
CE-ELE5 Bipolar transistors and logic families [4]
CE-ELE6 Design parameters and issues [4]
CE-ELE7 Storage elements [3]
CE-ELE8 Interfacing logic families and standard buses [3]
CE-ELE9 Operational amplifiers [4]
CE-ELE10 Circuit modeling and simulation [3]
CE-ELE11 Data conversion circuits
CE-ELE12 Electronic voltage and current sources
CE-ELE13 Amplifier design
CE-ELE14 Integrated circuit building blocks

 CE-ESY Embedded Systems [20 core hours]
CE-ESY0 History and overview [1]
CE-ESY1 Embedded microcontrollers [6]
CE-ESY2 Embedded programs [3]
CE-ESY3 Real-time operating systems [3]
CE-ESY4 Low-power computing [2]
CE-ESY5 Reliable system design [2]
CE-ESY6 Design methodologies [3]
CE-ESY7 Tool support
CE-ESY8 Embedded multiprocessors
CE-ESY9 Networked embedded systems
CE-ESY10 Interfacing and mixed-signal systems

CE-HCI Human-Computer Interaction [8 core hours]
 CE-HCI0 History and overview [1]
*CE-HCI1 Foundations of human-computer interaction [2]
*CE-HCI2 Graphical user interface [2]
*CE-HCI3 I/O technologies [1]
*CE-HCI4 Intelligent systems [2]
*CE-HCI5 Human-centered software evaluation
*CE-HCI6 Human-centered software development
*CE-HCI7 Interactive graphical user-interface design
*CE-HCI8 Graphical user-interface programming
*CE-HCI9 Graphics and visualization
*CE-HCI10 Multimedia systems

- 17 -

Computing Curriculum – Computer Engineering Curriculum Report
Final Draft 2004 October 12

CE-NWK Computer Networks [21 core hours]
CE-NWK0 History and overview [1]
CE-NWK1 Communications network architecture [3]
CE-NWK2 Communications network protocols [4]
CE-NWK3 Local and wide area networks [4]
CE-NWK4 Client-server computing [3]
CE-NWK5 Data security and integrity [4]
CE-NWK6 Wireless and mobile computing [2]
CE-NWK7 Performance evaluation
CE-NWK8 Data communications
CE-NWK9 Network management
CE-NWK10 Compression and decompression

CE-OPS Operating Systems [20 core hours]
 CE-OPS0 History and overview [1]
*CE-OPS1 Design principles [5]
*CE-OPS2 Concurrency [6]
*CE-OPS3 Scheduling and dispatch [3]
*CE-OPS4 Memory management [5]
*CE-OPS5 Device management
*CE-OPS6 Security and protection
*CE-OPS7 File systems
*CE-OPS8 System performance evaluation

CE-PRF Programming Fundamentals [39 core hours]
 CE-PRF0 History and overview [1]
*CE-PRF1 Programming Paradigms [5]
*CE-PRF2 Programming constructs [7]
*CE-PRF3 Algorithms and problem-solving [8]
*CE-PRF4 Data structures [13]
*CE-PRF5 Recursion [5]
*CE-PRF6 Object-oriented programming
*CE-PRF7 Event-driven and concurrent programming
*CE-PRF8 Using APIs

CE-SPR Social and Professional Issues [16 core hours]
 CE-SPR0 History and overview [1]
*CE-SPR1 Public policy [2]
*CE-SPR2 Methods and tools of analysis [2]
*CE-SPR3 Professional and ethical responsibilities [2]
*CE-SPR4 Risks and liabilities [2]
*CE-SPR5 Intellectual property [2]
*CE-SPR6 Privacy and civil liberties [2]
*CE-SPR7 Computer crime [1]
*CE-SPR8 Economic issues in computing [2]
*CE-SPR9 Philosophical frameworks

CE-SWE Software Engineering [13 core hours]
CE-SWE0 History and overview [1]
*CE-SWE1 Software processes [2]
*CE-SWE2 Software requirements and specifications [2]
*CE-SWE3 Software design [2]
*CE-SWE4 Software testing and validation [2]
*CE-SWE5 Software evolution [2]
*CE-SWE6 Software tools and environments [2]
*CE-SWE7 Language translation
*CE-SWE8 Software project management
*CE-SWE9 Software fault tolerance

CE-VLS VLSI Design and Fabrication [10 core hours]
CE-VLS0 History and overview [1]
CE-VLS1 Electronic properties of materials [2]
CE-VLS2 Function of the basic inverter structure [3]
CE-VLS3 Combinational logic structures [1]
CE-VLS4 Sequential logic structures [1]
CE-VLS5 Semiconductor memories and array structures [2]
CE-VLS6 Chip input/output circuits
CE-VLS7 Processing and layout
CE-VLS8 Circuit characterization and performance
CE-VLS9 Alternative circuit structures/low power design
CE-VLS10 Semi-custom design technologies
CE-VLS11 ASIC design methodology

Mathematics Knowledge Areas and Units
CE-DSC Discrete Structures [33 core hours]

 CE-DSC0 History and overview [1]
*CE-DSC1 Functions, relations, and sets [6]
*CE-DSC2 Basic logic [10]
*CE-DSC3 Proof techniques [6]
*CE-DSC4 Basics of counting [4]
*CE-DSC5 Graphs and trees [4]
*CE-DSC6 Recursion [2]

CE-PRS Probability and Statistics [33 core hours]
CE-PRS0 History and overview [1]
CE-PRS1 Discrete probability [6]
CE-PRS2 Continuous probability [6]
CE-PRS3 Expectation [4]
CE-PRS4 Stochastic Processes [6]
CE-PRS5 Sampling distributions [4]
CE-PRS6 Estimation [4]
CE-PRS7 Hypothesis tests [2]
CE-PRS8 Correlation and regression

 * Consult the CC2001 Report [ACM/IEEECS, 2001] for more detail on these knowledge units

- 18 -

Computing Curriculum – Computer Engineering Curriculum Report
Final Draft 2004 October 12

Computer Engineering Topics

Math
and

Science

Core

CPE Topics

Elective

CPE
Topics

Additional Topics

(from engineering, mathematics,
general studies, and other topics

based on program objectives)

1 year 1 year 0.5 years 1.5 years

Figure 4.1. Organization of a four-year computer engineering curriculum.

Computer Engineering Topics

Math
and

Science

Core

CPE Topics

Elective

CPE
Topics

Additional Topics

(from engineering,

mathematics, and other
topics based on

program objectives)

0.5 years 1 year 0.5 years 1 year

Figure 4.2. Organization of a three-year computer engineering curriculum.

- 19 -

Computing Curriculum – Computer Engineering Curriculum Report
Final Draft 2004 October 12

Chapter 5

Integration of Engineering Practice into the
Computer Engineering Curriculum

B

y its very nature, any curriculum in computer engineering should reflect an engineering ethos that permeates
all years of the curriculum in a consistent manner. Such an approach has the effect of introducing students
to engineering (and in particular computer engineering), teaching them to think and function as engineers,

and setting expectations for the future. Preparation for professional practice is essential since engineering, unlike
such professions as law and medicine, generally does not require an advanced degree for employment in the field.

 The role of this chapter is to go beyond the body of knowledge introduced in Chapter 4 and to examine the
basic skills necessary to enable the computer engineering graduate to apply this body of knowledge to real-world
problems and situations. Chapter 6 will then address the important matter of professionalism, and Chapter 7 will
consider overall curriculum design, along with introducing sample curriculum implementations given in Appendix
B.

5.1 The Nature of Computer Engineering

An important initial aspect of the engineering ethos relates to acquiring the background necessary to understand and
to reason about engineering concepts and artifacts. This background stems from fundamental ideas in areas such as
computing, electronics, mathematics, and physics. An important role of the body of knowledge for computer
engineering is to expose and develop these fundamental notions. In many ways, the core of the body of knowledge
reflects a careful set of decisions about selection of material that fulfils this role.

 This basic material then provides underpinning for additional material whose ultimate expression is the building
of better as well as novel computing systems. A blend of theory and practice, with theory guiding practice, appears
to be the best approach to the discipline. The curriculum should accompany this blend with attention to a set of
professional, ethical, and legal concerns that guide the activities and attitudes of the well-educated computer
engineer. The curriculum should also foster familiarity with a considerable range of diverse applications.

5.2 Design in the Curriculum

In Chapter 2 of this report, a brief discussion on the characteristics of a computer engineer included the ability to
design and provided a definition of engineering design. The following sections provide guidance on how design
may be incorporated within the computer engineering curriculum.

5.2.1 Design Throughout the Curriculum

The principles of engineering design must pervade the entire computer engineering curriculum to produce
competent graduates. Throughout their education, computer engineering students should encounter different
approaches to design so that they become familiar with the strengths and weaknesses of these approaches.
Typically, the context in which design occurs provides a framework to decide which choices one must make.
Depending on the specific application requirements, the design context may emphasize technical considerations,
reliability, security, cost, user interface, or other considerations. Development of the requisite design skills cannot
be achieved through a single course, but must be integrated throughout the curriculum, building on both the
students’ accumulated technical knowledge and prior design experiences.

- 20 -

Computing Curriculum – Computer Engineering Curriculum Report
Final Draft 2004 October 12

 One area of particular concern to the computer engineer is the software/hardware interface where difficult trade-
off decisions often provide engineering challenges. Considerations on this boundary lead to an appreciation of and
insights into computer architecture and the importance of a computer’s machine code. At this boundary, difficult
decisions regarding hardware/software trade-offs can occur and this leads naturally to the design of special purpose
computers and systems. For example, in the design of a safety-critical system, it is important to ensure that the
system not harm the user or the public. The computer engineer must thoroughly test, even with unlikely parameters,
the hardware and software, and ultimately the system itself, to ensure the proper and reliable operation of the
system.

 At a different level, there are all the difficult issues of software design, including the human-computer interface.
Addressing this comprehensively can lead to considerations about multi-media, graphics, animation, and a whole
host of technologies. Similarly, one can make the same argument for issues in hardware design. In short, design is
central to computer engineering.

5.2.2 The Culminating Design Experience

The concept of a culminating design project is widely valued as an important experience that occurs toward the end
of a curriculum. Students consider a significant problem associated with a discipline and, in solving the problem,
they have the opportunity to demonstrate their ability to provide a solution. Typically, the solution must involve the
design and implementation of some product containing hardware and/or software components. The design
experience often includes cross-disciplinary teams, which best reflects industry practice. Ideally, the design
experience should incorporate engineering standards and realistic constraints to represent what may occur in a real
environment.

 The culminating design experience should provide students with a wealth of learning benefits. The benefits
stemming from this experience include:

 Demonstration of the ability to integrate concepts from several different subjects into a solution
 Demonstration of the application of disciplines associated with computer engineering
 Production of a well-written document detailing the design and the design experience
 Demonstration of creativity and innovation
 Development of time management and planning skills
 Self-awareness opportunities provided by an assessment of achievement as part of a final report

Depending on the approach to assessment, other opportunities arise. Assessment may include a demonstration, a
presentation, an oral examination, production of a web page, industry review, and many other interesting
possibilities. Although not listed in the core body of knowledge, the culminating design experience must be an
integral part of the undergraduate experience.

5.3 The Laboratory Experience

The laboratory experience is an essential part of the computer engineering curriculum and serves multiple functions.
As in any engineering curriculum, it is important that computer engineering students have many opportunities to
observe, explore and manipulate characteristics and behaviors of actual devices, systems, and processes. This
includes designing, implementing, testing, and documenting hardware and software, designing experiments to
acquire data, analyzing and interpreting that data, and in some cases, using that data to correct or improve the
design. A laboratory setting most effectively demonstrates such experiences either as an integral part of a course or
as a separate stand-alone course.

Introductory laboratories are somewhat directed and designed to reinforce concepts presented in lecture classes
and homework. Such activities demonstrate specific phenomena or behavior, and provide experiences with
measuring and studying desired characteristics. Intermediate and advanced laboratories should include problems
that are more open-ended, requiring students to design and implement solutions, to design experiments to acquire
data needed to complete the design or measure various characteristics.

 Laboratories should include some physical implementation of designs such as electronic and digital circuits,
bread-boarding, microprocessor interfacing, prototyping, and implementation of hardware and software.

- 21 -

Computing Curriculum – Computer Engineering Curriculum Report
Final Draft 2004 October 12

Laboratories should also include application and simulation software to design small digital and computer systems.
The use of simulation tools to model and study real systems is often desirable and necessary to allow students to
study systems that are not practical to design and implement physically. Such tools would also be useful where it
might be difficult to acquire the detailed information necessary to study their behavior.

 Students should learn to record laboratory activity to document and keep track of all design activities,
conducted experiments, and their measured/observed results whether good or bad. It also offers opportunities to
record trade-offs and to explore the effects of those design tradeoffs. The laboratory experience should also assist
students in learning practical issues, such as the following:

 Safety in all laboratories, especially where electronic equipment and electricity pose dangers
 Proper use of computers and other test equipment
 Building electronic circuits and devices
 Understanding the processes and concerns associated with product development and manufacturing
 Recognizing opportunities for trade-offs and being able to resolve decisions in this area; the trade-off between

hardware and software is of particular concern
 Treating laboratories as places of serious study and endeavor

 At the formative stages of their education, students often are motivated by the “hands-on” nature of engineering.
The laboratory experience capitalizes on this interest to provide a foundation for other important elements of
practical activity. Fundamentally, carefully planned practical assignments in a laboratory setting should help
students develop confidence in their technical ability. The laboratory experience should help students develop the
expertise to build new devices and to appreciate the important role of technical staff, workshop teams, and
professionals from other disciplines.

5.4 The Role of Engineering Tools

The use of tools is fundamental to engineering to effectively organize information and manage design complexity.
Familiarity with commonly used tools, the ability to deploy them in appropriate situations, and the ability to use
them effectively are important skills. Recognizing the potential for tool use is a highly valued skill and in non-
standard contexts can provide important insights. In the rapidly changing world of computer engineering, there are
opportunities for identifying roles for new tools. The development and exploitation of high quality tools is part of
the role of the computer engineer.

 For the computer engineer, the relevant range of tools spans the whole hardware and software spectrum.
Hardware design and analysis tools include instruments for measuring and analyzing hardware behavior, VLSI
design software, hardware description language and other design modeling tools, simulators and emulators, and
debugging tools. Other hardware tools include those to support circuit design, printed circuit design layout,
analyzing circuit behavior, block diagrams creation and editing, modeling communications systems, modeling
mixed analog and digital simulation, design rule checking, and virtual instruments. Software design and analysis
tools include operating systems, editors, compilers, language processors, debuggers, and computer-aided software
engineering (CASE) tools. General support tools include mathematical analysis programs (e.g. MATLAB,
MathCad), office software (word processors, spreadsheets, browsers, and search engines), databases,
communications software, and project management tools.

 Not every computer engineering program may incorporate all of these tools. The program should incorporate
appropriate tools throughout the program of study, consistent with the program’s goals and objectives. Identifying
the scope for the development of tools and components generally is yet another role for the computer engineer. A
natural subsequent activity is engaging in the design and development of these. Such activities need to be guided by
concerns for quality in all its different guises – safety, usability, reliability, and so on.

5.5 Applications of Computer Engineering Principles

- 22 -

Computing Curriculum – Computer Engineering Curriculum Report
Final Draft 2004 October 12

Given the nature of computer engineering and the expectations of students entering such courses, applications play a
fundamental role. Instructors can use applications as a means for:

 Motivating students in their studies
 Guiding their thinking and ambition
 Providing justification for the inclusion and the prominence of certain material
 Demonstrating the application of theoretical ideas

A program can achieve these attributes through a whole range of possible routes. These include the use of up-to-
date and topical case studies, guided reading, assessments, speakers from industry, and other diverse paths. This
experience can happen at a whole range of levels including chip design, software tools, and entire systems. Suitable
applications can also provide a forum for group work, perhaps of an interdisciplinary nature. To this end, all
computer engineering students should engage in an in-depth study of some significant application that uses
computing engineering in a substantive way.

 Computer engineering students will typically have a wide range of interests and professional goals. For many
students, in-depth study of some aspect of computer engineering will be extremely useful. Students might
accomplish such work in several ways. Some approaches might include an extended internship experience or the
equivalent of a full semester's work that would count toward a major in that discipline. Some institutions offer
cooperative education programs in which students alternate terms of study and engineering work in industry.
Activities of this kind can be interdisciplinary in nature and provide opportunities for particularly beneficial kinds of
group activity. Thus, the computer engineer may have to work with professionals from other disciplines, which may
include computer scientists, electrical engineers, financial experts, marketers, and product designers.

5.6 Complementary Skills

In today’s world there are pressures on institutions to ensure that graduates have the capacity to meet the needs of
employers. A more positive view is that institutions can be agents of change, producing graduates who are capable
of moving into employment with skills and expectations that benefit their employers.

 One aspect of this is to ensure that students possess a set of transferable or personal skills such as
communication skills, group working skills, and presentational skills. Transferable skills are those skills a person
can use in any occupation and can convey them from one type of work to another without retraining. Additionally,
one could include library and research skills as well as professional skills such as time management, project
management, information management, career development, self-awareness, and keeping up-to-date with
innovations in the field. From a motivational perspective, one should assess these skills in the context of computer
engineering and in a manner that highlights their relevance and importance to the discipline.

 There is always a danger that time spent on complementary skills can absorb excessive amounts of time and
effort and swamp or displace the more traditional material, thereby reducing knowledge. There are delicate issues of
balance here, and typically, a subtle approach to both teaching and assessment is required to ensure that there is not
imbalance in the curriculum.

5.7 Communication Skills

Computer engineers must be able to communicate effectively with colleagues and clients. Because of the
importance of good communication skills in nearly all careers, students must sharpen their oral and writing skills in
a variety of contexts—both inside and outside of computer engineering courses.

 One particular aspect of the activity of a computer engineer is to pass project requirements to a workshop or to
technical support staff, which in an industrial setting may be local or remote. Providing clear and succinct
instructions and having a proper regard for the role and purpose of support staff affects the efficiency and the nature
of the working environment. This trait is a fundamental communication skill. Considering these issues, students
should learn to:

- 23 -

Computing Curriculum – Computer Engineering Curriculum Report
Final Draft 2004 October 12

 Communicate ideas effectively in written form; this should include technical writing experiences (e.g. of
specifications, requirements, safety cases, documentation) as well as report writing and this should address
the use of figures, diagrams and appropriate references

 Make effective oral presentations, both formally and informally
 Understand and offer constructive critiques of the presentations of others
 Argue (politely yet effectively) in defense of a position
 Extract requirements from a customer by careful and penetrating questions using a disciplined and structured
approach

 Demonstrate the capabilities of a product

While institutions may adopt different strategies to accomplish these goals, the program of each computer
engineering student must include numerous occasions for improving these skills in a way that emphasizes writing,
speaking, and active listening skills.

 To enhance or emphasize the requisite communication skills needed by all students, a computer engineering
curriculum at a minimum should require:

 Course work that emphasizes the mechanics and process of writing
 Course work that emphasizes the mechanics and process of speaking
 One or more formal written reports
 Opportunities to critique a written report
 One or more formal oral presentations to a group
 Opportunities to critique an oral presentation

Furthermore, the computer engineering curriculum should integrate writing and verbal discussion consistently in
substantive ways. Institutions should not view communication skills as separate entities; instead, teachers should
incorporate fully such skills into the computer engineering curriculum and its requirements.

 A complementary and important set of communication skills arises in the context of electronic media.
Increasingly these have a central role to play in the life of the engineer. Apart from the obvious need to address
areas such as email and web design, students should engage at some level the ideas on effective cooperative working
and group learning, which have an increased prominence in the curriculum.

5.8 Teamwork Skills

Few computer engineering professionals can expect to work in isolation for very much of the time. Major computer
engineering projects are often, if not always, implemented by groups of people working together as a team. Many
times the teams are interdisciplinary in nature. Computer engineering students therefore need to learn about the
mechanics and dynamics of effective team participation as part of their undergraduate education. Moreover,
because the value of working in teams (as well as the difficulties that arise) does not become evident in small-scale
projects, students need to engage in team-oriented projects that extend over a reasonably long period of time,
possibly a full semester or a significant fraction thereof.

 Many of the problems of teamwork relate to communication skills. Where multi-disciplinary teams are
involved, individuals tend to receive roles, at least in part, based on their technical expertise. In team activity,
however, there are important additional issues related to such matters as the nature and composition of teams, roles
within teams, organizing team meetings, developing methods of reaching consensus and for recording decisions, the
importance of interfaces, the nature of deadlines and planning, and the importance of quality control mechanisms.
Computer engineering programs should include activities that ensure students have the opportunity to acquire these
skills as undergraduates; for example:

 Opportunities to work in teams beginning relatively early in the curriculum
 A significant project that a small student team undertakes that involves a complex design and implementation
of some product or prototype

5.9 Student Learning and Assessment

- 24 -

Computing Curriculum – Computer Engineering Curriculum Report
Final Draft 2004 October 12

Student learning is very complex and this is not the venue to discuss the ramifications of that process. However,
some basic elements of learning are of interest. Students tend to learn in stages as described by Grow [Grow 1991]
starting with directed learning and ending with self-directed learning. Grow showed (Table 5.1) the learning stages
in which learning is possible and the manner of participation by student and teacher. Teachers should be aware of
these stages to assure that students receive the proper education as they progress through these stages.

Table 5.1
Learning Stages [Grow 1991]

Stage Student Instructor Instructional Example

1 Dependent Authority/coach Lecture, coaching
2 Interested Motivator/guide Inspirational lecture, discussion group
3 Involved Facilitator Discussion lead by instructor who participates as equal
4 Self-directed Consultant Internships, dissertation, self directed study group

One should observe a number of important considerations in the assessment of students learning beyond those

that apply to all university learning.

 There is the issue of coursework; many topics lend themselves naturally to practical laboratory work. It is
normally desirable to ensure that the practical work counts towards the final assessment; indeed some would
take the view that a pass in the practical activity should be mandatory for a pass overall. All aspects of the
practical activity must be of high quality

 Where there are sophisticated technical skills involved, there should be sufficient time provided for laboratory
experiences with support for the students to ensure that they are learning the material and acquiring effective
skills.

 When assessing transferable skills, there is merit in integrating this assessment with the assessment of computer
engineering activity. In this manner, the skills manifest themselves in their natural setting and students learn ways
to address them. An additional advantage of this approach is that it serves to reduce the assessment load.

5.10 Lifelong Learning

Rapid technological change has been a characteristic of computer engineering and is likely to remain so for some
time to come. Graduates must be able to keep abreast with changes, and a key requirement of undergraduate
education is to equip them with the mechanisms for achieving this.

 A number of basic strategies seem appropriate. First, the curriculum itself must be current, the equipment has
to be up-to-date, and faculty members need to be engaged in relevant scholarship. Reference material such as
textbooks, software, web sites, case studies, and illustrations can be part of the learning experience with the aim of
identifying sources of current and interesting information.

 Lifelong learning is essentially an attitude of mind. Institutions can foster such attitudes by novel approaches to
teaching and learning that continually question and challenge situations and by highlighting opportunities for
advances. Instructors can challenge students by assessments and exercises that seek to explore new avenues. It is
also essential to see learning as an aspect that merits attention throughout the curriculum. It is possible to have a
planned learning experience that challenges student thought processes.

5.11 The Business Perspective

To complement the technical side of their experiences, computer engineers need to have an understanding of the
various non-technical processes associated with the development of new products. Fundamentally, the computer
engineer needs to develop an appreciation of creativity and innovation and have an eye to new opportunities for
profitable business ventures, both within established companies and in entrepreneurial endeavors. Students can
benefit from such knowledge in multiple ways, including:

- 25 -

Computing Curriculum – Computer Engineering Curriculum Report
Final Draft 2004 October 12

 Understanding the importance of the financial and economic imperatives associated with new products and
organizations

 Appreciating the relevance of the marketing perspective
 Knowing what is involved in product design and product acceptability
 Appreciating the benefits of teamwork, often multi-disciplinary in nature

In addition, students need to appreciate their fiscal responsibilities to their employers. Time translates to money and
the importance to complete jobs on schedule becomes important. The business world can also present trade-offs
between corporate needs and ethics. Students should be aware of the professional challenges that may await them in
government or corporate service. Within the computer engineering curriculum, such topics may be covered in
separate courses (for example, economics, engineering economics, marketing, or accounting), included as part of the
culminating design project, or integrated into other courses throughout the program.

5.12 The Elements of an Engineering Education

In summary, proper preparation for professional practice should result in graduates who are capable of the
following:

 Seeing their discipline as based on sound principles and sound underpinnings, to recognize what these are,
and to be able to apply them

 Understanding the important relationship between theory and practice
 Placing importance on design and being able to select appropriate approaches in particular contexts
 Recognizing the importance of understanding the relevant professional, ethical, and legal issues
 Recognizing the importance of tools; being able to respond to the challenges of building them and
recognizing the need to use these properly and effectively

 Recognizing the range of applications for their work
 Seeing innovation and creativity as important and understanding relevant business perspectives and
opportunities

 Recognizing the importance of team activity and the strengths that can be derived from this
 Understanding principles of product design including health and safety as well as marketing issues
 Seeing disciplined approaches as being important
 Understanding the social context within which engineers need to operate
 Being able to address a significant problem in computer engineering, and demonstrating the ability to deploy
an appropriate selection of tools and techniques as well as a disciplined approach in arriving at a solution of
the problem

Beyond these characteristics, this chapter has sought to address the range of basic ingredients that institutions must
assemble and carefully integrate into a computer engineering program to ensure that graduates are aware of the best
traditions of engineering practice.

- 26 -

Computing Curriculum – Computer Engineering Curriculum Report
Final Draft 2004 October 12

Chapter 6

Professionalism

O

ne aspect that makes computer engineers different from other computing specialists is their concentration on
computer systems that include both hardware and software. Computer engineers design and implement
computing systems that often affect the public and should hold a special sense of responsibility knowing that

almost every element of their work can have a public consequence. Hence, computer engineers must consider the
professional, societal, and ethical context in which they do their work. This context includes many issues such as
intellectual property rights embodied by copyrights and patents, legal issues including business contracts and law
practice, security and privacy issues as they apply to networks and databases, liability issues as applied to hardware
and software errors, and economic issues as they apply to tradeoffs between product quality and profits. It also
includes equity issues as they apply to technological access for all individuals. Computer engineers must be aware
of the social context of their actions and be sensitive to the global implications of their activities.

6.1 Introduction

Social context should be an integral component of engineering design and development. The public would not
expect that the design and construction of a building, bridge, or tunnel would be void of social context. Likewise, it
would not expect that the design and construction of a computer system used in an x-ray machine would be void of
social context. Computer engineers should apply best practices to their work. They should also follow prescribed
rules of professional practice and not engage in activities that would tarnish their image or that of their practicing
colleagues.

 Professionalism and ethics should be the cornerstone of any curriculum in computer engineering. The focus on
design and development makes social context paramount to one’s studies in the field. Professionalism should be a
constant theme that pervades the entire curriculum. Computer engineering students must learn to integrate theory,
professional practice, and social constructs in their engineering careers. Computing professionalism should be a
major emphasis of the curriculum.

6.2 Decisions in a Societal Context

Computer engineers will face many decisions in their careers. While most of these decisions will be technical ones,
others will involve a significant societal context. Computer engineers should understand the legal ramifications of
contract law, business organization and management, and corporate law.

 Of particular importance are issues related to intellectual property. An understanding of patent law is important,
particularly when the companies for whom they work may have an active patent program. It is also necessary to
understand copyrights since many employers copyright the software they produce. Another method of protecting
intellectual property is the use of trade secrets. Different governments have different laws regarding patents,
copyrights, and trade secrets. Since the computer engineer will be working in a global context, an understanding of
patents, copyrights, and trade secrets and their application is important.

 The topics of privacy and secrecy are fundamental to computing. Computers can store vast amounts of
information about individuals, businesses, industries, and governments. People can use this information to create
profiles of these entities. Computer engineers who are involved in the design of information storage systems must
be cognizant of the multiple uses of the systems they develop. Computer engineering students should study cases
that trigger an awareness of the social context of how information systems maybe used.

- 27 -

Computing Curriculum – Computer Engineering Curriculum Report
Final Draft 2004 October 12

 Computer engineers will most certainly have to deal with tradeoffs. Sometimes these are technical decisions
such as time versus space tradeoffs in a computer system. Sometimes, however, they involve social, economic, or
ethical tradeoffs. Such decisions can be about levels of risk, product reliability, and professional accountability.
Computer engineers must be aware of the ramifications of taking risks, be aware of the social consequences, be
accountable for the designs they develop, and be aware of the actions they take. These decisions may even involve
safety critical systems or life/death situations. Good engineers should not only be cognizant of the societal effects of
such decisions, but they should take measures to act professionally to protect the public and to nurture the public
trust.

 Best practices begin in the instructional laboratory. Educational institutions should encourage behavioral
patterns in laboratories that reflect best practices. Such patterns set a level or norm of behavior and elevate the
professional expectations of students. They also create a learning environment that is supportive of the professional
tenets to which computer engineers aspire. For example, institutions should establish safety guidelines for the
proper use of machines and equipment. Institutions should also provide guidelines on interpersonal skills between
students, students working in groups, and students interacting with technicians in a laboratory setting. Institutions
should instill a sense of professionalism and best practices in all computer engineering students.

 Morality is another aspect of making decisions in a societal context. A computer engineer should be aware that
many systems of morality exist. Case studies can be helpful to students so they understand the environments in
which they will have to function.

6.3 Fostering Professionalism

The issues highlighted in the previous sections have led many professional societies to develop codes of ethics and
professional practice for their constituencies. These codes help practitioners to understand expected standards of
professional conduct and the expectation among member practitioners. These codes also provide public information
concerning the precepts considered central to the profession. These codes provide a level playing field for
professionals with the prospects of avoiding ethical dilemmas whenever possible and helping professionals “do the
right thing” when faced with ethical decision making during their course of professional practice. In computing,
these codes are often binding upon the members of a society and they provide guidance in helping professionals
make decisions affecting their practice. Some of these codes include:

 National Society of Professional Engineers - NSPE Code of Ethics for Engineers [NSPE, 2003]
 Institute of Electrical and Electronic Engineers (IEEE): IEEE Code of Ethics [IEEE, 1990]
 Association for Computing Machinery (ACM): ACM Code of Ethics and Professional Conduct [ACM, 1992]
 ACM/IEEE-Computer Society: Software Engineering Code of Ethics and Professional Practice
[ACM/IEEECS, 1999]

 International Federation for Information Processing (IFIP): Harmonization of Professional Standards and
also Ethics of Computing [IFIP, 1998]

 Association of Information Technology Professionals (AITP): AITP Code of Ethics and the AITP Standards
of Conduct [AITP, 2002]

Computer engineers can use the codes of these societies to guide them to make decisions in their engineering
careers.

 Although each of these codes focus on the particular purposes of the society or societies sponsoring them,
common themes pervade all of them. Fundamental to all these codes are the responsibilities of the computing and
engineering professional to the public and to the public good. Additionally, these codes address issues of conflicts
of interest, scope of competence, objectiveness and truthfulness, deception, and professional conduct.

 The precepts delineated within these codes should be the hallmark of all practicing computer engineers.
Computer engineers should adopt the tenets of these codes of ethics and professional practices in all the work they
do. It is incumbent upon educational programs to educate computer engineers to embrace these tenets for the benefit
of their own careers and for the benefit of the computing and engineering professions.

- 28 -

Computing Curriculum – Computer Engineering Curriculum Report
Final Draft 2004 October 12

 The inclusion of professional ethics in a computing engineering curriculum is fundamental to the discipline. A
listing of topics appears under the social and professional issues (CE-SPR) area as part of the body of knowledge for
computer engineering (see Appendix A).

- 29 -

Computing Curriculum – Computer Engineering Curriculum Report
Final Draft 2004 October 12

Chapter 7

Curriculum Implementation Issues

T

he creation of a complete degree program (an entire program of study) is far from straightforward. The body
of knowledge introduced in Chapter 4, and presented in Appendix A, provides a starting point, but many
other influences contribute to the creation of the curriculum. The purpose of this chapter is to explore issues

in the design and creation of a complete computer engineering degree program. These issues include specifics such
as packaging material from the BOK into courses, determining required mathematics and science courses, and more
general considerations such as creating an overall style or ethos for a particular computer engineering degree
program.

7.1 General Considerations

A computer engineering program requires a great variety of knowledge, practical skills, transferable skills, and
attitudes that need consideration within the one single framework. A program should exhibit an obvious and
consistent ethos that permeates a complete program of study. Students who enjoy and respond to particular
approaches can be confident that they will continue to enjoy and be successful at the more advanced levels.

 One key issue is how to distribute, among the years of study, relatively settled material (e.g., circuits or
supporting mathematics courses) versus material that is more recent. Computer engineering is a discipline in which
the rate of change is very swift and this is likely to continue. Traditional approaches to course design suggest that
fundamental and core material should appear at the start of a program. By its very nature, the logic of this is that
this material should exhibit a level of permanence and durability and should be unlikely to change over the lifetime
of the program. Then students can build on these foundations as they move forward to the later parts of the program
and continue as lifelong learners.

 This view requires tempering by consideration of the students’ point of view. Students who choose to study
computer engineering are often motivated by the hands-on nature of engineering, as well as their prior experience
with computers. During their initial academic terms, if students only take courses on mathematics and science,
without obvious computer engineering applications, it may create a situation of frustration and disillusionment.

 It is desirable to position topics involving very new topics in the later years. These new topics are often at the
forefront of research and development and after studying them, students can genuinely claim to be up-to-date in
their subject area. That is important since they enter industry or employment as the agents of technology change and
transfer. Other considerations will also influence the characteristics of a particular degree program. These
considerations include:

 Local needs (institutional or regional)
 Needs of an increasingly diverse student population, and
 Interests and background of the faculty

 In some cases, an institution may want to design a computer engineering degree program that focuses on one
specific area of computer engineering or perhaps gives students a choice among a few such areas. A variety of
specialized degree programs is perfectly achievable within the general framework. Included, for example, would be
degrees with particular orientations in areas such as computer communications, embedded computer systems,
system level integration, mobile computing systems, computer systems design, computer devices, digital signal
processing, multi-media systems, computing and broadcasting, pervasive computing, high integrity computing
systems, and real-time systems.

- 30 -

Computing Curriculum – Computer Engineering Curriculum Report
Final Draft 2004 October 12

 Another consideration is how many modules can be designed specifically for computer engineering students
and how many will be shared with either (or both) computer science or electrical engineering curricula. For
instance, institutions may construct a computer engineering curriculum with one of the following alternative options.

 There may be enough students in computer engineering to justify the provision of specialist courses devised
solely for computer engineering students

 Alternatively, computer engineers might attend classes offered from the computer science and electrical
engineering curricula with additional selected classes being mounted specifically to address the specialist
topics for computer engineering students

 Additional possibilities also exist depending on local arrangements and circumstances

7.2 Basic Computer Engineering Components

In assembling the curriculum, institutions must package material into modules, typically into classes or courses.
Different institutions will possess different conventions about classes. In keeping with the spirit of the Computer
Science Report, the Task Force suggests that program designers think in terms of introductory, intermediate, and
advanced classes in computer engineering. These need to encompass and reflect the elements of the engineering
ethos identified in Chapter 5 as well as the requirements of the professional, legal and ethical issues outlined in
Chapter 6.

7.2.1 Introductory Courses and the Core

It is important to ensure that the curriculum includes at least the minimum coverage specified in the core of the body
of knowledge. The core itself does not constitute a curriculum. The Computer Engineering Task Force wished to
allow different institutions to devise different and novel curricula that would incorporate the core in different and
varied ways.

 Introductory courses are the first courses that students encounter and are extremely important. Almost of
necessity, they will tend to focus on material from the core and will tend to be compulsory. However, institutions
wishing to address the specific needs of students who already have considerable experience and competence in core
material (e.g. of programming) may permit some form of recognition of this experience.

7.2.2 Intermediate Courses

By their very nature, intermediate courses provide a bridge between introductory courses and advanced courses.
They may well include core material but could also include material that falls outside the core. Intermediate courses
will typically have introductory courses or other intermediate courses as prerequisites. Typically, these courses
occur at second and third year level. Students may have a choice of intermediate courses, but such choices are likely
to be limited.

7.2.3 Advanced Courses

The term “advanced course” should mean those courses whose content is substantially beyond the material of the
core. The knowledge units give testimony to the rich set of possibilities that exist for these. Institutions will wish to
orient such courses to their own areas of expertise, guided by the needs of students, the expertise of faculty members
and the needs of the wider community. They will reflect leading edge developments and reflect the stated
orientation of the degree program. However, if specific core units are not included in the introductory and
intermediate phase, the institution must then ensure that students acquire this material in advanced courses.
Institutions should give students a reasonable choice of advanced courses so that they can specialize in areas of
choice, consistent with program objectives.

7.2.4 Culminating Project

The culmination of the study of computer engineering should include a final year project that requires students to
demonstrate the use of a range of knowledge, practices and techniques in solving a substantial problem. This

- 31 -

Computing Curriculum – Computer Engineering Curriculum Report
Final Draft 2004 October 12

culminating experience can synthesize a broad range of undergraduate learning and can foster teamwork and
professional practice among peers. The culminating project is essential to every computer engineering program.

7.2.5 Engineering Professional, Ethical, and Legal Issues

As described in Chapter 6, the curriculum must address the elements of the engineering ethos as well as
professional, legal, and ethical issues with progression and integration taking place within these elements as well as
within the technical domain. Addressing this vast array of requirements presents a complex task. If an institution
treats the various requirements separately and in an undisciplined fashion, the result will be less than satisfactory.

 In Chapter 5, mention was made of the importance of giving attention to creativity and innovation in a computer
engineering context. It is worth remarking that certain approaches to the other important matter of professional,
legal, and ethical issues can have the highly undesirable effect of stifling beneficial innovation. Teachers should
recognize this and indeed take positive steps to counter such trends. It is most important to ensure that the balance is
heavily in favor of beneficial innovation and creativity.

 A program may choose to include courses on topics such as ethics, business, or legal issues taught by specialists
in those fields. However, such courses do not eliminate the need to address these topics in the context of computer
engineering.

7.2.6 Communication Skills

Students in computer engineering must be able to communicate ideas effectively in writing and in both formal and
informal oral presentations, as described in Chapter 5. Therefore, computer engineering programs must develop in
their students the ability to present both technical and non-technical material to a range of audiences using rational
and reasoned arguments. The manner of presentation includes oral, electronic, and written methods that are
necessary for all engineering programs. While courses taught outside of computer engineering may contribute to
achieving these skills, it is essential that appropriate communication requirements be included within computer
engineering courses. This is necessary to ensure that students have the ability to communicate discipline-specific
content; further, such activities contribute to the students’ learning of technical material.

7.3 Course Material Presented by Other Departments

Beyond the technical courses specifically on computer engineering, a number of other courses reflect material that
needs inclusion within the curriculum. For example, computer engineering students must learn a certain amount of
mathematics and science, which form the basis for engineering. In this subsection, we discuss various materials that
students must learn, but that typically appears in courses outside of the department in which computer engineering
resides. In some cases, students may have learned this material prior to entering the computer engineering program.

7.3.1 Mathematics Requirements

Mathematical techniques and formal mathematical reasoning are integral to most areas of computer engineering.
The discipline depends on mathematics for many of its fundamental underpinnings. In addition, mathematics
provides a language for working with ideas relevant to computer engineering, specific tools for analysis and
verification, and a theoretical framework for understanding important ideas.

 Given the pervasive role of mathematics within computer engineering, the curriculum must include
mathematical concepts early and often. Basic mathematical concepts should appear early within a student's course
work and later courses should use these concepts regularly. While different colleges and universities will need to
adjust their prerequisite structures to reflect local needs and opportunities, it is important for upper-level computer
engineering courses to make use of the mathematical content developed in earlier courses. A formal prerequisite
structure should reflect this dependency.

 Some material that is mathematical in nature lies in a boundary region between computer science and
engineering and computer engineering faculty members may actually teach it. Other material such as basic

- 32 -

Computing Curriculum – Computer Engineering Curriculum Report
Final Draft 2004 October 12

differential and integral calculus will likely be under the purview of faculty members outside the department where
computer engineering resides. For example, discrete structures topics are important for all students in computer
engineering and the Task Force considers it as an essential component of computer engineering. Regardless of the
implementation, computer engineering programs must take responsibility for ensuring that students obtain the
appropriate mathematics they need.

 The Computer Engineering Task Force makes the following recommendations with respect to the mathematical
content of the computer engineering curriculum.

 Discrete structures: All students need knowledge of the mathematical principles of discrete structures and
exposure to related tools. All programs should include enough exposure to this area to cover the core topics
specified in the computer engineering body of knowledge.

 Differential and integral calculus: The calculus is required to support such computer engineering material as
communications theory, signals and systems, and analog electronics and it is fundamental to all engineering
programs.

 Probability and statistics: These related topics underpin considerations of reliability, safety, dependence, and
various other concepts of concern to the computer engineer. Many programs will have students take an
existing course in probability and statistics; some programs may allow some students to study less than a full
semester course in the subject. Regardless of the implementation, all students should get at least some brief
exposure to discrete and continuous probability, stochastic processes, sampling distributions, estimation,
hypothesis testing, and correlation and regression, as specified in the computer engineering body of
knowledge.

 Additional mathematics: Students should take additional mathematics to develop their sophistication in this
area and to support classes in topics such as communications theory, security, signals and systems, analog
electronics, and artificial intelligence. That mathematics might consist of courses in any number of areas,
including further calculus, differential equations, transform theory, linear algebra, numerical methods,
complex variables, geometry, number theory, or symbolic logic. The choice should depend on program
objectives, institutional requirements, and the needs of the individual student.

7.3.2 Science Requirements

The process of abstraction represents a vital component of logical thought within the field of computer engineering.
The scientific method (hypothesis formation, experimentation and data collection, analysis) represents a basis
methodology for much of the discipline of computer engineering, and students should have a solid exposure to this
methodology.

 Computer engineering students need knowledge of basic sciences, such as physics and chemistry. Basic
physics concepts in electricity and magnetism form the basis for much of the underlying electrical engineering
content in the body of knowledge. Other science courses, such as biology, are relevant to specific application areas
in which computer engineers may specialize. The precise nature of the basic science requirement will vary, based
on institutional and programs needs and resources.

 To develop a firm understanding of the scientific method, students must have direct hand-on experience with
hypothesis formulation, experimental design, hypothesis testing, and data analysis. While a curriculum may provide
this experience as part of the basic science coursework, another way of addressing this is through appropriate
courses in computer engineering itself. For example, considerations of the user interface provide a rich vein of
experimental situations.

It is vital that computer engineering students “do science” and not just “read about science” in their education.
The overall objectives of this element of the curriculum include the following:

 Students should acquire knowledge of the basic sciences underlying computer engineering and relevant
application areas.

 Students must develop an understanding of the scientific method and experience this mode of inquiry in
courses that provide some exposure to laboratory work, including data collection and analysis.

 Students may acquire their scientific perspective in any of a variety of domains, depending on program
objectives and their area of interest.

- 33 -

Computing Curriculum – Computer Engineering Curriculum Report
Final Draft 2004 October 12

7.3.3 Other Requirements

Many institutions have other requirements that apply to all students, such as general education requirements. The
size and content of this requirement varies widely, depending on the home country, the institutional mission, legal
requirements, and other factors. Such courses often include subjects drawn from the humanities, social sciences,
languages, and the liberal arts. In designing a computer engineering program, attention should be given to utilizing
these course requirements to contribute to the students’ understanding of the social context of engineering and the
potential impact of engineering solutions in a global environment.

7.4 Degree Program Implementation: Strategies and Examples

Institutions that wish to follow the suggestions provided herein will typically begin by choosing an implementation
for the introductory and intermediate phases of the curriculum. From there, they will choose advanced elective
courses that conform to local conditions and program objectives. The following attempts to assist institutions to
fulfill their program objectives for computer engineering.

7.4.1 Course Considerations

As previously mentioned, the precise courses will depend on the character of each individual program of study.
However, in broad terms various considerations will tend to govern the courses at the introductory, intermediate, and
advanced levels.

 At the initial stages, it is appropriate to develop basic skills within introductory courses. Accordingly,
introductory courses should address the following characteristics.

 Basic skills in the design and development of a range of electronic circuits and digital systems
 Basic skills in programming and algorithmic design
 An understanding of the basic structure and organization of a variety of computer systems

These characteristics should address the basic electronics and chip aspects as well as the software approach. These
should serve to integrate the various aspects of the courses and provide an overview of the discipline of computer
engineering. Fundamentally, the perspective of the computer system as a hierarchy of abstract machines is relevant
to the various approaches one could take and suggests references to alternative models.

 At the intermediate level, the program should apply the basic skills already acquired and seek to develop them
further. Instructors should indicate how to utilize these skills in the design and the development of various
components such as in hardware, software, communications, or hybrid systems. Additional coursework serves to
introduce remaining core topics and focus students towards areas of specialization. Again, the choices here will
depend heavily on the precise characteristics of the program of study. In developing intermediate courses, it is
important to be aware that skills require constant reinforcing. Thus, as an example, it is typically not desirable to
introduce students to programming and then drop programming for several semesters.

7.4.2 Elective Courses

At the advanced level, the Computer Engineering Task Force has identified a range of possible elective courses.
While basic material in many of these areas is already included in the core, these electives focus on material that, in
keeping with the spirit of computer engineering, involves both hardware and software at an advanced level. Of
course, one recognizes that other courses may concentrate on specific aspects of hardware or software. Table 7.1
identifies some elective courses that likely would be relevant to computer engineering programs. This list is by no
means exhaustive. The number and scope of electives will vary widely among programs, based on constituent
needs, program goals, and resources.

- 34 -

Computing Curriculum – Computer Engineering Curriculum Report
Final Draft 2004 October 12

Table 7.1
Examples of Elective Courses

Fault tolerant computer systems

Digital video processing
Parallel processing

Re-configurable computing
Intelligent systems

Safety critical systems
Pervasive computing

Advanced graphical systems
Computer based medical systems

Virtual environment
Quantum computing

Performance evaluation
System level integration

High performance computer systems
Hardware software co-design

 Computer security
Tool development

Multimedia systems and algorithms
Genetic algorithms

Entertainment systems
Robotics

DNA computing

Advanced computer architecture
Audio signal processing

Mobile computer systems
Multi-media signal processing
Security in wireless systems

Computer based devices
Novel computer architectures

Distributed information systems
Virtual devices

Multi-valued logic systems
Nano-computing

7.5 Degree Titles and Organizational Structures

As noted in Section 2 of this report, computer engineering programs are offered under a variety of degree titles and
within many different organizational structures. As a general rule, variations in the program title tend to imply
variations in program content, while variations in organizational structures tend to affect the manner in which
courses are organized and taught. Computer engineering is not centric to any one locale or country. Many
institutions have considerable expertise in the design and development of hardware and computer systems and their
program provisions reflect this, whether or not the program has the specific title of ‘computer engineering’.

Programs of study with a body of knowledge comparable to that defined in this report likely will have titles
such as computer engineering or computer systems engineering. Other program titles, such as computer and
electronic systems, electrical and computer engineering, computer science and engineering or computer and systems
engineering typically reflect a more broadly based set of concerns (and a corresponding broader body of knowledge)
than might be implied by the “computer engineering” title. Such program titles also may reflect joint programs
administered by multiple academic departments.

 Most computer engineering programs are offered by institutions that also offer other engineering and/or
computer science programs. Such institutions, thus, have existing resources that may be applied to support a
computer engineering program, whether or not it is administratively managed by those units. Organizational
arrangements have both drawbacks and benefits. For example, students may take a blend of courses designed
primarily for mainstream computer science or electrical engineering majors with relatively few courses specially
designed for computer engineering students. Such a structure will likely affect the topics added to the core elements
of the body of knowledge, based on maximizing course commonality rather than other factors. However, such
programs may achieve “accredited” status (sometimes by more than one professional body) and produce graduates
who are highly attractive to industry specifically because of their breadth of knowledge.

 Independent of organizational structure, it is essential that a computer engineering program have a core faculty
of appropriate size and technical competence. Many of the technical courses included within a computer
engineering program may be taught by faculty from areas such as computer science, electrical engineering, or
physics. However, the distinct disciplinary emphases and the preparation for professional practice requires faculty
with appropriate technical training and professional expertise.

7.6 Sample Curricula

Appendix B provides four sample implementations of complete computer engineering programs. To provide a
framework for the curriculum that illustrates the ideas presented in this report, the first three examples assume the
following.

 Each year consists of two semesters with a student studying five modules (courses) per semester. Each
module is approximately 42 hours for instruction.

- 35 -

Computing Curriculum – Computer Engineering Curriculum Report
Final Draft 2004 October 12

 Students should experience at least two computer engineering modules in the first year of study, at least four
in the second year of study, and at least five in each of the third and fourth years of study.

The above pattern is used by many US institutions, and is common in many other parts of the world. The fourth
example implementation is of a three-year program (such as commonly exists in the U.K., Europe, and some other
countries) and assumes additional pre-university preparation in mathematics, science, and general studies.

- 36 -

Computing Curriculum – Computer Engineering Curriculum Report
Final Draft 2004 October 12

Chapter 8

Institutional Challenges

T

his report provides a significant resource for colleges and universities seeking to develop or improve
undergraduate programs in computer engineering. The appendices to this report offer an extensive analysis
of the structure and scope of computer engineering knowledge along with viable approaches to the

undergraduate curriculum. Implementing a curriculum successfully, however, requires each institution to consider
broad strategic and tactical issues that transcend such details. The purpose of this chapter is to enumerate some of
these issues and illustrate how addressing those issues affect curriculum design. For schools with existing
engineering programs, much of what follows may already be in place or understood.

8.1 The Need for Local Adaptation

The task of designing a computer engineering curriculum is a difficult one, in part because so much depends on the
characteristics of the individual institution. Even if every institution could agree on a common set of knowledge and
skills for undergraduate education, many additional factors would influence curriculum design. These factors
include the following:

 The type of institution and the expectations for its degree programs: Institutions vary enormously in the
structure and scope of undergraduate degree requirements. A curriculum that works well at a small college in
the United States may be completely inappropriate for a research university elsewhere in the world.

 The range of postgraduate options that students pursue: Institutions whose primary purpose is to prepare a
skilled workforce for the computer engineering profession presumably have different curricular goals than
those seeking to prepare students for research and graduate study. Individual schools must ensure that the
curriculum they offer gives students the necessary preparation for their eventual academic and career paths.

 The preparation and background of entering students: Students at different institutions—and often within a
single institution—vary substantially in their level of preparation. As a result, computer engineering
departments often need to tailor their introductory offerings so that they meet the needs of their students.

 The faculty resources available to an institution: The number of faculty in a computer engineering
department may vary from as little as three or four at a small college to 100 or more at a large research
university. The flexibility and options available in these smaller programs is obviously a great deal less.
Therefore, faculty members in smaller departments need to set priorities for how they will use their limited
resources.

 The interests and expertise of the faculty: Individual curricula often vary according to the specific interests
and knowledge base of the department, particularly at smaller institutions where expertise is concentrated in
particular areas.

 Creating a workable curriculum requires finding an appropriate balance among these factors, which will require
different choices at every institution. No single curriculum can work for everyone. Every college and university
will need to consider the various models proposed in this document and design an implementation that meets the
need of their environment.

8.2 Principles for Curriculum Design

Despite the fact that curriculum design requires significant local adaptation, curriculum designers can draw on
several key principles to help in the decision-making process. These principles include the following:

 The curriculum must reflect the integrity and character of computer engineering as an independent
discipline. Computer engineering is a discipline in it own right. A combination of theory, practice,

- 37 -

Computing Curriculum – Computer Engineering Curriculum Report
Final Draft 2004 October 12

knowledge, and skills characterize the discipline. Any computer engineering curriculum should therefore
ensure that both theory and a spirit of professionalism guide the practice.

 The curriculum must respond to rapid technical change and encourage students to do the same. Computer
engineering is a vibrant and fast-changing discipline. The enormous pace of change means that computer
engineering programs must update their curricula on a regular basis. Equally importantly, the curriculum
must teach students to respond to change as well. Computer engineering graduates must keep up to date with
modern developments and the prospects of doing so should stimulate their engineering curiosity. One of the
most important goals of a computer engineering program should be to produce students who are life-long
learners.

 Outcomes a program hopes to achieve must guide curriculum design. Throughout the process of defining a
computer engineering curriculum, it is essential to consider the goals of the program and the specific
capabilities students must have at its conclusion. These goals—and the associated techniques for determining
whether a program is meeting these goals—provide the foundation for the entire curriculum. Throughout the
world, accreditation bodies have focused increasing attention on the definition of goals and assessment
strategies. Programs that seek to defend their effectiveness must be able to demonstrate that their curricula in
fact accomplish what they intended to do.

 The curriculum as a whole should maintain a consistent ethos that promotes innovation, creativity, and
professionalism. Students respond best when they understand the expectations of them. It is unfair to
students to encourage particular modes of behavior in early courses, only to discourage that same behavior in
later courses. Throughout the entire curriculum, students should be encouraged to use their initiative and
imagination to go beyond the minimal requirements. At the same time, students must be encouraged from the
very beginning to maintain a professional and responsible attitude toward their work and give credence to the
ethical and legal issues affecting their professional practice.

 The curriculum must provide students with a culminating design experience that gives them a chance to apply
their skills and knowledge to solve challenging problems. The culmination of an undergraduate computer
engineering degree should include a project that requires students to use a range of practices and techniques
in solving a substantial problem as a key component in preparing them for professional practice.

8.3 The Need for Adequate Laboratory Resources

It is essential for institutions to recognize that equipment and software costs to support computer engineering
programs are large. Software can represent a substantial fraction of the overall cost of computing, particularly if one
includes the development costs of courseware. Providing adequate support staff to maintain the laboratory facilities
represents another expense. To be successful, computer engineering programs must receive adequate funding to
support the laboratory needs of both faculty and students and to provide an atmosphere conducive to learning.

 Because of rapid changes in technology, computer hardware generally becomes obsolete long before it ceases to
function. The useful lifetime of computer systems, particularly those used to support advanced laboratories and
state-of-the-art software tools, may be as little as two or three years. Planning and budgeting for regular updating
and replacement of computer systems is essential.

 Computer engineering typically has many scheduled laboratories included in the curriculum. The laboratory
component leads to an increased need for staff to assist in both the development of materials and the teaching of
laboratory sections. This development will add to the academic support costs of a high-quality computer
engineering program.

 Finally, with the availability of up-to-date reference materials on the World Wide Web, access to such resources
as the IEEE Digital Library and the ACM Digital Library should be provided.

8.4 Attracting and Retaining Faculty

- 38 -

Computing Curriculum – Computer Engineering Curriculum Report
Final Draft 2004 October 12

One of the most daunting problems that computer engineering departments face is the problem of attracting
qualified faculty. In computer engineering, there are often more advertised positions than the number of highly
qualified candidates. The shortage of faculty applicants, coupled with the fact that computer engineers command
high salaries outside academia, makes it difficult to attract and retain faculty. Institutions will need to have an
aggressive plan to recruit and retain faculty. Incentives such as hiring packages and modified teaching
responsibilities may prove advantageous for this endeavor.

 While the computer engineering program may draw on faculty from related disciplines, as a professional field
there must be a core faculty with appropriate professional training and experience. Additionally, faculty members
must maintain currency with developments in the field. Institutions must make appropriate accommodations for the
professional development of faculty, whether achieved through research, conference participation, consulting, or
other activities.

- 39 -

Computing Curriculum – Computer Engineering Curriculum Report
Final Draft 2004 October 12

Endnote References to this Report

[ABET, 2003] Policies and procedures for ABET substantial equivalency evaluations,

<http://www.abet.org/international/policies.html>, 2003.
[ABET, 2004] Evaluation Criteria, 2004-2005 Engineering Criteria, <http://www.abet.org/criteria_eac.html>.
[ACM, 1992] ACM Code of Ethics and Professional Conduct, < http://www.acm.org/constitution/code.html>, 16 October 1992.
[ACM/AIS, 2002] IS2002 Model Curriculum and Guidelines for Undergraduate Degree Programs in Information Systems,

Association for Computing Machinery (ACM), Association for Information Systems (AIS), Association for
Information Technology Professionals (AITP), 2002.

 [ACM/IEEECS, 1991] Computing Curricula 1991, Report of the ACM/IEEE-CS Joint Curriculum Task Force, IEEE Computer
Society Press [ISBN 0-8186-2220-2] and ACM Press [ISBN 0-8979-381-7], 1991.

[ACM/IEEECS, 1999] CAN and IEEE Computer Society, Software Engineering Code of Ethics and Professional Practice,
<http://computer.org/certification/ethics.htm>, 1999.

[ACM/IEEECS, 2001] Computing Curriculum 2001, Computer Science, IEEE Computer Society Press and ACM Press,
December 15, 2001.

[ACM/IEEECS, 2004] Software Engineering 2004, Curriculum Guidelines for Undergraduate Degree Programs in Software
Engineering, IEEE Computer Society Press and ACM Press, August 23, 2004.

[Aub] CCCE website at http://www.eng.auburn.edu/ece/CCCE
 [AITP, 2002] Association of Information Technology Professionals, Code of Ethics,

<http://www.aitp.org/organization/about/ethics/ethics.jsp >, 2002.
[ASEE’02] American Society for Engineering Education, ASEE Annual Conference and Exhibition,

<http://www.asee.org/conferences/annual2002/default.cfm>, Montreal, Canada, 16-19 June 2002.
[ASEE’03] American Society for Engineering Education, ASEE Annual Conference and Exhibition,

<http://www.asee.org/conferences/annual2003/default.cfm>, Nashville, Tennessee, 22-25 June 2003.
[ASEE’04] American Society for Engineering Education, ASEE Annual Conference and Exhibition,

<http://www.asee.org/conferences/annual2004/default.cfm >, Salt Lake City, Utah, 20-23 June 2004.
[Bennett, 1986] W. Bennett. A position paper on guidelines for electrical and computer engineering education. IEEE

Transactions in Education, E-29(3):175-177, August 1986.
[Dublin] Dublin Accord, http://www.engc.org.uk/international/dublin.asp.
[EAB, 1986] Educational Activities Board. Design education in computer science and engineering. Technical Report 971,

Computer Society of the IEEE, October 1986.
[FEANI] FEANI-European Federation of National Engineering Associations, http://www.feani.org.
[FIE’02] Frontiers in Education Conference, <http://www.wpi.edu/News/Conf/FIE2002/>, Boston, Massachusetts, 6-9

November 2002.
[FIE’03] Frontiers in Education Conference, <http://www.fie-conference.org/03/>, Denver, Colorado, 5-8 November 2003.
[FIE’04] Frontiers in Education Conference, <http://www.fie-conference.org/04/>, Savannah, Georgia, 20-23 October 2004.
[Grow 1991] Grow, G.O. “Teaching Learners to be Self-Directed”, Adult Education Quarterly, Vol. 41(3), pp. 125-149. 1991.
[IEEE, 1990] IEEE Code of Ethics, <http://www.ieee.org/>, About IEEE, August 1990.
[IEEE, 2001] Institute for Electrical and Electronic Engineers. IEEE code of ethics. Piscataway, NJ: IEEE, May 2001.

http://www.ieee.org/about/whatis/code.html.
 [IFIP, 1998] Harmonization of Professional Standards (Draft Version), <www.ifip.or.at/minutes/C99/C99_harmonization.htm>,

October 1998.
[IRPE] International Register of Professional Engineers, http://www.engc.org.uk/international/irpe.asp.
[ITEA] International Technology Educational Association, <http://www.iteawww.org/TAA/Glossary.htm>
[ITiCSE’03] Innovation and Technology in Computer Science Education, <http://www.cs.utexas.edu/users/csed/iticse/>,

Thessaloniki, Greece, 30 June – 2 July 2003
[Langdon, et. al. 1986] Design Education in Computer Science and Engineering, Technical Report, IEEE Computer Society

Educational Activities Board, October 1, 1986.
[NSPE, 2003] National Society of Professional Engineers, NSPE Code of Ethics for Engineers, <http://www.nspe.org/ethics/ehl-

code.asp>, 2003.
[SIGCSE’03] SIGCSE Technical Symposium, <http://www.csis.gvsu.edu/sigcse2003/>, Reno, Nevada, 19-23 February 2003.
[SIGCSE’04] SIGCSE Technical Symposium, <http://www.csc.vill.edu/sigcse2004/>, Norfolk, Virginia, 3-7 March 2004.
[SIGCSE’05] SIGCSE Technical Symposium, <http://www.csc.vill.edu/sigcse2004/>, St. Louis, Missouri, 23-27 February 2005.
[Sydney] Sydney Accord, http://www.engc.ork.uk/international/sydney.asp.
[UKQAA, 2000] Quality Assurance Agency for Higher Education, “Computing, a report on benchmark levels for Computing,”

Southgate House, Gloucester, England, April 2000.
[Washington] Washington Accord, http://www.washingtonaccord.org/Default.htm.

- 40 -

http://www.eng.auburn.edu/ece/CCCE

Computing Curriculum – Computer Engineering Curriculum Report
Final Draft 2004 October 12

Bibliography

[Abelson et al, 1985] Harold Abelson and Gerald Jay Sussman with Julie Sussman. Structure and Interpretation of Computer

Programs. Cambridge, MA: MIT Press, 1985.
[ABET, 2000] Accreditation Board for Engineering and Technology. Accreditation policy and procedure manual. Baltimore,

MD: ABET, Inc., November 2000. http://www.abet.org/images/policies.pdf.
[ABET, 2002] Accreditation Board for Engineering and Technology, Inc., “Criteria for Accrediting Engineering Programs,”

November 2002.
[ABET, 2003] Policies and procedures for ABET substantial equivalency evaluations,

<http://www.abet.org/international/policies.html>, 2003.
[ABET, 2004] Evaluation Criteria, 2003-2004 Engineering Criteria, <http://www.abet.org/criteria_eac.html>.
[ABET, Design] Definition of Design, ABET 2003-2004 Criteria for Accrediting Programs in Engineering in the United States,

Section IV.C.3.d.(3)(c).
[ACM, 1965] ACM Curriculum Committee on Computer Science. An undergraduate program in computer science—preliminary

recommendations. Communications of the ACM, 8(9):543-552, September 1965.
[ACM, 1968] ACM Curriculum Committee on Computer Science. Curriculum ’68: Recommendations for the undergraduate

program in computer science. Communications of the ACM, 11(3):151-197, March 1968.
[ACM, 1978] ACM Curriculum Committee on Computer Science. Curriculum ’78: Recommendations for the undergraduate

program in computer science. Communications of the ACM, 22(3):147-166, March 1979.
[ACM, 1992] ACM Code of Ethics and Professional Conduct, < http://www.acm.org/constitution/code.html>, 16 October 1992.
[ACM, 1999] ACM Two-Year College Education Committee. Guidelines for associate-degree and certificate programs to

support computing in a networked environment. New York: The Association for Computing Machinery, September
1999.

[ACM, 2001] Association for Computing Machinery. ACM code of ethics and professional conduct. New York: The
Association for Computing Machinery, May 2001. http://www.acm.org/constitution/code.html.

[ACM/AIS, 2002] IS2002 Model Curriculum and Guidelines for Undergraduate Degree Programs in Information Systems,
Association for Computing Machinery (ACM), Association for Information Systems (AIS), Association for
Information Technology Professionals (AITP), 2002.

 [ACM/IEEECS, 1991] Computing Curricula 1991, Report of the ACM/IEEE-CS Joint Curriculum Task Force, IEEE Computer
Society Press [ISBN 0-8186-2220-2] and ACM Press [ISBN 0-8979-381-7], 1991.

 [ACM/IEEECS, 1999] CAN and IEEE Computer Society, Software Engineering Code of Ethics and Professional Practice,
<http://computer.org/certification/ethics.htm>, 1999.

[ACM/IEEECS, 2001] Computing Curriculum 2001, Computer Science, IEEE Computer Society Press and ACM Press,
December 15, 2001.

[ACM/IEEECS, 2004] Software Engineering 2004, Curriculum Guidelines for Undergraduate Degree Programs in Software
Engineering, IEEE Computer Society Press and ACM Press, August 23, 2004.

 [AITP, 2002] Association of Information Technology Professionals, Code of Ethics,
<http://www.aitp.org/organization/about/ethics/ethics.jsp >, 2002.

[APP, 2000] Advanced Placement Program. Introduction of Java in 2003-2004. The College Board, December 20, 2000.
http://www.collegeboard.org/ap/computer-science.

[ASEE’02] American Society for Engineering Education, ASEE Annual Conference and Exhibition,
<http://www.asee.org/conferences/annual2002/default.cfm>, Montreal, Canada, 16-19 June 2002.

[ASEE’03] American Society for Engineering Education, ASEE Annual Conference and Exhibition,
<http://www.asee.org/conferences/annual2003/default.cfm>, Nashville, Tennessee, 22-25 June 2003.

[ASEE’04] American Society for Engineering Education, ASEE Annual Conference and Exhibition,
<http://www.asee.org/conferences/annual2004/default.cfm >, Salt Lake City, Utah, 20-23 June 2004.

[Aub] CCCE website at <http://www.eng.auburn.edu/ece/CCCE>
[BCS, 1989a] British Computer Society and The Institution of Electrical Engineers. Undergraduate curricula for software

engineers. London, June 1989.
[BCS, 1989b] British Computer Society and The Institution of Electrical Engineers. Software in safety-related systems. London,

October 1989.
[Beidler et al, 1985] John Beidler, Richard Austing, and Lillian Cassel. Computing programs in small colleges. Communications

of the ACM, 28(6):605-611, June 1985.
[Bennett, 1986] W. Bennett. A position paper on guidelines for electrical and computer engineering education. IEEE

Transactions in Education, E-29(3):175-177, August 1986.

- 41 -

Computing Curriculum – Computer Engineering Curriculum Report
Final Draft 2004 October 12

[Bott et al, 1991] Frank Bott, Allison Coleman, Jack Eaton, and Diane Rowland. Professional issues in software engineering.
London: Pitman, 1991.

[Carnegie, 1992] Carnegie Commission on Science, Technology, and Government. Enabling the future: Linking science and
technology to societal goals. New York: Carnegie Commission, September 1992.

[COSINE, 1967] COSINE Committee. Computer science in electrical engineering. Washington, DC: Commission on
Engineering Education, September 1967.

[CSAB, 1986] Computing Sciences Accreditation Board. Defining the computing sciences professions. October 1986.
http://www.csab.org/comp_sci_profession.html.

[CSAB, 2000] Computing Sciences Accreditation Board. Criteria for accrediting programs in computer science in the United
States. Version 1.0, January 2000. http://www.csab.org/criteria2k_v10.html.

[CSTB, 1994] Computing Science and Telecommunications Board. Realizing the information future. Washington DC: National
Academy Press, 1994.

[CSTB, 1999] Computing Science and Telecommunications Board. Being fluent with information technology. Washington DC:
National Academy Press, 1999.

[Curtis, 1983] Kent K. Curtis. Computer manpower: Is there a crisis? Washington DC: National Science Foundation, 1983.
http://www.acm.org/sigcse/papers/curtis83/.

[Davis et al, 1997] Gordon B. Davis, John T. Gorgone, J. Daniel Couger, David L. Feinstein, and Herbert E. Longnecker, Jr.
IS’97 model curriculum and guidelines for undergraduate degree programs in information systems. Association of
Information Technology Professionals, 1997. http://webfoot.csom.umn.edu/faculty/gdavis/curcomre.pdf.

[Denning et al, 1989] Peter J. Denning, Douglas E. Comer, David Gries, Michael C. Mulder, Allen B. Tucker, A. Joe Turner,
and Paul R. Young. Computing as a discipline. Communications of the ACM, 32(1):9-23, January 1989.

[Denning, 1998] Peter J. Denning. Computing the profession. Educom Review, November 1998.
[Denning, 1999] Peter J. Denning. Our seed corn is growing in the commons. Information Impacts Magazine, March 1999.

http://www.cisp.org/imp/march_99/denning/03_99denning.htm.
[Dublin] Dublin Accord, http://www.engc.org.uk/international/dublin.asp.
[EAB, 1983] Educational Activities Board. The 1983 model program in computer science and engineering. Technical Report

932, Computer Society of the IEEE, December 1983.
[EAB, 1986] Educational Activities Board. Design education in computer science and engineering. Technical Report 971,

Computer Society of the IEEE, October 1986.
[EC, 1977] Education Committee of the IEEE Computer Society. A curriculum in computer science and engineering. Publication

EHO119-8, Computer Society of the IEEE, January 1977.
[FEANI] FEANI-European Federation of National Engineering Associations, http://www.feani.org.
[Fellows et al, 2002] Sharon Fellows, Richard Culver, Peter Ruggieri, William Benson Instructional Tools for Promoting Self-

directed Skills in Freshmen, FIE 2002, Boston, November, 2002. THIS NEEDS TO CHANGE
[Feisel and Peterson, 2002] Lyle D. Feisel, George D. Peterson, Learning Objectives for Engineering Laboratories, FIE 2002,

Boston, November, 2002
[Fleddermann, 2000] C.B. Fleddermann Engineering Ethics Cases for Electrical and Computer Engineering Students, IEEE

Transactions on Education, vol 43, no 3, 284 – 287, August 2000.
[Feiel et al, 2002] Lyle D. Feisel, George D. Peterson, Learning Objectives for Engineering Laboratories, FIE

2002, Boston, November, 2002
[FIE’02] Frontiers in Education Conference, <http://www.wpi.edu/News/Conf/FIE2002/>, Boston, Massachusetts, 6-9

November 2002.
[FIE’03] Frontiers in Education Conference, <http://www.fie-conference.org/03/>, Denver, Colorado, 5-8 November 2003.
[FIE’04] Frontiers in Education Conference, <http://www.fie-conference.org/04/>, Savannah, Georgia, 20-23 October 2004.
[Gibbs et al, 1986] Norman E. Gibbs and Allen B. Tucker. Model curriculum for a liberal arts degree in computer science.

Communications of the ACM, 29(3):202-210, March 1986.
[Giladi, 1999] R. Giladi, An Undergraduate Degree Program for Communications Systems Engineering, IEEE Transactions on

Education, vol 42, no 4, 295 – 304, November 1999.
[Gorgone et al, 2000] John T. Gorgone, Paul Gray, David L. Feinstein, George M. Kasper, Jerry N. Luftman, Edward A. Stohr,

Joseph S. Valacich, and Rolf T. Wigand. MSIS 2000: Model curriculum and guidelines for graduate degree programs
in information systems. Association for Computing Machinery and Association for Information Systems, January 2000.
http://cis.bentley.edu/ISA/pages/documents/msis2000jan00.pdf.

[Gorgone et al, 2002] John T. Gorgone, Gordon B. Davis, Joseph S Valacich, Heikki Topi, David L. Feinstein, and Herbert E.
Longenecker, Jr. IS 2002: Model Curriculum for Undergraduate Degree Programs in Information Systems, published
by the ACM, 2002.

[Grow 1991] Grow, G.O. “Teaching Learners to be Self-Directed”, Adult Education Quarterly, Vol. 41(3), pp. 125-149. 1991.
[IEEE, 1990] IEEE Code of Ethics, <http://www.ieee.org/>, About IEEE, August 1990.
[IEEE, 2001] Institute for Electrical and Electronic Engineers. IEEE code of ethics. Piscataway, NJ: IEEE, May 2001.

http://www.ieee.org/about/whatis/code.html.
[IFIP, 1998] Harmonization of Professional Standards (Draft Version), <www.ifip.or.at/minutes/C99/C99_harmonization.htm>,

October 1998.
[IRPE] International Register of Professional Engineers, http://www.engc.org.uk/international/irpe.asp.

- 42 -

Computing Curriculum – Computer Engineering Curriculum Report
Final Draft 2004 October 12

[ITEA] International Technology Educational Association, <http://www.iteawww.org/TAA/Glossary.htm>
[ITiCSE’03] Innovation and Technology in Computer Science Education, <http://www.cs.utexas.edu/users/csed/iticse/>,

Thessaloniki, Greece, 30 June – 2 July 2003
[ITiCSE’04] Innovation and Technology in Computer Science Education, <http://www.iticse04.leeds.ac.uk/>, Leeds, England,

28-30 June 2004.
[Kelemen et al, 1999] Charles F. Kelemen (editor), Owen Astrachan, Doug Baldwin, Kim Bruce, Peter Henderson, Dale Skrien,

Allen Tucker, and Charles Ban Loan. Computer Science Report to the CUPM Curriculum Foundations Workshop in
Physics and Computer Science. Report from a workshop at Bowdoin College, October 28-31, 1999.

[Koffman et al, 1984] Elliot P. Koffman, Philip L. Miller, and Caroline E. Wardle. Recommended curriculum for CS1: 1984 a
report of the ACM curriculum task force for CS1. Communications of the ACM, 27(10):998-1001, October 1984.

[Koffman et al, 1985] Elliot P. Koffman, David Stemple, and Caroline E. Wardle. Recommended curriculum for CS2, 1984: A
report of the ACM curriculum task force for CS2. Communications of the ACM, 28(8):815-818, August 1985.

[Langdon, et. al. 1986] Design Education in Computer Science and Engineering, Technical Report, IEEE Computer Society
Educational Activities Board, October 1, 1986.

[Lee and Messerschmitt, 1998] Edward A. Lee and David G. Messerschmitt. Engineering and education for the future. IEEE
Computer, 77-85, January 1998.

[Lidtke et al, 1999] Doris K. Lidtke, Gordon E. Stokes, Jimmie Haines, and Michael C. Mulder. ISCC ’99: An information
systems-centric curriculum ’99, July 1999. http://www.iscc.unomaha.edu.

[Martin et al, 1996] C. Dianne Martin, Chuck Huff, Donald Gotterbarn, Keith Miller. Implementing a tenth strand in the CS
curriculum. Communications of the ACM, 39(12):75-84, December 1996.

[Mulder, 1975] Michael C. Mulder. Model curricula for four-year computer science and engineering programs: Bridging the tar
pit. Computer, 8(12):28-33, December 1975.

[Mulder and Dalphin, 1984] Michael C. Mulder and John Dalphin. Computer science program requirements and accreditation—
an interim report of the ACM/IEEE Computer Society joint task force. Communications of the ACM, 27(4):330-335,
April 1984.

[Mulder and van Weert, 1998] Fred Mulder and Tom van Weert. Informatics in higher education: Views on informatics and
noninformatics curricula. Proceedings of the IFIP/WG3.2 Working Conference on Informatics (computer science) as a
discipline and in other disciplines: What is in common? London: Chapman and Hall, 1998.

[Myers and Walker, 1998] J. Paul Myers, Jr. and Henry M. Walker. The state of academic hiring in computer science: An
interim review. SIGCSE Bulletin, 30(4):32a-35a, December 1998.

[NACE, 2001] National Association of Colleges and Employers. Job outlook ’01 (online version). http://www.jobweb.com
[Neumann, 1995] Peter G. Neumann. Computer related risks. New York: ACM Press, 1995.
[Nordheden and Hoeflich, 1999] K.J. Nordheden and M.H. Hoeflich, Undergraduate Research and Intellectual Property Rights,

IEEE Transactions on Software, vol 19 , no. 5, September / October, 22 – 24, 2002. Education, vol 42, no 4, 233-236,
November 1999.

[NSF, 1996] National Science Foundation Advisory Committee. Shaping the future: New expectations for undergraduate
education in science, mathematics, engineering, and technology. Washington DC: National Science Foundation, 1996.

[NSPE, 2003] National Society of Professional Engineers, NSPE Code of Ethics for Engineers, <http://www.nspe.org/ethics/ehl-
code.asp>, 2003.

[NTIA, 1999] National Telecommunications and Information Administration. Falling through the Net: Defining the digital
divide. Washington, DC: Department of Commerce, November 1999.

[Nunamaker et al, 1982] Jay F. Nunamaker, Jr., J. Daniel Couger, Gordon B. Davis. Information systems curriculum
recommendations for the 80s: Undergraduate and graduate programs. Communications of the ACM, 25(11):781-805,
November 1982.

[Oklobdzija, 2002] Vojin G. Oklobdzija (editor) The Computer Engineering Handbook, published by CRC Press LLC, Florida,
USA, 2002.

[OTA, 1988] Office of Technology Assessment. Educating scientists and engineers: Grade school to grad school. OTA-SET-
377. Washington, DC: U.S. Government Printing Office, June 1988.

[Paulk et al, 1995] Mark Paulk, Bill Curtis, Mary Beth Chrissis, and Charles Weber. The capability maturity model: Guidelines
for improving the software process. Reading, MA: Addison-Wesley, 1995.

[QAA, 2000] Quality Assurance Agency for Higher Education. A report on benchmark levels for computing. Gloucester,
England: Southgate House, 2000.

[Ralston and Shaw, 1980] Anthony Ralston and Mary Shaw. Curriculum ’78—Is computer science really that unmathematical.
Communications of the ACM, (23)2:67-70, February 1980.

[Richard et al, 1999] W. D. Richard, D. E. Taylor and D. M. Zar, A Capstone Computer Engineering Design Course, IEEE
Transactions on Education, vol 42, no 4, 288 – 294, November 1999.

[Roberts et al, 2001] Eric Roberts and Gerald Engel (editors) Computing Curricula 2001: Computer Science, Report of The
ACM and IEEE-Computer Society Joint Task Force on Computing Curricula, Final Report, December 15th, 2001

[Roberts et al, 1995] Eric Roberts, John Lilly, and Bryan Rollins. Using undergraduates as teaching assistants in introductory
programming courses: An update on the Stanford experience. SIGCSE Bulletin (27)1:48-52, March 1995.

[Roberts, 1999] Eric Roberts. Conserving the seed corn: Reflections on the academic hiring crisis. SIGCSE Bulletin (31)4:4-9,
December 1999.

- 43 -

Computing Curriculum – Computer Engineering Curriculum Report
Final Draft 2004 October 12

- 44 -

[SAC, 1967] President’s Science Advisory Commission. Computers in higher education. Washington DC: The White House,
February 1967.

[SEEPP, 1998] IEEE-CS/ACM Joint Task Force on Software Engineering Ethics and Professional Practices (SEEPP). Software
engineering code of ethics and professional practice (Version 5.2). http://www.acm.org/serving/se/code.htm.

[Shaw, 1985] Mary Shaw. The Carnegie-Mellon curriculum for undergraduate computer science. New York: Springer-Verlag,
1985.

[Shaw, 1991] Mary Shaw and James E Tomayko. Models for undergraduate courses in software engineering. Pittsburgh:
Software Engineering Institute, Carnegie Mellon University, January 1991.

[Shaw, 1992] Mary Shaw. We can teach software better. Computing Research News 4(4):2-12, September 1992.
[SIGCHI, 1992] Special Interest Group on Computer-Human Interaction. ACM SIGCHI Curricula for Human-Computer

Interaction. New York: Association for Computing Machinery, 1992.
[SIGCSE’03] SIGCSE Technical Symposium, <http://www.csis.gvsu.edu/sigcse2003/>, Reno, Nevada, 19-23 February 2003.
[SIGCSE’04] SIGCSE Technical Symposium, <http://www.csc.vill.edu/sigcse2004/>, Norfolk, Virginia, 3-7 March 2004.
[SIGCSE’05] SIGCSE Technical Symposium, <http://www.csc.vill.edu/sigcse2004/>, St. Louis, Missouri, 23-27 February 2005.
[SWEBOK, 2001] Software Engineering Coordinating Committee. Guide to the Software Engineering Body of Knowledge

(SWEBOK). Stone Man Version 0.95. A Project of the IEEE Computer Society, May 2001.
http://www.swebok.org/stoneman/version095.html/.

[Sydney] Sydey Accord, http://www.engc.ork.uk/international/sydney.asp.
[Tucker et al, 1991] Allen B. Tucker, Bruce H. Barnes, Robert M. Aiken, Keith Barker, Kim B. Bruce, J. Thomas Cain, Susan E.

Conry, Gerald L. Engel, Richard G. Epstein, Doris K. Lidtke, Michael C. Mulder, Jean B. Rogers, Eugene H. Spafford,
and A. Joe Turner. Computing Curricula ’91. Association for Computing Machinery and the Computer Society of the
Institute of Electrical and Electronics Engineers, 1991.

[UKQAA, 2000] Quality Assurance Agency for Higher Education, “Computing, a report on benchmark levels for Computing,”
Southgate House, Gloucester, England, April 2000.

[Washington] Washington Accord, http://www.washingtonaccord.org/Default.htm.
[Walker and Schneider, 1996] Henry M. Walker and G. Michael Schneider. A revised model curriculum for a liberal arts degree

in computer science. Communications of the ACM, 39(12):85-95, December 1996.
[Zadeh, 1968] Lofti A. Zadeh. Computer science as a discipline. Journal of Engineering Education, 58(8):913-916, April 1968.

Computing Curricula - Computer Engineering Appendix A - Body of Knowledge
Final Report 2004 December 12

Appendix A

The Computer Engineering

Body of Knowledge

T

his
kno
Th
stru

 appendix to the Computing Curricula - Computer Engineering (CE2004) report defines the
wledge domain that is likely to appear in an undergraduate curriculum in computer engineering.

e underlying rationale for this categorization scheme and additional details about its history,
cture, and application are included in the body of the report. Included with this appendix is a

summary of the fundamental concepts that are necessary to understand the recommendations.

A.1 Introduction

This model curriculum was developed by first defining the primary disciplines that make up the body of
knowledge for computer engineering. Some of these areas contain material that should be part of all
computer engineering curricula. However, other areas contain material that might or might not be part of
such curricula, depending on the specific educational objectives of a program. The areas that contain
material that should be included in all computer engineering curricula are:

CE-ALG* Algorithms
CE-CAO Computer Architecture and Organization
CE-CSE Computer Systems Engineering
CE-CSG Circuits and Signals
CE-DBS Database Systems
CE-DIG Digital Logic
CE-DSC* Discrete Structures
CE-DSP Digital Signal Processing
CE-ELE Electronics
CE-ESY Embedded Systems
CE-HCI* Human-Computer Interaction
CE-NWK Computer Networks
CE-OPS* Operating Systems
CE-PRF* Programming Fundamentals
CE-PRS Probability and Statistics
CE-SPR* Social and Professional Issues
CE-SWE* Software Engineering
CE-VLS VLSI Design and Fabrication

 * Consult the CC2001 Computer Science Report for more detail

A.2 Structure of the Body of Knowledge

The body of knowledge has a hierarchical organization comprising three levels described as follows.

 The highest level of the hierarchy is the knowledge area, which represents a particular disciplinary
sub-field. A three-letter abbreviated tag identifies each area, such as CE-DIG for “Digital Logic”
and CE-CAO for “Computer Architecture and Organization.”

- A.1 -

Computing Curricula - Computer Engineering Appendix A - Body of Knowledge
Final Report 2004 December 12

 Each knowledge area is broken down into smaller divisions called knowledge units, which represent
individual thematic modules within an area. A numeric suffix added to the area name identifies each
knowledge unit. For example, CE-CAO3 is a knowledge unit on “Memory System Organization and
Architecture” within the CE-CAO knowledge area.

 A set of topics, which are the lowest level of the hierarchy, further subdivides each knowledge unit.
A group of learning outcomes addresses the related technical skills associated with each knowledge
unit. Section 4.3 expands the discussion on learning outcomes.

 To differentiate knowledge areas and knowledge units in computer engineering from those that may
have the same or similar names in the other four curriculum areas associated with this computing
curriculum project, the prefix “CE-” accompanies all knowledge areas and units in computer engineering.
Reflecting the examples above, therefore, tags such as CE-DIG for knowledge areas and CE-CAO3 for
knowledge units appear throughout the report.

A.3 Core and Elective Units

One of the basic goals was to keep the required component of the body of knowledge as small as possible.
To implement this principle, a minimal core has been defined, comprising those units for which there is
broad consensus that the corresponding material is essential to anyone obtaining an undergraduate degree
in computer engineering. Units taught as part of an undergraduate program that fall outside the core, are
elective to the curriculum, even though some programs may choose to require them.

The following points are emphasized:

 The core is not a complete curriculum.
The intention of the core is minimal and it does not constitute a complete undergraduate curriculum.
Every undergraduate program must include additional elective knowledge units from the body of
knowledge. This report does not define what those units should be; that decision is the choice of
each institution. A complete curriculum must also contain supporting areas covered through courses
in mathematics, natural sciences, business, humanities, and/or social sciences. Chapter 7 presents
some detail in this area.

 Core units are not necessarily limited to a set of introductory courses taken early in the
undergraduate curriculum.
Many of the knowledge units defined as core are indeed introductory. However, some core
knowledge can appear only after students have developed significant background in the field. For
example, the Task Force believes that all students must develop a significant application at some
point during their undergraduate program. The material that is essential to successful management
of projects at this scale is obviously part of the core, since it is required of all students. At the same
time, the project course experience is very likely to come toward the end of a student's
undergraduate program. Similarly, introductory courses may include elective knowledge units
together with the coverage of core material. From a practical point of view, the designation core
simply means required and says nothing about the level of the course in which it appears.

A.4 Time Required to Cover a Knowledge Unit

For consistency with the Computer Science Report and earlier curriculum reports, we have chosen to
express time in hours, corresponding to the in-class time required to present that material in a traditional
lecture-oriented format. To dispel any potential confusion, however, it is important to underscore the
following observations about the use of lecture hours as a measure.

The Task Force does not seek to endorse the lecture format. Even though the Task Force has used a
metric with its roots in a classical lecture-oriented form, we believe there are other styles —
particularly given recent improvements in educational technology—that can be at least as effective.
For some of these styles, the notion of hours may be difficult to apply. Even so, the time
specifications should at least serve as a comparative measure, in the sense that a five-hour unit will

- A.2 -

Computing Curricula - Computer Engineering Appendix A - Body of Knowledge
Final Report 2004 December 12

presumably take roughly five times as much time to cover as a one-hour unit, independent of the
teaching style.

The hours specified do not include time spent outside of a class. The time assigned to a unit does not
include the instructor’s reparation time of the time students spend outside of class. As a general
guideline, the amount of out-of-class work for a student is approximately two to three times the in-
class time. Thus, a unit that requires three hours of instruction typically entails a total of nine to
twelve hours (three in class and six to nine outside).

The hours listed for a unit represent a minimum level of coverage. We should interpret the time
measurements assigned for each unit as the minimum amount of time necessary to enable a student
to perform the learning outcomes for that unit. It is always appropriate to spend more time on a unit
than the suggested minimum.

The 420 core hours specified do not include time for laboratories, design, math, science, etc. These
activities and subjects should be added to the 420 core hours as necessary to provide supporting
material and preparation for engineering practice.

The number of core hours was deliberately kept to a minimum to allow programs the flexibility to
emphasize selected areas in accordance with the specific objectives, prerequisite structure, and level of
student preparation in that program. Therefore, the actual time devoted to a particular core topic will vary
from program to program, with some programs spending more than the specified minimum number of
hours on selected core topics, while devoting only the minimum level of coverage to others.

A.5 Summary of the Computer Engineering Body of Knowledge

A summary of the Body of Knowledge—showing the areas, units, which units are core, and the minimum
time required for each—appears as Table A-1. The details of each section of the body of knowledge follow
as separate sections.

- A.3 -

Computing Curricula - Computer Engineering Appendix A - Body of Knowledge
Final Report 2004 December 12

Table A-1 The Computer Engineering Body of Knowledge

Computer Engineering Knowledge Areas and Units
CE-ALG Algorithms [30 core hours]

 CE-ALG0 History and overview [1]
*CE-ALG1 Basic algorithmic analysis [4]
*CE-ALG2 Algorithmic strategies [8]
*CE-ALG3 Computing algorithms [12]
*CE-ALG4 Distributed algorithms [3]
*CE-ALG5 Algorithmic complexity [2]
*CE-ALG6 Basic computability theory

CE-CAO Computer Architecture and Organization [63 core
hours]

CE-CAO0 History and overview [1]
CE-CAO1 Fundamentals of computer architecture [10]
CE-CAO2 Computer arithmetic [3]
CE-CAO3 Memory system organization and architecture [8]
CE-CAO4 Interfacing and communication [10]
CE-CAO5 Device subsystems [5]
CE-CAO6 Processor systems design [10]
CE-CAO7 Organization of the CPU [10]
CE-CAO8 Performance [3]
CE-CAO9 Distributed system models [3]
CE-CAO10 Performance enhancements

CE-CSE Computer Systems Engineering [18 core hours]
CE-CSE0 History and overview [1]
CE-CSE1 Life cycle [2]
CE-CSE2 Requirements analysis and elicitation [2]
CE-CSE3 Specification [2]
CE-CSE4 Architectural design [3]
CE-CSE5 Testing [2]
CE-CSE6 Maintenance [2]
CE-CSE7 Project management [2]
CE-CSE8 Concurrent (hardware/software) design [2]
CE-CSE9 Implementation
CE-CSE10 Specialized systems
CE-CSE11 Reliability and fault tolerance

CE-CSG Circuits and Signals [43 core hours]
CE-CSG0 History and overview [1]
CE-CSG1 Electrical Quantities [3]
CE-CSG2 Resistive Circuits and Networks [9]
CE-CSG3 Reactive Circuits and Networks [12]
CE-CSG4 Frequency Response [9]
CE-CSG5 Sinusoidal Analysis [6]
CE-CSG6 Convolution [3]
CE-CSG7 Fourier Analysis
CE-CSG8 Filters
CE-CSG9 Laplace Transforms

CE-DBS Database Systems [5 core hours]
 CE-DBS0 History and overview [1]
*CE-DBS1 Database systems [2]
*CE-DBS2 Data modeling [2]
*CE-DBS3 Relational databases
*CE-DBS4 Database query languages
*CE-DBS5 Relational database design
*CE-DBS6 Transaction processing
*CE-DBS7 Distributed databases
*CE-DBS8 Physical database design

CE-DIG Digital Logic [57 core hours]
CE-DIG0 History and overview [1]
CE-DIG1 Switching theory [6]
CE-DIG2 Combinational logic circuits [4]
CE-DIG3 Modular design of combinational circuits [6]
CE-DIG4 Memory elements [3]
CE-DIG5 Sequential logic circuits [10]
CE-DIG6 Digital systems design [12]
CE-DIG7 Modeling and simulation [5]
CE-DIG8 Formal verification [5]
CE-DIG9 Fault models and testing [5]

 CE-DIG10 Design for testability
CE-DSP Digital Signal Processing [17 core hours]
CE-DSP0 History and overview [1]
CE-DSP1 Theories and concepts [3]
CE-DSP2 Digital spectra analysis [1]
CE-DSP3 Discrete Fourier transform [7]
CE-DSP4 Sampling [2]
CE-DSP5 Transforms [2]
CE-DSP6 Digital filters [1]
CE-DSP7 Discrete time signals
CE-DSP8 Window functions
CE-DSP9 Convolution

 CE-DSP10 Audio processing
 CE-DSP11 Image processing

CE-ELE Electronics [40 core hours]
CE-ELE0 History and overview [1]
CE-ELE1 Electronic properties of materials [3]
CE-ELE2 Diodes and diode circuits [5]
CE-ELE3 MOS transistors and biasing [3]
CE-ELE4 MOS logic families [7]
CE-ELE5 Bipolar transistors and logic families [4]
CE-ELE6 Design parameters and issues [4]
CE-ELE7 Storage elements [3]
CE-ELE8 Interfacing logic families and standard buses [3]
CE-ELE9 Operational amplifiers [4]
CE-ELE10 Circuit modeling and simulation [3]
CE-ELE11 Data conversion circuits
CE-ELE12 Electronic voltage and current sources
CE-ELE13 Amplifier design
CE-ELE14 Integrated circuit building blocks

 CE-ESY Embedded Systems [20 core hours]
CE-ESY0 History and overview [1]
CE-ESY1 Embedded microcontrollers [6]
CE-ESY2 Embedded programs [3]
CE-ESY3 Real-time operating systems [3]
CE-ESY4 Low-power computing [2]
CE-ESY5 Reliable system design [2]
CE-ESY6 Design methodologies [3]
CE-ESY7 Tool support
CE-ESY8 Embedded multiprocessors
CE-ESY9 Networked embedded systems
CE-ESY10 Interfacing and mixed-signal systems

CE-HCI Human-Computer Interaction [8 core hours]
 CE-HCI0 History and overview [1]
*CE-HCI1 Foundations of human-computer interaction [2]
*CE-HCI2 Graphical user interface [2]
*CE-HCI3 I/O technologies [1]
*CE-HCI4 Intelligent systems [2]
*CE-HCI5 Human-centered software evaluation
*CE-HCI6 Human-centered software development
*CE-HCI7 Interactive graphical user-interface design
*CE-HCI8 Graphical user-interface programming
*CE-HCI9 Graphics and visualization
*CE-HCI10 Multimedia systems

- A.4 -

Computing Curricula - Computer Engineering Appendix A - Body of Knowledge
Final Report 2004 December 12

CE-NWK Computer Networks [21 core hours]
CE-NWK0 History and overview [1]
CE-NWK1 Communications network architecture [3]
CE-NWK2 Communications network protocols [4]
CE-NWK3 Local and wide area networks [4]
CE-NWK4 Client-server computing [3]
CE-NWK5 Data security and integrity [4]
CE-NWK6 Wireless and mobile computing [2]
CE-NWK7 Performance evaluation
CE-NWK8 Data communications
CE-NWK9 Network management
CE-NWK10 Compression and decompression

CE-OPS Operating Systems [20 core hours]
 CE-OPS0 History and overview [1]
*CE-OPS1 Design principles [5]
*CE-OPS2 Concurrency [6]
*CE-OPS3 Scheduling and dispatch [3]
*CE-OPS4 Memory management [5]
*CE-OPS5 Device management
*CE-OPS6 Security and protection
*CE-OPS7 File systems
*CE-OPS8 System performance evaluation

CE-PRF Programming Fundamentals [39 core hours]
 CE-PRF0 History and overview [1]
*CE-PRF1 Programming Paradigms [5]
*CE-PRF2 Programming constructs [7]
*CE-PRF3 Algorithms and problem-solving [8]
*CE-PRF4 Data structures [13]
*CE-PRF5 Recursion [5]
*CE-PRF6 Object-oriented programming
*CE-PRF7 Event-driven and concurrent programming
*CE-PRF8 Using APIs

CE-SPR Social and Professional Issues [16 core hours]
 CE-SPR0 History and overview [1]
*CE-SPR1 Public policy [2]
*CE-SPR2 Methods and tools of analysis [2]
*CE-SPR3 Professional and ethical responsibilities [2]
*CE-SPR4 Risks and liabilities [2]
*CE-SPR5 Intellectual property [2]
*CE-SPR6 Privacy and civil liberties [2]
*CE-SPR7 Computer crime [1]
*CE-SPR8 Economic issues in computing [2]
*CE-SPR9 Philosophical frameworks

CE-SWE Software Engineering [13 core hours]
CE-SWE0 History and overview [1]
*CE-SWE1 Software processes [2]
*CE-SWE2 Software requirements and specifications [2]
*CE-SWE3 Software design [2]
*CE-SWE4 Software testing and validation [2]
*CE-SWE5 Software evolution [2]
*CE-SWE6 Software tools and environments [2]
*CE-SWE7 Language translation
*CE-SWE8 Software project management
*CE-SWE9 Software fault tolerance

CE-VLS VLSI Design and Fabrication [10 core hours]
CE-VLS0 History and overview [1]
CE-VLS1 Electronic properties of materials [2]
CE-VLS2 Function of the basic inverter structure [3]
CE-VLS3 Combinational logic structures [1]
CE-VLS4 Sequential logic structures [1]
CE-VLS5 Semiconductor memories and array structures [2]
CE-VLS6 Chip input/output circuits
CE-VLS7 Processing and layout
CE-VLS8 Circuit characterization and performance
CE-VLS9 Alternative circuit structures/low power design
CE-VLS10 Semi-custom design technologies
CE-VLS11 ASIC design methodology

Mathematics Knowledge Areas and Units
CE-DSC Discrete Structures [33 core hours]

 CE-DSC0 History and overview [1]
*CE-DSC1 Functions, relations, and sets [6]
*CE-DSC2 Basic logic [10]
*CE-DSC3 Proof techniques [6]
*CE-DSC4 Basics of counting [4]
*CE-DSC5 Graphs and trees [4]
*CE-DSC6 Recursion [2]

CE-PRS Probability and Statistics [33 core hours]
CE-PRS0 History and overview [1]
CE-PRS1 Discrete probability [6]
CE-PRS2 Continuous probability [6]
CE-PRS3 Expectation [4]
CE-PRS4 Stochastic Processes [6]
CE-PRS5 Sampling distributions [4]
CE-PRS6 Estimation [4]
CE-PRS7 Hypothesis tests [2]
CE-PRS8 Correlation and regression

 * Consult the CC2001 Report [ACM/IEEECS, 2001] for more detail on these knowledge units

- A.5 -

Computing Curricula - Computer Engineering Appendix A - Body of Knowledge
Final Report 2004 December 12

A.6 Comments on Knowledge Areas

The following sections provide comments on the individual areas in the computer engineering body of
knowledge. They appear here to help the reader understand how these areas contribute to the overall
computer engineering curriculum.

A.6.1 Comments on Algorithms

Algorithms are fundamental to computer engineering. The real-world performance of any software or
hardware system depends on two things: (1) the algorithms chosen, and (2) the suitability and efficiency of
the implementation. Good algorithm design is, therefore, crucial for the performance of all systems.
Moreover, the study of algorithms provides insight into the intrinsic nature of the problem as well as
possible solution techniques independent of programming language, computer hardware, or any other
implementation aspect.
 An important part of computing is the ability to select algorithms appropriate to particular purposes
and to apply them, recognizing both the likelihood that multiple reasonable solutions exist and the
possibility that no suitable algorithm may exist. This facility relies on understanding the range of
algorithms that address an important set of well-defined problems, recognizing their strengths and
weaknesses, and their suitability in particular contexts. Efficiency is a pervasive theme throughout this
area.

A.6.2 Comments on Computer Architecture and Organization

Computer architecture is a key component of computer engineering and the practicing computer engineer
should have a practical understanding of this topic. It is concerned with all aspects of the design and
organization of the central processing unit and the integration of the CPU into the computer system itself.
Architecture extends upward into computer software because a processor’s architecture must cooperate
with the operating system and system software. It is difficult to design an operating system well without
knowledge of the underlying architecture. Moreover, the computer designer must have an understanding of
software in order to implement the optimum architecture.
 The computer architecture curriculum has to achieve multiple objectives. It must provide an overview
of computer architecture and teach students the operation of a typical computing machine. It must cover
basic principles, while acknowledging the complexity of existing commercial systems. Ideally, it should
reinforce topics that are common to other areas of computer engineering; for example, teaching register
indirect addressing reinforces the concept of pointers in C. Finally, students must understand how various
peripheral devices interact with, and how they are interfaced to a CPU.

A.6.3 Comments on Computer Systems Engineering

Computer engineers build systems containing hardware and software components, usually as part of a
larger system. Included is the development of new devices such as digital camera, hand-held computers,
location aware systems, etc. Embedded computer systems developments are becoming pervasive.
 We must make decisions regarding the way to design to have maximum impact and effect at the
system level. Decisions have to be made about alternative approaches, trade-offs need to be addressed, and
decisions on all these matters need to be justified on grounds of technical insight and judgment. Often the
computer engineer will be part of a multi-disciplinary team and will have to react accordingly.

A.6.4 Comments on Circuits and Signals

- A.6 -

Computing Curricula - Computer Engineering Appendix A - Body of Knowledge
Final Report 2004 December 12

Circuits and signals are foundational material for computer engineering. These areas provide the basic
knowledge for the design of the circuits used to implement computers. A knowledge of the electrical
circuits used to implement digital circuits and computers should include basic electrical quantities, resistive
and reactive circuits, sinusoidal analysis, convolution, and frequency selective circuits. This is a very broad
area and one should expect a great deal of variation between programs for the coverage of topics outside of
the core.

A.6.5 Comments on Database Systems

Typically, users of computers have to deal with massive amounts of information on a daily basis; there are
e-mails, documents, records, addresses, web sites and many other kinds of information. In the context of
technical development, there can be specifications, designs, tests, implementations, different tools and
different versions of these tools; all of these can relate to hardware, software, communications, and so on.
 Database systems are designed to maintain and manage large collections of information, including
relationships between elements and access to data. The computer engineering student needs to be able to
develop conceptual and physical data models, determine what methods and techniques are appropriate for a
given problem, and be able to select and implement an appropriate solution that reflects all suitable
constraints, including scalability and usability.

A.6.6 Comments on Digital Logic

The logic design area covers the digital building blocks, tools, and techniques in the design of computers
and other digital systems. Emphasis is on a building-block approach. Extensive core material is included
in this area as digital logic design is one of the topic areas that differentiate computer engineers from
electrical engineers and computer scientists. This core material covers a variety of basic topics, including
switching theory, combinational and sequential logic circuits, and memory elements.
 Topics of a more advanced nature include design with programmable logic and field-programmable
gate arrays (FPGAs), modeling and simulation, digital system design, verification, and fault models and
testing.

A.6.7 Comments on Discrete Structures

The area of discrete structures is foundational material for computer engineering, including important
material from such areas as set theory, logic, methods of proofs, graph theory, combinatorics, and
recursion. The material in discrete structures is pervasive in the areas of data structures and algorithms.
As the field of computer engineering matures, more and more sophisticated analysis techniques affect
practical problems. To understand the computational techniques of the future, today’s students will need a
strong background in discrete structures.
 It is important to remember that the study of discrete structures must occur in the context of computer
engineering. Wherever possible, reference should include engineering situations or settings and the topics
in discrete structures should integrate with themes from computer engineering. It is important to emphasize
application rather than just theory.
 Finally, we note that while areas often have somewhat fuzzy boundaries, this is especially true for
discrete structures. We have assembled a body of material of a mathematical nature that must be included
in a computer engineering education and that computer engineering educators know well enough to specify
it in detail. However, the decision about where to draw the line between particular knowledge areas on the
one hand, and topics left only as supporting mathematics on the other, was inevitably somewhat arbitrary.

A.6.8 Comments on Digital Signal Processing

- A.7 -

Computing Curricula - Computer Engineering Appendix A - Body of Knowledge
Final Report 2004 December 12

Digital signal processing can be applied to the transformation, synthesis and analysis of data. For
example, when modeling a communication channel, filters, generators and analyzers can be used to
remove, add or measure noise in processing audio, images and video. Digital signal processing can also
involve domain-specific symbolic processing, which is typically named for the type of data used for input
and output. For example, if we input numerical data and output symbolic data, we call the field pattern
recognition. If we input voice and output text, we call it voice recognition. If we input images and output
symbols, we call it computer or machine vision. If we input text and output voice, we call it voice synthesis.
Using the broadest interpretation of the digital signal processing term, any of these areas could be included
when selecting courses that support the digital signal processing domain.

Most broadly speaking, the kind of numerical digital signal processing performed is a function of the
dimensionality of the data. In one-dimension, a signal can be generated by any single-valued numerical
function or digitized from any time-varying form of energy. Examples include pressure waves (voice,
audio, etc.), sensor measurements (temperature, range-to-target, speed), sensor fusion (i.e., mechanisms to
estimate the state of a plant given a model and multiple sensors), etc. In two-dimensions, digital signal
processing is a kind of numerical data processing that deals with images (typically called image
processing). In three-dimensions digital signal processing is sometimes called image sequence processing
or video processing.

Digital signal processing is a broad area. It is expected that variation will exist among programs
outside of the core.

A.6.9 Comments on Electronics

Electronics is foundational material for computer engineering. These areas provide the basic knowledge
for the design of the electronic circuits used to implement computers. Basic core material includes the
electronic properties of materials, diodes, logic families and storage elements. More advanced topics
include design parameters, interfacing and buses, circuit modeling and simulation, and operational
amplifiers. This is a very broad area and it is expected that there will be a great deal of variation between
programs in the coverage of topics outside of the core.

A.6.10 Comments on Embedded Systems

Almost every electronic appliance and device today uses embedded systems. Cell phones, automobiles,
toasters, televisions, airplanes, medical equipment, and a host of other devices, products, and applications
use embedded systems. Such systems include microcontrollers, embedded programs, and real-time
operating systems. These systems requires a conscious effort to produce the most reliable product possible
requiring the utmost diligence in system design and in design methodologies. Indeed, these designs often
reflect the design of low power systems and tool support.

A.6.11 Comments on Human-Computer Interaction

The design and development of displays, alarms, and interfaces for small or large screens (some of which
may involve interaction) is an activity captured in the study of the human computer interface and in a study
of human computer interaction. This discipline is increasingly software based and design needs require
guidance by insights from psychology and informed by an appreciation of human diversity including
matters such as colored blindness and deafness; in these circumstances, multimedia approaches often have
a role to play. It is important to note that in certain applications there are crucial requirements for
reliability and other kinds of performance that have implications for matters such as safety and security.
 Emphasis is placed on understanding human reactions to displays of various kinds and on human
behavior in the context of interactive objects. Based on these, students need to understand the principles
associated with the evaluation of interfaces including those that embody interaction. Students need to
know the principles and guidelines that reflect best practice in the design, development, and maintenance of
interfaces for multiple types of systems.

- A.8 -

Computing Curricula - Computer Engineering Appendix A - Body of Knowledge
Final Report 2004 December 12

A.6.12 Comments on Computer Networks

The number of computer networks is increasing dramatically. From small offices to entire countries,
computer networks have become the heart of electronic communication today. Using established protocols,
these local and wide area networks have become the conduit for servers and clients. Of interest today is
data integrity and security as well as the “right” to the information communicated. With wireless and
mobile computing, it has become even more essential that companies and governments preserve the
integrity of such communication vehicles. Increasingly, the use of data compression has helped the
efficiency of data communications, where the stress on performance is an increasing concern.

A.6.13 Comments on Operating Systems

An operating system defines a software interface of the computer hardware and the architecture with which
computer engineers can control and exploit the hardware to provide maximum benefit to the user. It also
manages sharing of resources (hardware and software) among the computer’s users (user programs and
systems programs).
 Student should understand the basic principles and the purposes of an operating system prior to a study
of digital instrumentation and embedded systems. It is necessary to addresses both the use of operating
systems (externals) and their design and implementation (internals). Many of the ideas involved in
operating system use have wider applicability across the field of computer engineering such as concurrent
programming. Studying internal design has relevance in such diverse areas as fault tolerance, algorithm
design and implementation, modern device development, building virtual environments, building secure
and safe systems, network management, and many other areas.

A.6.14 Comments on Programming Fundamentals

Competency in a programming language is prerequisite to the study of computer engineering.
Undergraduate programs must teach students how to use at least one programming language. The
difficulty of achieving the necessary level of fluency in a programming language is further complicated by
the need to include many advanced techniques. Students should cover the core topics in this unit to receive
exposure to the basic pieces that should be covered independent of a particular programming language as
programming languages tend to come and go over the years.
 Object-oriented programming, event-driven applications, and the use of extensive APIs (application
programming interfaces) have become fundamental tools that some computer engineering students need
early in their academic program. These concepts may be included in a program that only teaches an object-
oriented language such as C++ or Java.

A.6.15 Comments on Probability and Statistics

The topics of probability and statistics provide important insights into a range of topics of fundamental
importance to the computer engineer. For example, all issues of reliability and dependability rely on an
understanding of these topics. However, additionally, they play fundamental roles in testing and evaluation
(of hardware, software, and communications systems) where one must guarantee levels of performance.
Further uses of the topics are available in a wide variety of areas: searching, data structure design and
implementation (hash tables), computer architecture (cache concerns), operating systems (working set
models), human computer interaction (experimentation), security and in aspects of intelligent systems.

A.6.16 Comments on Social and Professional Issues

- A.9 -

Computing Curricula - Computer Engineering Appendix A - Body of Knowledge
Final Report 2004 December 12

Students must develop an understanding of the social and professional context in which they apply their
computer engineering education. Ethical considerations must be covered in context of technical topics,
otherwise it will reinforce the false notion that technological processes are void of ethical issues. Thus, it is
important that several courses include modules that analyze ethical considerations in the context of the
technical subject matter.
 Ethics-related modules may occur in almost any course in the curriculum. Courses in areas such as
software engineering, databases, computer networks, data mining, and human computer interfaces provide
obvious context for analysis of ethical issues and should arise naturally from those subjects. For example, a
programming assignment built around applications such as controlling the movement of a laser during eye
surgery can help to address the professional, ethical, and social impacts of computing.
 Computer engineers must be cognizant of their responsibility to the public. They must also be aware
of the potential conflicts between the obligations to their employer and the obligations to the customer,
user, and others affected by their work.

A.6.17 Comments on Software Engineering

Software engineering is the discipline concerned with the application of theory, knowledge, and practice to
build effectively and efficiently software systems that satisfy the requirements of users and customers.
Software engineering is applicable to small, medium, and large-scale systems. It encompasses all phases of
the life cycle of a software system. The life cycle includes requirement analysis and specification, design,
construction, testing, and operation and maintenance. The development of programs benefits from the
concepts and practices derived from software engineering. There is a need to introduce fundamental ideas
from software engineering into elementary programming and into early experience of software design.
 Software engineering employs engineering methods, processes, techniques, and measurement. It
benefits from the use of tools for managing software development; analyzing and modeling software
artifacts; assessing and controlling quality; and for ensuring a disciplined, controlled approach to software
evolution and reuse. Software development, which can involve an individual developer or a team of
developers, requires choosing the tools, methods, and approaches that are most applicable for a given
development environment.

A.6.18 Comments on VLSI Design and Fabrication

The design of the integrated circuits used to implement computers and associated hardware contains some
core material. This core includes basic properties of materials, the structure of inverters, combinational and
sequential logic structures, and memories and logic arrays. This is a very broad area and it is expected that
there will be a great deal of variation between programs in the coverage of topics outside the core.

A.7 Details of the Body of Knowledge

The following pages present the 18 areas that comprise the computer engineering body of knowledge. Each
includes a list of the knowledge units within that area, a detailed list of topics and learning outcomes for
each unit, and for core units, a recommended minimum coverage time.

- A.10 -

Computing Curricula - Computer Engineering Appendix A - Body of Knowledge
Final Report 2004 December 12

Algorithms (CE-ALG)

CE-ALG0 History and overview [core]
CE-ALG1* Basic algorithmic analysis [core]
CE-ALG2* Algorithmic strategies [core]
CE-ALG3* Computing algorithms [core]
CE-ALG4* Distributed algorithms [core]
CE-ALG5* Algorithmic complexity [core]
CE-ALG6* Basic computability theory [elective]

* Consult the CC2001 Report [ACM/IEEECS, 2001] AL Knowledge Area for more detail

CE-ALG0 History and overview [core]
Minimum core coverage time: 1 hour

Topics:

 Indicate some reasons for studying analysis, complexity, and algorithmic strategies
 Highlight some people that contributed or influenced the area of algorithms
 Mention some basic algorithms and some reasons for their differences
 Highlight how the use of theory influences algorithms
 Indicate how algorithms are part of many different computer applications
 Provide some knowledge themes such as relating complexity with algorithms
 Contrast complexities of different algorithmic strategies
 Explore some additional resources associated with algorithms
 Explain the purpose and role of algorithms in computer engineering

Learning outcomes:

1. Identify some contributors to algorithms and and relate their achievements to the knowledge area.
2. Associate some of the themes involved with algorithms.
3. Name some applications where algorithms are important.
4. Relate contributors with their achievements to the subject.
5. Describe how computer engineering uses or benefits from algorithms.

CE-ALG1 Basic algorithmic analysis [core]
Minimum core coverage time: 4 hours

Topics:

 Asymptotic analysis of upper and average complexity bounds
 Identifying differences among best, average, and worst case behaviors
 Big “O,” little “o,” omega, and theta notation
 Empirical measurements of performance
 Time and space tradeoffs in algorithms
 Using recurrence relations to analyze recursive algorithms

Learning outcomes:

1. Use big O, omega, and theta notation to give asymptotic upper, lower, and tight bounds on time and space complexity of
algorithms.

2. Determine the time complexity of simple algorithms.
3. Deduce the recurrence relations that describe the time complexity of recursively-defined algorithms, and solve simple

recurrence relations.

CE-ALG2 Algorithmic strategies [core]
Minimum core coverage time: 8 hours

Topics:

 Brute-force/exhaustive search algorithms
 Greedy algorithms
 Divide-and-conquer
 At least one of: Backtracking, branch-and-bound, heuristics

Learning outcomes:

1. Design algorithms using the brute-force, greedy, and divide-and-conquer strategies.
2. Design an algorithm using at least one other algorithmic strategy from the list of topics for this unit.

CE-ALG3 Computing algorithms [core]
Minimum core coverage time: 12 hours

- A.11 -

Computing Curricula - Computer Engineering Appendix A - Body of Knowledge
Final Report 2004 December 12

Topics:

 Simple numerical algorithms
 Sequential and binary search algorithms
 Sorting algorithms
 Hash tables, including collision-avoidance strategies
 Binary search trees
 Representations of graphs (adjacency list, adjacency matrix)
 Depth- and breadth-first traversals
 Shortest-path algorithms (Dijkstra’s and Floyd’s algorithms)
 Transitive closure (Floyd’s algorithm)
 Minimum spanning tree (Prim’s and Kruskal’s algorithms)
 Topological sort

Learning outcomes:

1. Use and implement the fundamental abstract data types—specifically including hash tables, binary search trees, and graphs—
necessary to solve algorithmic problems efficiently.

2. Solve problems using efficient sorting algorithms, and fundamental graph algorithms, including depth-first and breadth-first
search, single-source and all-pairs shortest paths, transitive closure, topological sort, and at least one minimum spanning tree
algorithm.

3. Demonstrate the following abilities: to evaluate algorithms, to select from a range of possible options, to provide justification
for that selection, and to implement the algorithm in simple programming contexts.

CE-ALG4 Distributed algorithms [core]
Minimum core coverage time: 3 hours

Topics:

 Concurrency
 Scheduling
 Fault tolerance

Learning outcomes:

1. Explain the distributed paradigm.
2. Distinguish between logical and physical clocks.
3. Describe the relative ordering of events.
4. Explain one simple distributed algorithm.

CE-ALG5 Algorithmic complexity [core]
Minimum core coverage time: 2 hours

Topics:

 Tractable and intractable problems
 Definition of the classes P and NP
 NP-completeness (Cook’s theorem)
 Standard NP-complete problems
 Uncomputable functions
 The halting problem
 Implications of uncomputability

Learning outcomes:

1. Define the classes P and NP.
2. Explain the significance of NP-completeness.
3. Prove that a problem is NP-complete by reducing a classic known NP-complete problem to it.

CE-ALG6 Basic computability theory [elective]

Topics:

 Deterministic finite Automata (DFA)
 Non-deterministic finite Automata (NFA)
 Equivalence of DFA’s and NFA’s
 Context-free grammars
 Pushdown automata (PDA)

Learning outcomes:

1. Explain the idea that some problems may have no algorithmic solution.
2. Provide examples that illustrate the implications of uncomputability.

- A.12 -

Computing Curricula - Computer Engineering Appendix A - Body of Knowledge
Final Report 2004 December 12

Computer Architecture and Organization (CE-CAO)

CE-CAO0 History and overview [core]
CE-CAO1 Fundamentals of computer architecture [core]
CE-CAO2 Computer arithmetic [core]
CE-CAO3 Memory system organization and architecture [core]
CE-CAO4 Interfacing and communication [core]
CE-CAO5 Device subsystems [core]
CE-CAO6 Processor systems design [core]
CE-CAO7 Organization of the CPU [core]
CE-CAO8 Performance [core]
CE-CAO9 Distributed system models [core]
CE-CAO10 Performance enhancements [elective]

CE-CAO0 History and overview of computer architecture and organization [core]
Minimum core coverage time: 1 hour

Topics:

 Indicate some reasons for studying computer architecture and organization
 Highlight some people that influenced or contributed to the area of computer architecture and organization
 Indicate some important topic areas such as system organization and architecture, memory, interfacing, microprocessors, and

performance
 Contrast the meanings of between computer organization and computer architecture
 Indicate the importance of doing binary arithmetic with computers
 Mention memory as a crucial component to the design of a computer
 Illustrate the importance of interfacing with computer components and peripherals
 Mention a typical CPU and sketch its organization
 Indicate why performance leads to alternate architectures
 Mention caching a way to improve performance
 Mention some of the strategies used in architecture such as CISC and RISC approaches
 Mention the strategies of multiprocessing strategies and their potential
 Explore some additional resources associated with computer architecture and organization
 Explain the purpose and role of computer architecture and organization in computer engineering

Learning outcomes:

1. Identify some contributors to computer architecture and organization and relate their achievements to the knowledge area.
2. Explain the reasons and strategies for different architectures.
3. Articulate differences between computer organization and computer architecture.
4. Identify some of the components of a computer.
5. Indicate some strengths and weaknesses inherent in different architectures.
6. Describe how computer engineering uses or benefits from computer architecture and organization.

CE-CAO1 Fundamentals of computer architecture [core]
Minimum core coverage time: 10 hours

Topics:

 Organization of the von Neumann machine
 Instruction formats
 The fetch/execute cycle; instruction decoding and execution
 Registers and register files
 Instruction types and addressing modes
 Subroutine call and return mechanisms
 Programming in assembly language
 I/O techniques and interrupts
 Other design issues

Learning outcomes:

1. Explain the organization of a von Neumann machine and its major functional units.
2. Explain how a computer fetches from memory and executes an instruction.
3. Articulate the strengths and weaknesses of the von Neumann architecture.
4. Explain the relationship between the representation of machine level operation at the binary level and their representation by a

symbolic assembler.
5. Explain why a designer adopted a given different instruction formats, such as the number of addresses per instruction and

variable length vs. fixed length formats.
6. Write small programs and fragments of assembly language code to demonstrate an understanding of machine level operations.

- A.13 -

Computing Curricula - Computer Engineering Appendix A - Body of Knowledge
Final Report 2004 December 12

7. Implement some fundamental high-level programming constructs at the machine-language level.
8. Use computer simulation packages to investigate assembly language programming.

CE-CAO2 Computer arithmetic [core]
Minimum core coverage time: 3 hours

Topics:

 Representation of integers (positive and negative numbers)
 Algorithms for common arithmetic operations (addition, subtraction, multiplication, division)
 Significance of range, precision, and accuracy in computer arithmetic
 Representation of real numbers (standards for floating-point arithmetic)
 Algorithms for carrying out common floating-point operations
 Converting between integer and real numbers
 Multi-precision arithmetic
 Hardware and software implementation of arithmetic unit
 The generation of higher order functions from square roots to transcendental functions

Learning outcomes:

1. Appreciate how numerical values are represented in digital computers
2. Understand the limitations of computer arithmetic and the effects of errors on calculations.
3. Appreciate the effect of a processor’s arithmetic unit on its overall performance,

CE-CAO3 Memory system organization and architecture [core]
Minimum core coverage time: 8 hours

Topics:

 Memory systems hierarchy
 Coding, data compression, and data integrity
 Electronic, magnetic and optical technologies
 Main memory organization and its characteristics and performance
 Latency, cycle time, bandwidth, and interleaving
 Cache memories (address mapping, line size, replacement and write-back policies)
 Virtual memory systems
 Memory technologies such as DRAM, EPROM, and FLASH
 Reliability of memory systems; error detecting and error correcting systems

Learning outcomes:

1. Identify the main types of memory technology.
2. Explain the effect of memory latency and bandwidth on performance.
3. Explain the use of memory hierarchy to reduce the effective memory latency.
4. Describe the principles of memory management.
5. Understand how errors in memory systems arise and how to resolve them.

CE-CAO4 Interfacing and communication [core]
Minimum core coverage time: 10 hours

Topics:

 I/O fundamentals: handshaking, buffering,
 I/O techniques: programmed I/O, interrupt-driven I/O, DMA
 Interrupt structures: vectored and prioritized, interrupt overhead, interrupts and reentrant code
 Memory system design and interfacing
 Buses: bus protocols, local and geographic arbitration

Learning outcomes:

1. Explain how to use interrupts to implement I/O control and data transfers.
2. Write small interrupt service routines and I/O drivers using assembly language.
3. Identify various types of buses in a computer system.
4. Describe data access from a magnetic disk drive.
5. Analyze and implement interfaces.

CE-CAO5 Device subsystems [core]
Minimum core coverage time: 5 hours

Topics:

 External storage systems; organization and structure of disk drives and optical memory

- A.14 -

Computing Curricula - Computer Engineering Appendix A - Body of Knowledge
Final Report 2004 December 12

 Basic I/O controllers such as a keyboard and a mouse
 RAID architectures
 Video control
 I/O Performance
 SMART technology and fault detection
 Processor to network interfaces

Learning outcomes:

1. Compute the various parameters of performance for standard I/O types.
2. Explain the basic nature human computer interaction devices.
3. Describe data access from magnetic and optical disk drives.

CE-CAO6 Processor systems design [core]
Minimum core coverage time: 10 hours

Topics:

 The CPU interface: clock, control, data and address buses
 Address decoding and memory interfacing
 Basic parallel and serial interfaces
 Timers
 System firmware

Learning outcomes:

1. Understand how a CPU chip becomes a complete system.
2. Design an interface to memory
3. Understand how to interface and use peripheral chips
4. Write sufficient EPROM-based system software to create a basic stand-alone system.
5. Specify and design simple computer interfaces.

CE-CAO7 Organization of the CPU [core]
Minimum core coverage time: 10 hours

Topics:

 Implementation of the von Neumann machine
 Single vs. multiple bus datapaths
 Instruction set architecture; machine architecture as a framework for encapsulating design decisions
 Relationship between the architecture and the compiler
 Implementing instructions
 Control unit: hardwired realization vs. microprogrammed realization
 Arithmetic units, for multiplication and division
 Instruction pipelining
 Trends in computer architecture: CISC, RISC, VLIW
 Introduction to instruction-level parallelism (ILP)
 Pipeline hazards: structural, data and control
 Reducing the effects of hazards

Learning outcomes:

1. Compare alternative implementation of datapaths.
2. Discuss the generation of control signals using hardwired or microprogrammed implementations.
3. Explain basic instruction level parallelism using pipelining and the major hazards that may occur.
4. Explain what has been done to overcome the effect of branches
5. Discuss the way in which instruction sets have evolved to improve performance; for example, predicated execution.

CE-CAO8 Performance [core]
Minimum core coverage time: 3 hours

Topics:

 Metrics for computer performance; clock rate, MIPS, Cycles per instruction, benchmarks
 Strengths and weaknesses of performance metrics
 Averaging metrics: arithmetic, geometric and harmonic
 The role of Amdahl’s law in computer performance

Learning outcomes:

1. Understand the factors that contribute to computer performance.
2. Understand the limitations of performance metrics
3. Select the most appropriate performance metric when evaluating a computer.

- A.15 -

Computing Curricula - Computer Engineering Appendix A - Body of Knowledge
Final Report 2004 December 12

4. Discuss the impact on control and datapath design for performance enhancements.

CE-CAO9 Distributed system models [core]
Minimum core coverage time: 3 hours

Topics:

 Classification of models: parallel machine models (SIMD, MIMD, SISD, MISD): Flynn’s taxonomy, Handler’s classification,
message passing

 Granularity, levels of parallelism
 Multiprocessors and multi-computers: Topology, tightly coupled and loosely coupled architectures
 Processes: threads, clients, servers, code migration, software agents
 Physical and logical clocks: clock synchronizing algorithms, Lamport timestamps, vector timestamps
 Election Algorithms
 Mutual Exclusion algorithms
 Distributed transactions: models, classification, concurrency control

Learning outcomes:

1. Explain the differences between different paradigms and their usefulness and applicability
2. Understand how client server model works in a decentralized fashion
3. Understand how agents work and how they solve simple tasks.
4. Understand the concept of logical clocks vs. physical clocks and how they affect implementation of distributed systems
5. Be familiar with simple election and mutual exclusion algorithms and their applicability.

CE-CAO10 Performance enhancements [elective]

Topics:

 Superscalar architecture
 Branch prediction
 Prefetching
 Speculative execution
 Multithreading
 Scalability
 Short vector instruction sets: Streaming extensions, AltiVec, relationship between computer architecture and multimedia

applications

Learning outcomes:

1. Discuss how various architectural enhancements affect system performance.
2. Discuss how to apply parallel processing approaches to design scalar and superscalar processors.
3. Discuss how to apply vector-processing techniques to enhance instruction sets for multimedia and signal processing.
4. Understand how each of the functional parts of a computer system affects its overall performance.
5. Estimate the effect on system performance of changes to functional units.

- A.16 -

Computing Curricula - Computer Engineering Appendix A - Body of Knowledge
Final Report 2004 December 12

Computer Systems Engineering (CE-CSE)

CE-CSE0 History and overview [core]
CE-CSE1 Life cycle [core]
CE-CSE2 Requirements analysis and elicitation [core]
CE-CSE3 Specification [core]
CE-CSE4 Architectural design [core]
CE-CSE5 Testing [core]
CE-CSE6 Maintenance [core]
CE-CSE7 Project management [core]
CE-CSE8 Concurrent (hardware/software) design [core]
CE-CSE9 Implementation [elective]
CE-CSE10 Specialized systems [elective]
CE-CSE 11 Reliability and fault tolerance [elective]

CE-CSE0 History and overview [core]
Minimum core coverage time: 1 hour

Topics:

 Indicate some reasons for studying computer systems engineering
 Highlight some people that influenced or contributed to the area of computer systems engineering
 Explain briefly the concept of a system, a subsystem, the role of people, the recursive nature of this concept and relevance of

this observation, the different disciplines involved, and the need for interdisciplinary approach
 Indicate how the life cycle contributes to systems engineering
 Mention that testing and maintenance are important systems engineering
 Indicate some important topic areas such as system-level design, hardware-software interface, direct and indirect interaction,

and the human-computer interface
 Mention the nature of systems engineering including balancing costs, performance, and market considerations
 Indicate the importance of design decisions at the systems level and trade-offs
 Explain the need for flexibility and agility and reflection on approaches used and the competency of individuals
 Provide some examples of hardware-software trade-offs with illustrations and applications
 Indicate the importance and influence of the human computer interface in systems development
 Mention why it is important to know how to build reliable systems from unreliable components
 Indicate the importance and influence of standards, guidelines, legislation, regulations, and professional issues computer

systems design
 Note that many computer systems designs become continually evolving systems
 Explore some additional resources associated with computer systems engineering
 Explain the purpose and role of computer systems engineering in computer engineering

Learning outcomes:

1. Identify some contributors to computer systems engineering and relate their achievements to the knowledge area.
2. Recognize and explain the possible interdisciplinary nature associated with the development of the range of computer-based

systems.
3. Recognize and explain some of the mechanisms used in the development of computer based systems.
4. Recite some elements of the systems life cycle.
5. Describe how computer engineering uses or benefits from computer systems engineering.

CE-CSE1 Life cycle [core]
Minimum core coverage time: 2 hours

Topics:

 Nature of life cycle, role of life cycle model, quality in relation to the life cycle, influence of system size on choice of life
cycle model and nature of system, agility issues

 Different models of the life cycle: Strengths and weaknesses of each
 The concept of process: Process improvement, basis for this is information, gathering information
 Maturity models, standards and guidelines

Learning outcomes:

1. Recognize the need for a disciplined approach to system development and explain the elements of this in particular contexts.
2. Explain how to gather data to inform process improvement.

CE-CSE2 Requirements analysis and elicitation [core]
Minimum core coverage time: 2 hours

- A.17 -

Computing Curricula - Computer Engineering Appendix A - Body of Knowledge
Final Report 2004 December 12

Topics:

 System analysis: identification of need, feasibility considerations, economic considerations
 Nature of requirements : functional and non-functional requirements
 Approaches to the determination of requirements: analysis task, elements of this including communications and information

gathering
 Prototyping, simulation and modeling
 Human factors
 Building expertise over time
 Role of experts and experience
 Non-functional requirements; the range of possibilities, the quantification issue
 Human factors issues: standards, user interface design
 Specific applications; building computer systems such as desktops, laptops, hand-held devices, digital cameras, mobile

phones, video phones

Learning outcomes:

1. Describe the strengths and weaknesses of the major approaches to requirements elicitation and capture.
2. Apply one of a range of techniques to elicit and then describe the requirements for a particular system.

CE-CSE3 Specification [core]
Minimum core coverage time: 2 hours

Topics:

 Functional and non-functional specifications: different approaches and different possibilities
 Quality in relation to specification; completeness, consistency, simplicity, verifiability, basis for design; specification in the

event of failure
 Test plans based on the specification: role of independence in relation to test; safety cases
 Limitations of such tests
 Degraded mode of operation: possibilities, testing in this context

Learning outcomes:

1. Recognize the characteristics of a high quality specification.
2. Assess the quality of a given specification.
3. Create a high quality specification of a given system.

CE-CSE4 Architectural design [core]
Minimum core coverage time: 3 hours

Topics:

 Basis for subdivision into systems and subsystems, basis for making these decisions
 Elements of high quality design
 Systems-level design strategies used in computer systems engineering including their strengths and weaknesses; inclusion of

diagnostics in the event of failure; special problems of the hardware/software interface
 Design issues associated with achieving reliability; the role of redundancy; independence of designs, separation of concerns;

specifications of subsystems, selection of subcontractor
 Different approaches to architectural design, their strengths and weaknesses
 Design to achieve performance measures such as in reliability and safety
 Concept of common cause failure
 Failure modes, approaches to fault tolerant design; dealing with failure

Learning outcomes:

1. Describe the strengths and weaknesses of the range of design decisions and methods.
2. Select and implement an appropriate approach to design for a range of possible applications.

CE-CSE5 Testing [core]
Minimum core coverage time: 2 hours

Topics:

 Nature of testing – do throughout life cycle – efficient and effective processes
 Test plans – purpose, nature
 White board, black board, regression testing, stress testing, interface testing
 Tool support to accommodate efficient and effective development including regression testing
 System-level test and diagnosis
 Printed circuit board, MCM, and core-based testing
 Software testing

Learning outcomes:

- A.18 -

Computing Curricula - Computer Engineering Appendix A - Body of Knowledge
Final Report 2004 December 12

1. Recognize the range of tests appropriate for each stage of the systems life cycle.
2. Select an appropriate combination of tests for ensuring the quality of a system.

CE-CSE6 Maintenance [core]
Minimum core coverage time: 2 hours

Topics:

 Inevitability of maintenance in certain systems such as in hardware upgrade and tool development
 Patterns of behavior in relation to maintenance as in hardware, software, communications, and trends
 Measurement to inform maintenance as with bottlenecks
 Nature of maintenance: defect removal, upgrade, enhancement
 Impact analysis; decision making in relation to maintenance, configuration control board role
 Configuration management and version control in engineering systems – the need for this, the issues associated with it, the

nature of the information to be held; legal requirements; planning for possible disasters
 Tool support and the nature of this
 Building expertise for later re-use; the issues, balances, options

Learning outcomes:

1. Understand the nature of maintenance in computer systems engineering.
2. Recognize and apply mechanisms that ensure design support maintenance.
3. Apply the principles in situations of modest complexity.

CE-CSE7 Project management [core]
Minimum core coverage time: 2 hours

Topics:

 The nature of project management in systems engineering, basic principles
 Composition of teams, difficulty of software project management
 Resource allocation
 Allocation of decision making to teams: Issues and options
 Gantt charts: Project planning, costing, teamwork
 Ensuring project management information; ensuring timely compliance with specification; timely delivery
 Standards, legal requirements, consultants subcontractors; their use and the management of these
 Role of metrics in support of management

Learning outcomes:

1. Recognize and know how to address the major problems of project management in computer engineering including multi
disciplinary issues.

2. Describe the tools used to provide evidence to support all phases of the systems lifecycle.

CE-CSE8 Concurrent (hardware/software) design [core]
Minimum core coverage time: 2 hours

Topics:

 Applications areas with particular performance constraints that make the coordinated development of both hardware and
software important as in speech coders and radio modems

 Demands of hard real-time features
 Hardware and software co-design

Learning outcomes:

1. Recognize the potential of hardware-software co-design in circumstances in which this approach is pertinent.
2. Apply hardware-software co-design principles in situations of modest complexity.

CE-CSE9 Implementation [elective]

Topics:

 Choosing technologies appropriate for particular purposes
 Rapid applications development
 Role of standards and documentation in relation to this
 Ensuring levels of performance, nature of tests, regression testing
 Technology specific issues

Learning outcomes:

1. Select technologies appropriate for achieving a high quality product over a range of applications.
2. Demonstrate the ability to implement at least one from a range of computer based systems

- A.19 -

Computing Curricula - Computer Engineering Appendix A - Body of Knowledge
Final Report 2004 December 12

CE-CSE10 Specialized systems [elective]

Topics:

 Risk and hazard analysis; strategies for risk reduction, risk control – implications for implementation Role of preliminary
hazard analysis

 Concept of integrity level: quantifying this and its impact on the life cycle issues
 Safety critical; concept of safety plan
 Security critical systems and other high integrity systems; high integrity functions: ensuring their performance
 Design based on these key functions required for achieving the required integrity level
 Range of strategies for achieving a variety of possible high performance levels; to include safety, reliability, security
 Choosing approaches throughout the life cycle appropriate to required integrity level
 International standards, legal requirements

Learning outcomes:

1. Recognize the special requirements of a range of specialist systems.
2. Demonstrate an ability to select approaches to the development of a range of specialist systems that are commensurate with

the intended integrity level.

CE-CSE11 Reliability and fault tolerance [elective]

Topics:

 Reliability and availability modeling
 Hardware redundancy approaches
 Error detecting and correcting codes
 Software approaches to tolerating hardware faults
 Software reliability models
 Software fault-tolerance methods (N-version programming, recovery blocks, rollback and recovery)
 Fault tolerance in operating systems and data structures
 Fault tolerance in database and distributed systems
 Fault-tolerance in transaction processing systems
 Fault-tolerant systems for aerospace, telecommunications, and industrial control

Learning outcomes:

1. Understand the concepts of system reliability and availability, and their relationship to faults.
2. Understand basic redundancy approaches to fault tolerance to improve system reliability and/or availability.
3. Understand software faults, and redundancy methods used to tolerate them.
4. Understand fault tolerance, reliability, and availability requirements of different applications (database, aerospace,

telecommunications, industrial control, transaction processing).

- A.20 -

Computing Curricula - Computer Engineering Appendix A - Body of Knowledge
Final Report 2004 December 12

Circuits and Signals (CE-CSG)

CE-CSG0 History and overview [core]
CE-CSG1 Electrical quantities [core]
CE-CSG2 Resistive circuits and networks [core]
CE-CSG3 Reactive circuits and networks [core]
CE-CSG4 Frequency response [core]
CE-CSG5 Sinusoidal analysis [core]
CE-CSG6 Convolution [core]
CE-CSG7 Fourier analysis [elective]
CE-CSG8 Filters [elective]
CE-CSG9 Laplace transforms [elective]

CE-CSG0 History and overview [core]
Minimum core coverage time: 1 hour

Topics:

 Indicate some reasons for studying circuits and systems
 Highlight some people that influenced or contributed to the area of circuits and systems
 Indicate some important topic areas such as electrical quantities, resistance, reactance, frequency response, sinusoids,

convolution, discrete-time signals, Fourier representation, filters, and transforms
 Contrast between current and voltage
 Describe Ohm’s Law
 Explain reactive elements such as inductance and capacitance
 Indicate that frequency affects reactive elements, but not resistance elements
 Mention phase and the meaning of being “out of phase ”
 Distinguish how signal sampling can produce aliasing and quantizing
 Illustrate the design of a “square wave” from a trigonometric Fourier series
 Explore some additional resources associated with circuits and systems
 Explain the purpose and role of circuits and systems in computer engineering

Learning outcomes:

1. Identify some contributors to circuits and systems and relate their achievements to the knowledge area.
2. Articulate the difference between resistance and reactance.
3. Articulate Ohm’s Law.
4. Distinguish between inductance and capacitance.
5. Articulate the meaning of phase.
6. Describe aliasing.
7. Articulate the purpose of a Fourier series.
8. Describe how computer engineering uses or benefits from circuits and systems.

CE-CSG1 Electrical quantities [core]
Minimum core coverage time: 3 hours

Topics:

 Charge
 Current
 Voltage
 Energy
 Power

Learning outcomes:

1. Understand the concept of and to represent basic electrical quantities.
2. Understand the relationships between basic electrical quantities.

CE-CSG2 Resistive circuits and networks [core]
Minimum core coverage time: 9 hours

Topics:

 Ohm’s Law
 Kirchoff’s laws
 Independent and dependent sources
 Series and parallel elements
 Voltage and Current measurement

- A.21 -

Computing Curricula - Computer Engineering Appendix A - Body of Knowledge
Final Report 2004 December 12

 Mesh and Nodal analysis
 Superposition
 Thevenin’s and Norton’s theorems
 Maximum power transfer

Learning outcomes:

1. Represent and manipulate basic resistive circuit equations.
2. Analyze and simplify basic resistive circuits.
3. Understand and use network analysis tools for resistive circuits.

CE-CSG3 Reactive circuits and networks [core]
Minimum core coverage time: 12 hours

Topics:

 Inductance
 Capacitance
 Mutual inductance
 Time constants for RL and RC circuits
 Transient response of RL, RC, and RLC circuits
 Damping
 Transformers

Learning outcomes:

1. Represent basic energy storage devices.
2. Understand how to combine various combinations of inductors and capacitors.
3. Understand simple transient response of various R, L, and C circuits.
4. Analyze and design simple R, L, and C circuits.

CE-CSG4 Frequency response [core]
Minimum core coverage time: 9 hours

Topics:

 Response of RL, RC, and RLC circuits
 Transfer functions
 Two-port circuits
 Parallel and series resonance

Learning outcomes:

1. Understand the frequency domain characteristics of electrical circuits.
2. Analyze and design frequency selective circuits.

CE-CSG5 Sinusoidal analysis [core]
Minimum core coverage time: 6 hours

Topics:

 Phasor representation of voltage and current
 Forced response to sinusoidal functions
 Impedance and Admittance
 Nodal and Mesh analysis
 Thevenin’s and Norton’s theorems
 Phasor diagrams
 Superposition
 Source transformations

Learning outcomes:

1. Understand response of electrical circuits to sinusoidal signal excitation.
2. Analyze circuits using the techniques given.

CE-CSG6 Convolution [core]
Minimum core coverage time: 3 hours

Topics:

 Impulse response
 Convolution integral
 Physically realizable systems

- A.22 -

Computing Curricula - Computer Engineering Appendix A - Body of Knowledge
Final Report 2004 December 12

 Graphical methods

Learning outcomes:

1. Use the convolution technique to analyze circuits.
2. Represent convolution using graphical techniques.

CE-CSG7 Fourier analysis [elective]

Topics:

 Signal representation by Fourier series
 Trigonometric Fourier series
 Exponential Fourier series
 Definition of the Fourier transform
 Properties of the Fourier transform
 Circuit analysis using the Fourier transform

Learning outcomes:

1. Represent signals using Fourier series.
2. Understand the Fourier transform and its properties.
3. Apply Fourier transform techniques to circuit analysis.

CE-CSG8 Filters [elective]

Topics:

 Frequency selective circuits
 Transfer functions
 Passive filters
 Active filters

Learning outcomes:

1. Understand frequency selective circuits.
2. Design filters that have specified frequency characteristics.

CE-CSG9 Laplace transforms [elective]

Topics:

 Laplace transform integral
 Impulse response
 Step functions
 Ramp functions
 Inverse transforms
 Poles and zeroes
 Initial valve theorem
 Final valve theorem
 Circuit analysis using Laplace transforms

Learning outcomes:

1. Understand the Laplace transform technique and its mathematical representation.
2. Represent circuits and signals by their Laplace transforms.
3. Use the Laplace transform to describe electrical circuits and compute their behavior.

- A.23 -

Computing Curricula - Computer Engineering Appendix A - Body of Knowledge
Final Report 2004 December 12

Database Systems (CE-DBS)

CE-DBS0 History and overview [core]
CE-DBS1* Database systems [core]
CE-DBS2* Data modeling [core]
CE-DBS3* Relational databases [elective]
CE-DBS4* Database query languages [elective]
CE-DBS5* Relational database design [elective]
CE-DBS6* Transaction processing [elective]
CE-DBS7* Distributed databases [elective]
CE-DBS8* Physical database design [elective]

* Consult the CC2001 Report [ACM/IEEECS, 2001] IM Knowledge Area for more detail

CE-DBS0 History and overview [core]
Minimum core coverage time: 1 hour

Topics:

 Indicate some reasons for studying database systems
 Highlight some people that influenced or contributed to the area of database systems
 Indicate some important topic areas such as information systems, database systems and, data modeling
 Contrast the meanings between data, information, and knowledge
 Describe a database system and its components
 Mention the use of database query languages
 Describe the meaning and purpose of a data model
 Explore some additional resources associated with database systems
 Explain the purpose and role of database systems in computer engineering

Learning outcomes:

1. Identify some contributors to database systems and relate their achievements to the knowledge area.
2. Explain how knowledge differs from information and data.
3. Name some components of a database system.
4. Name one query language.
5. Articulate the purpose of a data model.
6. Describe how computer engineering uses or benefits from database systems and information management.

CE-DBS1 Database systems [core]
Minimum core coverage time: 2 hours

Topics:

 Components of database systems; problem of the accuracy of information
 Database management system (DBMS) functions: the different possibilities and the role they play in a database system
 Database architectures: the possibilities, the concept of, the importance of and the reality of data independence
 Use of a database query language

Learning outcomes:

1. Explain the characteristics that distinguish the database approach from the traditional approach of programming with data
files.

2. Cite the basic goals, functions, models, components, applications, and social impact of database systems.
3. Describe the components of a database system and give examples of their use.
4. Use a query language to elicit information from a database.

CE-DBS2 Data modeling [core]
Minimum core coverage time: 2 hours

Topics:

 Data modeling: the role of this, the benefits it brings and the common approaches; conceptual data model, physical data
model, and representational data model

 Basic concepts: to include key, foreign key, record, relation
 Conceptual models: possibilities, entity-relationship model and UML; strengths and weaknesses; notational issues
 Object-oriented model: the main concepts and object identity, type constructors, encapsulation, inheritance, polymorphism,

and versioning; basic approaches
 Relational data model: basic terminology, basic approaches, strengths and weaknesses

Learning outcomes:

1. Categorize data models based on the types of concepts that they provide to describe the database structure.

- A.24 -

Computing Curricula - Computer Engineering Appendix A - Body of Knowledge
Final Report 2004 December 12

2. Compare and contrast the basic principles of the relational data model and those of the object-oriented model as they apply to
computer engineering applications.

CE-DBS3 Relational databases [elective]

Topics:

 Concepts of conceptual schema and relational schema: uses, comparisons, mapping conceptual schema to relational schema
 Entity integrity constraint and referential integrity constraint; definitions, uses
 Relational algebra and relational calculus
 Relational algebra operations from mathematical set theory (union, intersection, difference, and Cartesian product) contrasted

with the relational algebra operations developed specifically for relational databases (select, product, join, and division).

Learning outcomes:

1. Prepare a relational schema from a conceptual model developed using the entity-relationship model
2. Explain and demonstrate the concepts of entity integrity constraint and referential integrity constraint (including the definition

of the concept of a foreign key).
3. Demonstrate the successful formulation of queries in the relational algebra and queries in the tuple relational calculus.

CE-DBS4 Database query languages [elective]

Topics:

 Overview of database languages
 Structured query language (SQL): fundamental concepts including data definition, query formulation, update sub-language,

constraints, integrity
 Query processing strategies; query optimization
 Query by example and 4th-generation environments
 Embedding non-procedural queries in a procedural language
 Introduction to object query language

Learning outcomes:

1. Create a relational database schema in SQL that incorporates key, entity integrity, and referential integrity constraints.
2. Demonstrate data definition in SQL and retrieving information from a database using the SQL SELECT statement
3. Evaluate a set of query processing strategies and select the optimal strategy
4. Demonstrate the ability to embed object-oriented queries into an appropriate stand-alone programming language

CE-DBS5. Relational database design [elective]

Topics:

 Database design
 The concept of functional dependency
 Normal forms: first, second, third and Boyce-Codd normal forms; motivation for each of these, applicability; mechanisms for

producing these normal forms
 Multi-valued dependency: fourth normal form; join dependency; fifth normal form
 Representation theory

Learning outcomes:

1. Determine the functional dependency between two or more attributes that are a subset of a relation.
2. Demonstrate the ability to transform a relation into a prescribed normal form
3. Explain the impact of normalization on the efficiency of database operations and query optimization.
4. Describe a multi-valued dependency and the type of constraints it specifies.

CE-DBS6 Transaction processing [elective]

Topics:

 Transactions: the purpose and the nature of transactions; creating a transaction using SQL; characteristics of efficient
transaction execution; concept of commit

 Failure and recovery: the differing possibilities, their strengths and weaknesses
 Concurrency control: the special problems introduced by concurrency; the solution to these problems; isolation levels and

their effects

Learning outcomes:

1. Explain the purpose of rollback and the way logging assures that proper rollback takes place.
2. Outline the special problems arising from the use of concurrency and the effect of effect of different isolation levels on the

concurrency control mechanisms.
3. Demonstrate the ability to apply suitable ideas on failure and recovery to an application taken from computer engineering.

- A.25 -

Computing Curricula - Computer Engineering Appendix A - Body of Knowledge
Final Report 2004 December 12

CE-DBS7 Distributed databases [elective]

Topics:

 Advantages offered by the introduction of distribution: the problems introduced
 Distributed data storage: techniques used for data fragmentation, replication, and allocation during the distributed database

design process
 Distributed query processing: strategies for executing distributed queries
 Distributed transaction model
 Concurrency control: the different approaches including those based on the distinguished copy techniques and the voting

method
 Homogeneous and heterogeneous solutions
 The client-server approach

Learning outcomes:

1. Evaluate simple strategies for executing a distributed query to select the strategy that minimizes the amount of data transfer.
2. Explain how to use the two-phase commit protocol to deal with committing a transaction that accesses databases stored on

multiple nodes.
3. Compare and contrast the different approaches to distributed concurrency control.

CE-DBS8 Physical database design [elective]

Topics:

 Storage requirements for a range of data including characters, numbers, strings, text, sound, video and file structure
 Characteristics of storage to support a range of databases including use of CDs, memory in machines of different kinds; nature

of the storage systems involved and the factors influencing choice
 Records and record types; fixed length and variable length; storage organization
 Files of different kinds and file structures: sequential files, indexed files, hashed files; signature files; files with dense index
 B-trees; definition, use in particular in implementing dynamic multi-level indices
 Data compression: reasons for using this, compression algorithms, strengths and weaknesses of each approach; software

support
 Database efficiency and tuning: performance measures, monitoring performance

Learning outcomes:

1. Give examples of the application of primary, secondary, and clustering indexes.
2. Explain the theory and application of internal and external hashing techniques and its use in facilitating dynamic file

expansion.
3. Describe the relationships among hashing, compression, and efficient database searches.
4. Explain how physical database design affects database transaction efficiency.

- A.26 -

Computing Curricula - Computer Engineering Appendix A - Body of Knowledge
Final Report 2004 December 12

Digital Logic (CE-DIG)

CE-DIG0 History and overview [core]
CE-DIG1 Switching theory [core]
CE-DIG2 Combinational logic circuits [core]
CE-DIG3 Modular design of combinational circuits [core]
CE-DIG4 Memory elements [core]
CE-DIG5 Sequential logic circuits [core]
CE-DIG6 Digital systems design [core]
CE-DIG7 Modeling and simulation [core]
CE-DIG8 Formal verification [core]
CE-DIG9 Fault models and testing [core]
CE-DIG10 Design for testability [elective]

CE-DIG0 History and overview [core]
Minimum core coverage time: 1 hour

Topics:

 Indicate some reasons for studying digital logic
 Highlight some people that influenced or contributed to the area of digital logic
 Indicate some important topic areas such as logic circuits, switching, memory, registers, and digital systems
 Highlight the importance of Boolean logic to the knowledge area
 Mention the meaning and importance of sequential logic
 Contrast the meanings of gates, circuits, combinational circuits, and modules
 Indicate that memory is a logical circuit
 Highlight that a special form of memory module forms registers
 Mention how systems result from modules and circuits
 Explore some additional resources associated with digital logic
 Explain the purpose and role of digital logic in computer engineering

Learning outcomes:

1. Identify some contributors to digital logic and relate their achievements to the knowledge area.
2. Explain why Boolean logic is important to this subject.
3. Articulate why gates are the fundamental elements of a digital system.
4. Contrast the difference between a memory element and a register.
5. Indicate some uses for sequential logic.
6. Describe how computer engineering uses or benefits from digital logic.

CE-DIG1 Switching theory [core]
Minimum core coverage time: 6 hours

Topics:

 Number systems and codes
 Binary arithmetic
 Boolean and switching algebra
 Representation and manipulation of switching functions
 Minimization of switching functions
 Incompletely specified switching functions

Learning outcomes:

1. Work with binary number systems and arithmetic.
2. Derive and manipulate switching functions that form the basis of digital circuits.
3. Reduce switching functions to simplify circuits used to realize them.

CE-DIG2 Combinational logic circuits [core]
Minimum core coverage time: 4 hours

Topics:

 Basic logic gates (AND,OR,NOT,NAND,NOR,XOR)
 Realization of switching functions with networks of logic gates
 2-level networks: AND-OR,OR-AND,NAND-NAND,NOR-NOR
 Multi-level networks
 Physical properties of logic gates (technology, fan-in, fan-out, propagation delay)
 Elimination of timing hazards/glitches

- A.27 -

Computing Curricula - Computer Engineering Appendix A - Body of Knowledge
Final Report 2004 December 12

Learning outcomes:

1. Realize switching functions with networks of logic gates.
2. Explain and apply fundamental characteristics of relevant electronic technologies, such as propagation delay, fan-in, fan-out,

and power dissipation and noise margin.

CE-DIG3 Modular design of combinational circuits [core]
Minimum core coverage time: 6 hours

Topics:

 Design of medium scale combinational logic modules
 Multiplexers, demultiplexers, decoders, encoders, comparators
 Arithmetic functions (adders, subtracters, carry lookahead)
 Multipliers, dividers
 Arithmetic and logic units (ALUs)
 Hierarchical design of combinational circuits using logic modules

Learning outcomes:

1. Analyze and explain uses of small- and medium-scale logic functions as building blocks.
2. Analyze and design combinational logic networks in a hierarchical, modular approach, using standard and custom logic

functions.

CE-DIG4 Memory elements [core]
Minimum core coverage time: 3 hours

Topics:

 Unclocked and clocked memory devices (latches, flip flops)
 Level vs. edge-sensitive, and master-slave devices
 Basic flip flops (SR, D, JK, T)
 Asynchronous flip flop inputs (preset, clear)
 Timing constraints (setup time, hold time) and propagation delays
 Data registers (selection, clocking, timing)
 Random-access memory (RAM)

Learning outcomes:

1. Design and describe the operation of basic memory elements.
2. Analyze circuits containing basic memory elements.
3. Apply the concepts of basic timing issues, including clocking, timing constraints, and propagation delays during the design

process.

CE-DIG5 Sequential logic circuits [core]
Minimum core coverage time: 10 hours

Topics:

 Finite state machines (FSMs), clocked and unclocked
 Mealy vs. Moore models of FSMs
 Modeling FSM behavior: State diagrams and state tables, timing diagrams, algorithmic state machine charts
 Analysis of synchronous and asynchronous circuits
 Design of synchronous sequential circuits: State minimization, state assignment, next state and output equation realization
 Sequential functional units: Data registers, shift registers, counters, sequence detectors, synchronizers, debouncers, controllers

Learning outcomes:

1. Analyze the behavior of synchronous and asynchronous machines.
2. Synthesize synchronous and asynchronous sequential machines.

CE-DIG6 Digital systems design [core]
Minimum core coverage time: 12 hours

Topics:

 Hierarchical, modular design of digital systems
 Synthesis of digital circuits from HDL models
 Design principles and techniques: Bridging conceptual levels – top down/bottom up, divide and conquer, iteration, satisfying

a behavior with a digital structure
 Functional units, building blocks and LSI components: Adder, shifter, register, ALU, and control circuits, tri-state devices and

buses

- A.28 -

Computing Curricula - Computer Engineering Appendix A - Body of Knowledge
Final Report 2004 December 12

 Control concepts: Register transfer notation, major control state, sequences of micro-operations, conditional execution of
micro-operations

 Timing concepts: System timing dependencies, sequencing, clock generation, distribution, and skew
 Programmable logic devices (PLDs) and field-programmable gate arrays (FPGAs), PLAs, ROMs, PALs, complex PLDs

Learning outcomes:

1. Apply digital system design principles and descriptive techniques.
2. Analyze and design functional building blocks and control and timing concepts of digital systems.
3. Develop a complex digital system design in a hierarchical fashion using top-down and bottom-up design approaches.
4. Utilize programmable devices such as FPGAs and PLDs to implement digital system designs.

CE-DIG7 Modeling and simulation [core]
Minimum core coverage time: 5 hours

Topics:

 Schematic capture
 Hierarchical schematic modeling for complex systems
 Digital system modeling with hardware description languages (VHDL, Verilog)
 Other modeling techniques (timing diagrams, register transfer languages, state diagrams, algorithmic state machines)
 Functional simulation of combinational and sequential circuits
 Timing models of digital circuit elements: Propagation delay, rise/fall time, setup and hold times, pulse widths
 Timing simulation to measure delays and study signals subject to timing constraints
 Simulation test-bench design

Learning outcomes:

1. Model and simulate a digital system using schematic diagrams.
2. Model and simulate a digital system using a hardware description language, such as VHDL or Verilog.
3. Understand timing issues in digital systems and know how to study these via digital circuit simulation.

CE-DIG8 Formal verification [core]
Minimum core coverage time: 5 hours

Topics:

 Relationship of good design practice to formal verification
 Comparison and contrast of formal verification, validation, testing, and reliability
 Verification by model checking
 Verification by proofs
 Verification by equivalence checking
 Verification by simulation and test-benches
 Verification by assertions and verification languages
 Verification by testing
 Economics of verification
 Other verification: signal integrity, specification, reliability, safety, power, cooling

Learning outcomes:

1. Understand the difference between good design practice and formal verification.
2. Distinguish between the various forms of verification.

CE-DIG9 Faults models and testing [core]
Minimum core coverage time: 5 hours

Topics:

 Logical (stuck-at) faults (single and multiple)
 Other fault models (bridging, opens, delay faults)
 Yield and defect levels
 Test coverage
 Fault equivalence and dominance
 Fault simulation and fault grading
 Test generation algorithms such as the D-algorithm and PODEM
 Automatic Test Pattern Generation (ATPG): Pseudorandom techniques, deterministic test pattern generation
 Test generation algorithms for sequential circuits
 Memory testing
 PLA testing

Learning outcomes:

1. Understand the types and characteristics of the most common faults that occur in digital circuits.

- A.29 -

Computing Curricula - Computer Engineering Appendix A - Body of Knowledge
Final Report 2004 December 12

2. Understand the concept of test coverage, and be able to design a test to achieve high test coverage for stuck-at faults.
3. Understand the role of computer-aided testing tools, including fault simulation and ATPG.
4. Understand basic approaches to testing memory devices and PLAs.

CE-DIG10 Design for testability [elective]

Topics:

 Testability measures (controllability, observability)
 Scan and partial scan design
 BIST and other design for testability techniques
 Boundary scan and the IEEE 1149.1 testability standard
 Ad-hoc methods

Learning outcomes:

1. Understand measures of testability to appreciate what to do to improve testability.
2. Understand scan design and some of the other basic methods used to improve testability in digital circuits.
3. Understand the concept of built-in self test and some of the basic BIST approaches used in digital circuits.

- A.30 -

Computing Curricula - Computer Engineering Appendix A - Body of Knowledge
Final Report 2004 December 12

Discrete Structures (CE-DSC)

CE-DSC0 History and overview
CE-DSC1* Functions, relations, and sets [core]
CE-DSC2* Basic logic [core]
CE-DSC3* Proof techniques [core]
CE-DSC4* Basics of counting [core]
CE-DSC5* Graphs and trees [core]
CE-DSC6* Discrete probability [core]
CE-DSC7* Recursion [elective]

* Consult the CC2001 Report [ACM/IEEECS, 2001] DS Knowledge Area for more detail

CE-DSC0 History and overview [core]
Minimum core coverage time: 1 hour

Topics:

 Knowledge themes include sets, logic, functions, and graphs
 Contributors to the subject
 Purpose and role of discrete structures in computer engineering
 Contrasts between discrete-time models vs. continuous-time models

Learning outcomes:

1. Associate the themes involved with discrete structures.
2. Identify contributors to the subject area.
3. Articulate differences between discrete and continuous models.
4. Describe how computer engineering could make use of discrete structures.

CE-DSC1 Functions, relations, and sets [core]
Minimum core coverage time: 6 hours

Topics:

 Functions (one-to-one, onto, inverses, composition)
 Relations (reflexivity, symmetry, transitivity, equivalence relations)
 Discrete versus continuous functions and relations
 Sets (Venn diagrams, complements, Cartesian products, power sets)
 Cardinality and countability

Learning outcomes:

1. Illustrate by examples the basic terminology of functions, relations, and sets.
2. Illustrate by examples, both discrete and continuous, the operations associated with sets, functions, and relations.
3. Relate practical examples to the appropriate set, function, or relation model, and interpret the associated operations and

terminology in context.
4. Apply functions and relations to problems in a computer engineering setting.

CE-DSC2 Basic logic [core]
Minimum core coverage time: 10 hours

Topics:

 Propositional logic
 Logical connectives
 Truth tables
 Use of logic to illustrate connectives
 Normal forms (conjunctive and disjunctive)
 Predicate logic
 Universal and existential quantification
 Limitations of predicate logic
 Boolean algebra
 Applications of logic to computer engineering

Learning outcomes:

1. Manipulate formal methods of symbolic propositional and predicate logic.
2. Use formal tools of symbolic logic.
3. Demonstrate knowledge of formal logic proofs and logical reasoning through solving problems such as puzzles.
4. Apply logic gates to problems in logic.

- A.31 -

Computing Curricula - Computer Engineering Appendix A - Body of Knowledge
Final Report 2004 December 12

CE-DSC3 Proof techniques [core]
Minimum core coverage time: 6 hours

Topics:

 Notions of implication, converse, inverse, negation, and contradiction
 The structure of formal proofs
 Direct proofs
 Proof by counterexample, contraposition, and contradiction
 Mathematical induction and strong induction

Learning outcomes:

1. Outline basic proofs for theorems using the techniques of proof by contradiction and mathematical induction.
2. Solve problems by different methods of proof.
3. Apply proof techniques to problems in a computer engineering setting.

CE-DSC4 Basics of counting [core]
Minimum core coverage time: 4 hours

Topics:

 Permutations and combinations
 Counting arguments rule of products, rule of sums
 The pigeonhole principle
 Generating functions
 Applications to computer engineering

Learning outcomes:

1. Compute permutations and combinations of a set.
2. Interpret the meaning in the context of a particular counting application.
3. Show the application of the pigeonhole principle.
4. Apply counting principles to problems in a computer engineering setting.

CE-DSC5 Graphs and trees [core]
Minimum core coverage time: 4 hours

Topics:

 Trees
 Undirected graphs
 Directed graphs
 Spanning trees
 Shortest path
 Euler and Hamiltonian cycles
 Traversal strategies

Learning outcomes:

1. Illustrate by example the basic terminology of graph theory.
2. Show some of the properties and special cases of graph principles.
3. Construct models in computing using graphs and trees.
4. Relate graphs and trees to data structures, algorithms, and counting.
5. Apply graphs and trees to problems in a computer engineering setting.

CE-DSC6 Recursion [core]
Minimum core coverage time: 2 hours

Topics:

 Recursive mathematical definitions
 Developing recursive equations
 Solving recursive equations
 Applications of recursion to computer engineering

Learning outcomes:

1. Solve a variety of basic recursive equations.
2. Analyze a problem to create relevant recurrence equations where applicable.
3. Use a problem to identify important counting questions.
4. Relate the ideas of mathematical induction to recursion and recursively defined structures.
5. Apply recursion to problems in a computer engineering setting.

- A.32 -

Computing Curricula - Computer Engineering Appendix A - Body of Knowledge
Final Report 2004 December 12

Digital Signal Processing (CE-DSP)

CE-DSP0 History and overview [core]
CE-DSP1 Theories and concepts [core]
CE-DSP2 Digital spectra analysis [core]
CE-DSP3 Discrete Fourier transform [core]
CE-DSP4 Sampling [core]
CE-DSP5 Transforms [core]
CE-DSP6 Digital filters [core]
CE-DSP7 Discrete time signals [elective]
CE-DSP8 Window functions [elective]
CE-DSP9 Convolution [elective]
CE-DSP10 Audio processing [elective]
CE-DSP11 Image processing [elective]

CE-DSP0 History and overview [core]
Minimum core coverage time: 1 hour

Topics:

 Indicate some reasons for studying digital signal processing and multimedia
 Highlight some people that influenced or contributed to the area of digital signal processing and multimedia
 Indicate some important topic areas such as digital audio, multimedia, wave tables, digital filters, image display, chromatic

and achromatic lighting, and thresholds
 Contrast the meanings of analog and digital signals
 Explain the need for using transforms and why they are different for analog and discrete situations
 Indicate how the subject relates to simple graphics
 Contrast image processing from computer graphics
 Mention some techniques used in transformations such as Fourier, Laplace, and wavelet transforms
 Explore some additional resources associated with digital signal processing and multimedia
 Explain the purpose and role of digital signal processing and multimedia in computer engineering

Learning outcomes:

1. Identify some contributors to digital signal processing and multimedia and relate their achievements to the knowledge area.
2. Know the difference between analog and discrete signals.
3. Articulate the difference between image processing and computer graphics.
4. Indicate some of the characteristics of filters, in particular low- and high-pass filters.
5. Describe how computer engineering uses or benefits from digital signal processing and multimedia.

CE-DSP1 Theories and concepts [core]
Minimum core coverage time: 1 hour

Topics:

 The sampling theorem
 Nyquist frequency
 Aliasing
 Relationship between time and frequency domain
 Principle of causality such as discrete and continuous spectra

Learning outcomes:

1. Describe the sampling theorem
2. Distinguish between a time domain and a frequency domain
3. Contrast examples of discrete spectra and continuous spectra problems

CE-DSP2 Digital spectra analysis [core]
Minimum core coverage time: 1 hour

Topics:

 Spectral views
 Spectrum analysis
 Spectra of periodic signals
 Spectra of the impulse and a square wave
 Filtering
 Interpolation

Learning outcomes:

- A.33 -

Computing Curricula - Computer Engineering Appendix A - Body of Knowledge
Final Report 2004 December 12

1. Describe the spectra of a periodic signal.
2. Contrast between the spectra of an impulse and a square wave.
3. Describe the importance of filtering.

CE-DSP3 Discrete Fourier transform [core]
Minimum core coverage time: 1 hour

Topics:

 Definition of the Discrete Fourier Transform (DFT)
 Relationship between original and transformed domains
 Algorithms of the DFT
 Linear convolutions
 Contrast DFT with the Fourier Transform and the Fast Fourier Transform (FFT)
 Filtering using DFT
 Filtering of long data sequences

Learning outcomes:

1. Explain the purpose of a Fourier transform in signal processing.
2. Describe the advantage of the FFT.
3. Explain the difference between the FFT and the DFT.
4. Understand how the DFT accomplishes filtering.

CE-DSP4 Sampling [core]
Minimum core coverage time: 1 hour

Topics:

 Implications of assumptions of repeated time series
 Group sampling of time signals
 Size of group and how it affects spectra
 Sampled signals
 Periodic signals
 Non-periodic signals
 Spectrograms

Learning outcomes:

1. Describe the advantages and disadvantages of using increased sampling rates.
2. Describe advantages of group sampling of time signals.
3. Contrast how group size affects signal spectra.
4. Indicate some of the advantages of sampling periodic signals.
5. Indicate some of the challenges of sampling non-periodic signals.

CE-DSP5 Transforms [core]
Minimum core coverage time: 4 hours

Topics:

 Concept and properties of the z–transform
 Inverse z–transforms
 Difference equations
 The Discrete Fourier Transform
 The Inverse DFT
 The Fast Fourier Transform Class
 The Inverse FFT method
 Fast Convolution using the FFT
 Power Spectral Density
 Frequency shifting using the FFT
 Filtering using FFT
 Additive Synthesis
 Subtractive Synthesis

Learning outcomes:

1. Understand the concept, properties and uses of the z–transform.
2. Understand the relationship between z–transform and the conformal map
3. Understand the Discrete Fourier transform and its significance.
4. Understand the Fast Fourier transform and its significance.
5. Understand the difference between additive and subtractive synthesis.
6. Understand the role of the FFT in additive and subtractive synthesis.

- A.34 -

Computing Curricula - Computer Engineering Appendix A - Body of Knowledge
Final Report 2004 December 12

CE-DSP6 Digital filters [core]
Minimum core coverage time: 1 hour

Topics:

 Frequency response of discrete – time systems
 Recursive filter design
 Nonrecursive filter design
 Windowing
 FIR filters, frequency and phase response, time domain multi-tap filters, surface acoustic wave filters
 Poles and zeros in the z plane
 IIR filters, frequency and phase response
 Design of IIR Filters

Learning outcomes:

1. Understand frequency selective filters in the z–transform domain.
2. Design digital filters that have specified frequency characteristics.

CE-DSP7 Discrete time signals [elective]
Minimum core coverage time: 4 hours

Topics:

 Representation of signals
 Sampling of signals
 Quantizing
 Aliasing
 Difference Equations

Learning outcomes:

1. Understand the discrete-time representation of signals.
2. Understand errors introduced by sampling and quantizing.

CE-DSP8 Window functions [elective]

Topics :

 Definition of a window function
 Purpose of a window function
 Signal compression and transform properties
 Window functions and their impact on the spectra
 Window functions and the DFT

Learning outcomes:

1. Understand the definition of a window function.
2. Explain why window functions are important to digital signal processing.
3. Explain how window functions improve transform properties.

CE-DSP9 Convolution [elective]

Topics:

 Impulse response
 Convolution integral
 Physically realizable systems
 Graphical methods

Learning outcomes:

1. Use the convolution technique to analyze circuits.
2. Represent convolution using graphical techniques.

CE-DSP10 Audio processing [elective]

Topics:

 Speech coding
 Audio coding and MPEG algorithms
 Speech and audio enhancements

- A.35 -

Computing Curricula - Computer Engineering Appendix A - Body of Knowledge
Final Report 2004 December 12

 Adaptive noise cancellation
 Speech recognition

Learning outcomes:

1. Describe the purpose of speech coding
2. Describe how digital techniques enhance speech and audio signals.
3. Explain how digital techniques cancel noise in audio processing.

CE-DSP11 Image processing [elective]

Topics:

 Analog to digital transformations
 Sampling and image integrity
 Smoothing images and low-pass filters
 Reconstruction and enhancement filtering
 Noise and images
 Spatial frequency

Learning outcomes:

1. Describe how sampling affects image integrity.
2. Explain how low-pass filtering tends to smooth out images.
3. Contrast between reconstruction and enhancement filters.
4. Describe way in which one can minimize image noise.

- A.36 -

Computing Curricula - Computer Engineering Appendix A - Body of Knowledge
Final Report 2004 December 12

Electronics (CE-ELE)

CE-ELE0 History and overview [core]
CE-ELE1 Electronic properties of materials [core]
CE-ELE2 Diodes and diode circuits [core]
CE-ELE3 MOS transistors and biasing [core]
CE-ELE4 MOS logic families [core]
CE-ELE5 Bipolar transistors and logic families [core]
CE-ELE6 Design parameters and issues [core]
CE-ELE7 Storage elements [core]
CE-ELE8 Interfacing logic families and standard buses [core]
CE-ELE9 Operational amplifiers [core]
CE-ELE10 Circuit modeling and simulation [core]
CE-ELE11 Data conversion circuits [elective]
CE-ELE12 Electronic voltage and current sources [elective]
CE-ELE13 Amplifier design [elective]
CE-ELE14 Integrated circuit building blocks [elective]

CE-ELE0 History and overview [core]
Minimum core coverage time: 1 hour

Topics:

 Indicate some reasons for studying electronics
 Highlight some people that influenced or contributed to the area of electronics
 Indicate some important topic areas such as material properties, diodes and transistors, storage elements, interfaces and buses,

operational amplifiers, and circuit simulators
 Contrast the meanings transistors and diodes
 Mention some issues and parameters in electronics design
 Describe the difference between an ordinary amplifier and an operational amplifier
 Mention the importance of data conversion and the circuits for doing the same
 Indicate some circuit simulators and contrast the advantages of each
 Explore some additional resources associated with electronics
 Explain the purpose and role of electronics in computer engineering

Learning outcomes:

1. Identify some contributors to electronics and relate their achievements to the knowledge area.
2. Describe a transistor and its functionality.
3. Identify some storage elements.
4. Articulate the purpose of buses.
5. Indicate the importance of designing data conversion circuits.
6. Identify two software products used for designing and simulating circuits.
7. Describe how computer engineering uses or benefits from electronics.

CE-ELE1 Electronic properties of materials [core]
Minimum core coverage time: 3 hours

Topics:

 Solid-state materials
 Electrons and holes
 Doping, acceptors and donors
 p- and n-type material
 Conductivity and resistivity
 Drift and diffusion currents, mobility and diffusivity

Learning outcomes:

1. Indicate the properties of materials that lead to be useful for the construction of electronic circuits, giving reasons.
2. Explain the uses of one particular material (as opposed to alternatives) to serve a stated purpose.

CE-ELE2 Diodes and diode circuits [core]
Minimum core coverage time: 5 hours

Topics:

 Diode operation and i-v characteristics
 Regions of operation, models, and limitations

- A.37 -

Computing Curricula - Computer Engineering Appendix A - Body of Knowledge
Final Report 2004 December 12

 Schottky, Zener, variable capacitance diodes
 Single diode circuits, the load line
 Multi-diode circuits
 Rectifiers
 dc/dc converters
 Diode logic: AND and OR functions

Learning outcomes:

1. Explain the properties of diodes.
2. Outline the use of diodes in the construction of a range of circuits including rectifiers, ac/dc converters, and common logic

functions.

CE-ELE3 MOS transistors and biasing [core]
Minimum core coverage time: 3 hours

Topics:

 NMOS field-effect transistor operation
 i-v characteristics
 Regions of operation, models, and limitations
 Enhancement and depletion-mode devices
 PMOS devices
 Transfer characteristic of FET with load resistor
 Biasing for logic and amplifier applications

Learning outcomes

1. Indicate the areas of use of NMOS, PMOS, CMOS, and dynamic logic families.
2. Demonstrate the ability to implement a range of logic functions using each of NMOS, PMOS, CMOS, and dynamic logic.

CE-ELE4 MOS logic families [core]
Minimum core coverage time: 7 hours

Topics:

 Logic level definitions
 NMOS logic design: Inverter, NOR, NAND, SOP, POS, complex gates
 PMOS logic
 CMOS logic: Inverter, NOR, NAND, SOP, POS, complex gates
 Dynamic logic
 CVS logic
 Cascade buffers
 NMOS and CMOS power/delay scaling

Learning outcomes

1. Explain the differences between the different MOS logic families.
2. Articulate the advantages of dynamic logic.

CE-ELE5 Bipolar transistors and logic families [core]
Minimum core coverage time: 4 hours

Topics:

 npn and pnp transistor operation
 i-v characteristics
 Regions of operation, models, and limitation
 Transfer characteristic of BJT with load resistor
 Biasing for logic and amplifier applications
 Logic level definitions
 The differential pair as a current switch
 Transistor-transistor logic – inverters, NAND, other functions
 Emitter-coupled logic – OR/NOR gate, other functions
 Low voltage bipolar logic families

Learning outcomes:

1. Indicate the areas of use of bipolar logic families.
2. Demonstrate the ability to implement a range of logic functions using bipolar logic.

- A.38 -

Computing Curricula - Computer Engineering Appendix A - Body of Knowledge
Final Report 2004 December 12

CE-ELE6 Design parameters and issues [core]
Minimum core coverage time: 4 hours

Topics:

 Switching energy, power-delay product comparison,
 Propagation delay, rise time, fall time
 Fan-in and fan-out
 Power dissipation, noise margin
 Power supply distribution
 Sources of signal coupling and degradation
 Transmission line effects; passive, active, dc and ac termination
 Element tolerances
 Worst-case analysis of circuits
 Monte Carlo analysis
 Monte Carlo analysis in SPICE
 Six-sigma design

Learning outcomes:

1. Incorporate design strategies in power distributions and transmission.
2. Apply methods to minimize noise and other signal degradations.

CE-ELE7 Storage elements [core]
Minimum core coverage time: 3 hours

Topics:

 Latches
 Flip-flops
 Static RAM cells
 Dynamic RAM cells
 Sense amplifiers

Learning outcomes:

1. Compare and contrast the properties of different kinds of storage element to serve different purposes.
2. Select (with reasons) appropriate kinds of storage elements for use in a range of possible devices.

CE-ELE8 Interfacing logic families and standard buses [core]
Minimum core coverage time: 3 hours

Topics:

 Terminal characteristics of various logic families
 Standard interface characteristics
 Level translations: TTL/CMOS, TTL/ECL, CMOS/ECL
 Single-ended to differential and differential to single-ended conversion
 Transmission line characteristics, reflections
 Bus termination: Passive, active, dc, ac
 4-20 mA current interfaces
 RS-XXX buses
 IEEE-XXXX buses
 Low-level differential signaling
 RAMBUS
 DDR

Learning outcomes:

1. Explain the practical difficulties resulting from the distribution of signals.
2. Explain ways to overcome these difficulties when interfacing different logic families.

CE-ELE9 Operational amplifiers [core]
Minimum core coverage time: 4 hours

Topics:

 Ideal op-amps and circuit analysis
 Ideal op-amp circuits: Inverting and non-inverting amplifiers, summing amplifier, difference amplifier, integrator, low pass

filter
 Non-ideal op-amps: dc errors, CMRR, input and output resistances, frequency response, output voltage and current

limitations
 Circuits with non-ideal amplifiers

- A.39 -

Computing Curricula - Computer Engineering Appendix A - Body of Knowledge
Final Report 2004 December 12

 Multi-stage op-amp circuits

Learning outcomes:

1. Explain with justification the ideal properties of operational amplifiers.
2. Design various amplifier structures and filters with ideal op-amps.
3. Understand characteristics of non-ideal op-amps.
4. Design simple circuits with them.

CE-ELE10 Circuit modeling and simulation [core]
Minimum core coverage time: 3 hours

Topics:

 DC analysis
 AC analysis
 Transient analysis
 Simulation control options
 Built-in solid-state device models
 Device parameter control
 Libraries
 Mixed-mode simulation

Learning outcomes:

1. Explain with justification the benefits and the drawbacks associated with the simulation of circuits.
2. Identify aspects of circuits that are not readily amenable to simulation.
3. Simulate a range of possible circuits using a suitable software package.

CE-ELE11 Data conversion circuits [elective]

Topics:

 D/A Converters: Definitions such as for codes, LSB, and MSB; linearity, differential linearity, offset and gain errors;
weighted resistor D/A converter; R/2R ladders and D/A converters; weighted current source converters; delta-sigma
converters

 A/D Converters: Definitions such as for codes, LSB, MSB, and missing codes; linearity, differential linearity, offset and gain
errors, missing codes; counting converter; successive approximation; single and dual slope converters; flash converters; delta-
sigma converters

 Sample-and-hold circuits

Learning outcomes:

1. Describe the properties that distinguish particular kinds of converters.
2. Given a range of possible scenarios, select (with justification) a converter appropriate for the scenario.

CE-ELE12 Electronic voltage and current sources [elective]

Topics:

 Electronic voltage sources: ideal voltage source characteristics; voltage references; emitter followers; voltage sources utilizing
operational amplifiers

 Electronic current sources: ideal current source characteristics; transistor current sources; common-emitter, cascode, regulated
cascode circuits; current sources utilizing operational amplifiers

Learning outcomes:

1. Explain the various types of electronic voltage sources.
2. Explain the various types of electronic current sources.

CE-ELE13 Amplifier design [elective]

Topics:

 Characteristics and properties of a linear amplifier: voltage gain, current gain, power gain, dB scale, frequency domain
characteristics, distortion

 Definition of small-signal in diodes and transistors
 Bias circuits for linear amplification, voltage, current, power gain, input/output resistances
 Amplifier configurations: BJT common-emitter, common-base and common-collector; MOSFET common-source, common-

gate, common-drain
 Low frequency response, high frequency device models, high frequency response; short-circuit and open-circuit time constant

techniques
 Multistage transistor amplifiers: ac and dc coupled amplifiers; frequency response

- A.40 -

Computing Curricula - Computer Engineering Appendix A - Body of Knowledge
Final Report 2004 December 12

 Differential pairs such as MOSFET and BJT
 Current sources and biasing; current mirrors; active loads
 Elementary two- and three-stage op-amp circuits
 Classical op-amp input stages

Learning outcomes:

1. Explain the properties of linear amplifiers (as opposed to other kinds of amplifiers) and to identify significant uses.
2. Demonstrate an ability to design and build a range of possible linear amplifiers.

CE-ELE14 Integrated circuit building blocks [elective]

Topics:

 Power circuits: class A output stages; class B and class B push-pull output stages; cross over distortion; class AB amplifiers;
power semiconductor devices; switching (boost and buck) converters

 Active filters: their properties and characteristics
 Continuous time filter: bandwidth, Q; single op-amp active filters; multi op-amp filters; Q and cutoff/center frequency

sensitivity
 Switched capacitor filters
 Oscillators: Barkhausen criteria for oscillation; RC oscillators; LC oscillators Colpitts, Hartley; crystal oscillators;

multivibrators
 Operational amplifiers and circuits; comparators; PTAT circuits; band-gap references; voltage regulators; Gilbert multipliers
 Circuits for wireless applications: noise; noise; passive components; low noise amplifiers; frequency conversion and mixers;

power amplifiers – Class B, Class C

Learning outcomes:

1. Explain the properties and the nature of the common building blocks used to build integrated circuits.
2. Design and assemble integrated circuit building blocks to provide circuits for a range of applications including wireless

applications.

- A.41 -

Computing Curricula - Computer Engineering Appendix A - Body of Knowledge
Final Report 2004 December 12

Embedded Systems (CE-ESY)

CE-ESY0 History and overview [core]
CE-ESY1 Embedded microcontrollers [core]
CE-ESY2 Embedded programs [core]
CE-ESY3 Real-time operating systems [core]
CE-ESY4 Low-power computing [core]
CE-ESY5 Reliable system design [core]
CE-ESY6 Design methodologies [core]
CE-ESY7 Tool support [elective]
CE-ESY8 Embedded multiprocessors [elective]
CE-ESY9 Networked embedded systems [elective]
CE-ESY10 Interfacing and mixed-signal systems [elective]

CE-ESY0 History and overview [core]
Minimum core coverage time: 1 hour

Topics:

 Indicate some reasons for studying embedded systems
 Highlight some people that influenced or contributed to the area of embedded systems
 Indicate some important topic areas such as mapping between language and hardware, classifications, influence of software

engineering, applications and techniques, and tool support
 Contrast between an embedded system and other computer systems
 Mention the role of programming and its associated languages as applied to embedded systems
 Explore some additional resources associated with embedded systems
 Explain the purpose and role of embedded systems in computer engineering

Learning outcomes:

1. Identify some contributors to embedded systems and relate their achievements to the knowledge area.
2. Describe the meaning of an embedded system.
3. Explain the reasons for the importance of embedded systems.
4. Describe the relationship between programming languages and embedded systems..
5. Describe how computer engineering uses or benefits from embedded systems.

CE-ESY1 Embedded microcontrollers [core]
Minimum core coverage time: 6 hours

Topics:

 Structure of a basic computer system: CPU, memory, I/O devices on a bus
 CPU families used in microcontrollers: 4-bit, 8-bit, 16-32-bit
 Basic I/O devices: timers/counters, GPIO, A/D, D/A
 Polled I/O vs. interrupt-driven I/O
 Interrupt structures: vectored and prioritized interrupts
 DMA transfers
 Memory management units
 Memory hierarchies and caches

Learning outcomes:

1. Understand the CPU in the context of a complete system with I/O and memory.
2. Understand how the CPU talks to the outside world through devices.
3. Understand how memory system design (caches, memory management) affect program design and performance.

CE-ESY2 Embedded programs [core]
Minimum core coverage time: 3 hours

Topics:

 The program translation process: compilation, assembly, linking
 Representations of programs: data flow and control flow
 Fundamental concepts of assembly language and linking: labels, address management
 Compilation tasks: mapping variables to memory, managing data structures, translating control structures, and translating

expressions
 What can and cannot be controlled through the compiler; when writing assembly language makes sense

Learning outcomes:

- A.42 -

Computing Curricula - Computer Engineering Appendix A - Body of Knowledge
Final Report 2004 December 12

1. Understand how high-level language programs convert into executable code.
2. Know the capabilities and limits of compilers.
3. Comprehend basic representations of programs used to manipulate programs either in a compiler or by hand.

CE-ESY3 Real-time operating systems [core]
Minimum core coverage time: 3 hours

Topics:

 Context switching mechanisms
 Scheduling policies
 Rate-monotonic scheduling: theory and practice
 Priority inversion
 Other scheduling policies such as EDF
 Message-passing vs. shared memory communication
 Interprocess communication styles such as mailbox and RPC

Learning outcomes:

1. Distinguish RTOSs from workstation/server OS.
2. Distinguish real-time scheduling from traditional OS scheduling.
3. Understand major real-time scheduling policies.
4. Understand interprocess communication mechanisms.

CE-ESY4 Low-power computing [core]
Minimum core coverage time: 2 hours

Topics:

 Sources of energy consumption: toggling, leakage
 Instruction-level strategies for power management: function unit management
 Memory system power consumption: caches, off-chip memory
 Power consumption with multiple processes
 System-level power management: deterministic, probabilistic methods

Learning outcomes:

1. Understand why low-power computing is important.
2. Identify sources of energy consumption.
3. Identify possible remedies for energy consumption at various levels of design abstraction.

CE-ESY5 Reliable system design [core]
Minimum core coverage time: 2 hours

Topics:

 Transient vs. permanent failures in hardware
 Sources of errors from software
 The role of design verification in reliable system design
 Fault-tolerance techniques
 Famous failures of embedded computers

Learning outcomes:

1. Understand the variety of sources of faults in embedded computing systems.
2. Identify strategies to find problems.
3. Identify strategies to minimize the effects of problems.

CE-ESY6 Design methodologies [core]
Minimum core coverage time: 3 hours

Topics:

 Multi-person design projects
 Designing on-time and on-budget
 Design reviews
 Tracking error rates and sources
 Change management

Learning outcomes:

1. Understand why real-world projects are not the same as class projects.
2. Identify important goals of the methodology.

- A.43 -

Computing Curricula - Computer Engineering Appendix A - Body of Knowledge
Final Report 2004 December 12

3. Understand the importance of design tracking and documentation.

CE-ESY7 Tool support [elective]

Topics:

 Compilers and programming environments
 Logic analyzers
 RTOS tools
 Power analysis
 Software management tools
 Project management tools

Learning outcomes:

1. Understand role of hardware and software tools in system development.
2. Understand how to use tools to support the methodology.

CE-ESY8 Embedded multiprocessors [elective]

Topics:

 Importance of multiprocessors as in performance, power, and cost
 Hardware/software partitioning for single-bus systems
 More general architectures
 Platform FPGAs as multiprocessors

Learning outcomes:

1. Understand the use of multiple processors in embedded systems.
2. Identify trade-offs between CPUs and hardwired logic in multiprocessors.
3. Understand basic design techniques.

CE-ESY9 Networked embedded systems [elective]

Topics:

 Why networked embedded systems
 Example networked embedded systems: automobiles, factory automation systems
 The OSI reference model
 Types of network fabrics
 Network performance analysis
 Basic principles of the Internet protocol
 Internet-enabled embedded systems

Learning outcomes:

1. Understand why networks are components of embedded systems.
2. Identify roles of hardware and software in networked embedded systems.
3. Compare networks designed for embedded computing with Internet networking.

CE-ESY10 Interfacing and mixed-signal systems [elective]

Topics:

 Digital-to-analog conversion
 Analog-to-digital conversion
 How to partition analog/digital processing in interfaces
 Digital processing and real-time considerations

Learning outcomes:

1. Understand pros and cons of digital and analog processing in interfaces.
2. Understand fundamentals of A/D and D/A conversion.

- A.44 -

Computing Curricula - Computer Engineering Appendix A - Body of Knowledge
Final Report 2004 December 12

Human-Computer Interaction (CE – HCI)

CE-HCI0 History and overview [core]
CE-HCI1* Foundations of human-computer interaction [core]
CE-HCI2* Graphical user interface [core]
CE-HCI3* I/O technologies [core]
CE-HCI4* Intelligent systems [core]
CE-HCI5* Human-centered software evaluation [elective]
CE-HCI6* Human-centered software development [elective]
CE-HCI7* Interactive graphical user-interface design [elective]
CE-HCI8* Graphical user-interface programming [elective]
CE-HCI9* Graphics and visualization [elective]
CE-HCI10* Multimedia systems [elective]

 * Consult the CC2001 Report [ACM/IEEECS, 2001] HC Knowledge Area for more detail

CE-HCI0 History and overview [core]
Minimum core coverage time: 1 hour

Topics:

 Indicate some reasons for studying human-computer interaction
 Highlight some people that influenced or contributed to the area of human-computer interaction
 Indicate some important HCI considerations such as foundational elements, ergonomic designs, and graphical interfaces
 Contrast ways in which engineering design should reflect human interaction
 Mention some advantages of small-screen designs versus large-screen designs
 Describe how one would evaluate an engineering design vis-à-vis HCI compatibility
 Explore some additional resources associated with human-computer interaction
 Explain the purpose and role of human-computer interaction in computer engineering

Learning outcomes:

1. Identify some contributors to human-computer interaction and relate their achievements to the knowledge area.
2. Define HCI.
3. Explain the reasons for proper HCI designs in engineering.
4. Provide a good reason for having a small-screen graphical user interface.
5. Provide a good reason for having a large-screen graphical user interface.
6. Give an example on how one might evaluate an engineering design using some principles of HCI.
7. Describe how computer engineering uses or benefits from human-computer interaction.

CE-HCI1 Foundations of human-computer interaction [core]
Minimum core coverage time: 2 hours

Topics:

 Motivation: the importance of the human interface in computer engineering; issues of small screens and larger screens
 The range of possibilities: text-based systems, use of graphics, sound, animation, video; the possibilities of multimedia

Strengths and weaknesses of individual approaches
 The web as an example of an interface
 Human-centered development and evaluation
 Human performance models: perception, movement, and cognition; culture, communication, and organizations
 Accommodating human diversity; the role of multimedia
 Principles of good human computer interaction design in the context of computer engineering; engineering tradeoffs
 Introduction to usability testing
 The role of and use of a range of tools

Learning outcomes:

1. Develop a conceptual vocabulary for analyzing human interaction with software: to include terms such as affordance,
conceptual model, and feedback.

2. Summarize the basic science of psychological and social interaction relevant to the development of human computer
interfaces.

3. Differentiate between the role of hypotheses and experimental results recognizing the role of correlations.
4. Distinguish between the different interpretations that a given icon, symbol, word, or color can have in (a) different human

cultures and (b) in the context of human diversity.
5. Create and conduct a simple usability test for an existing software application, taking into account human diversity.

CE-HCI2 Graphical user interface [core]
Minimum core coverage time: 2 hours

- A.45 -

Computing Curricula - Computer Engineering Appendix A - Body of Knowledge
Final Report 2004 December 12

Topics:

 Illustrations of developments of graphical user interfaces including: textual displays; interfaces that include alarms; displays
that exhibit motion; displays that exhibit interaction

 Principles of design using graphical user interfaces (GUIs); principles associated with interaction including fault tolerance
 GUI toolkits
 Principles associated with use of sound and multimedia in different contexts; use of relevant tools
 Principles of design for web interfaces; web interfaces for small screen and mobile devices
 Use of relevant tools

Learning outcomes:

1. Identify several fundamental principles for effective GUI design relevant for different applications in computer engineering.
2. Use a GUI toolkit to create a simple application that supports a graphical user interface.
3. Illustrate the effect of fundamental design principles on the structure of a graphical user interface.
4. Conduct a simple usability test for each instance and compare the results.

CE-HCI3 I/O technologies [core]
Minimum core coverage time: 1 hour

Topics:

 The range of technologies and techniques that can be deployed in intelligent systems: vision, speech processing, specialized
sensors

 Technologies for location aware computing, the role of geographical positioning systems, other possibilities
 Overview of the technologies involved: their strengths and the limitations
 Availability of software support and of relevant tools

Learning outcomes:

1. Recognize contexts in which to deploy the various technologies associated with intelligent systems.
2. Demonstrate an awareness of the capabilities as well as the limitations of the available techniques and technologies.

CE-HCI4 Intelligent systems [core]
Minimum core coverage time: 2 hours

Topics:

 Illustrations of the deployment of intelligent systems in a computer engineering context
 The nature of intelligence deployed and the implications for sensors, for software (the nature of the software, the reliability of

the software, the reasoning, the speed of response)
 The special case of mobile systems and location aware devices; illustrations of applications and benefits
 The problems associated with control passing to an agent and a user losing control as in a safety context
 Ethical issues
 History of artificial intelligence
 Philosophical questions about the nature of intelligence: the Turing test; Searle’s “Chinese Room” thought experiment
 Ethical issues in artificial intelligence; the concepts of the computable and the incomputable
 Fundamental definitions: Optimal vs. human-like reasoning, optimal vs. human-like behavior
 The nature of knowledge and knowledge based systems; consistency and completeness concerns; what is possible
 The issues associated with the ordering of information, the fundamental role of technologies such as search, inference, and the

role of heuristics
 Modeling the world; guidance on effective approaches

- A.46 -

Computing Curricula - Computer Engineering Appendix A - Body of Knowledge
Final Report 2004 December 12

Learning outcomes:

1. For a range of contexts in which intelligent systems are deployed in a computer engineering context, identify the technical
implications for devices, for computing power and for software

2. Identify the potential for the use of intelligent systems in a range of computer engineering equipment
3. Discuss the professional, legal and ethical implications of deploying intelligent systems in a range of computer engineering

situations
4. Describe situations from computer engineering applications when intelligent systems can be relied upon to deliver a required

response
5. Describe situations in which intelligent systems may or may not be reliable enough to deliver a required response, giving

reasons for the answer.
6. Explain the necessity for heuristics in the general context of intelligent systems
7. Differentiate between the concepts of: optimal reasoning and human-like reasoning; of optimal behavior and human-like

behavior.

CE-HCI5 Human-centered software evaluation [elective]

Topics:

 Setting goals for evaluation
 The range of evaluation criteria including learning time, task time, completion time, acceptability; the strengths and

weaknesses of the different criteria
 Evaluation without users: walkthroughs, Keystroke Level Model (KLM), guidelines, and standards
 Evaluation with users: usability testing, interview, survey, experiment

Learning outcomes:

1. Discuss the full range of evaluation criteria appropriate for one of a range of computer engineering applications.
2. Conduct a walkthrough and a Keystroke Level Model analysis.
3. Summarize the features of the major guidelines and standards associated with human-centered software evaluation
4. Evaluate one of a range of existing interactive system with appropriate human-centered criteria and usability, giving reasons

for selection of techniques.

CE-HCI6 Human-centered software development [elective]

Topics:

 General guidelines associated with the structure of large systems that embody significant HCI code; separation of concerns,
issues of maintenance; differing development life cycles

 Approaches, characteristics, and overview of processes associated with human centered software; systems that offer interfaces
in different natural languages

 Functionality and usability: task analysis, interviews, surveys
 Specifying presentation and interaction; techniques and approaches; software support
 Prototyping techniques and tools: Paper storyboards; inheritance and dynamic dispatch; prototyping languages and GUI

builders
 Quality considerations
 Standards and guidelines

Learning outcomes:

1. Explain the basic types and features of human-centered software development.
2. Indicate three functional and three usability requirements that may be useful in developing human-centered software.
3. Specify an interactive object using one of the common methods as well as appropriate standards or guidelines.
4. Demonstrate the application of guidelines and fundamental principles in developing one of a range of possible computer

engineering applications that rely on a human computer interface.

CE-HCI7 Interactive graphical user-interface design [elective]

Topics:

 Choosing interaction styles and interaction techniques appropriate to applications
 HCI aspects of common widgets
 HCI aspects of screen design: layout, color, fonts, and labeling
 Handling human failure
 Beyond simple screen design: visualization, representation, metaphor
 Interfaces for computer engineering tools that utilize databases
 Multi-modal interaction: graphics, sound, and haptics
 3D interaction and virtual reality

Learning outcomes:

1. Summarize common interaction styles.

- A.47 -

Computing Curricula - Computer Engineering Appendix A - Body of Knowledge
Final Report 2004 December 12

2. Explain good design principles of each of the following: common widgets; sequenced screen presentations; simple error-trap
dialog; a user manual.

3. Design, prototype, and evaluate a simple 2D GUI
4. Discuss the challenges that exist in moving from 2D to 3D interaction.

CE-HCI8 Graphical user-interface programming [elective]

Topics:

 User interface management systems: different approaches; responsibilities of the application and of the application
 Kernel based and client server models for the user interface
 Dialogue independence and levels of analysis, Seeheim model
 Widget classes; aggregation of widgets
 Event management and user interaction
 Geometry management, constraint based approaches
 GUI builders and user interface programming environments; callbacks and their role in GUI builders
 Cross-platform design

Learning outcomes:

1. Compare the event-driven paradigm with more traditional procedural control for the user interface
2. Identify common differences as well as similarities in cross-platform user interface design.
3. Demonstrate an ability to outline an approach to interface design for a computer engineering application that utilizes an

appropriately chosen selection of technologies from event management, widgets, geometry management, and GUI builders.

CE-HCI9 Graphics and visualization [elective]

Topics:

 Computer graphics: Design of models that represent information and support the creation and viewing of images; possibilities
to include two dimensions, three dimensions, shading, animation; graphical display devices; packages that support graphical
design

 Visualization: Nature of computer visualization; the role of visualization in communicating information in a dataset to an
interested party; use of tools to accomplish this

 Virtual reality: Nature of and benefit of virtual reality; its limitations; components of a typical virtual reality situation, e.g.
graphics, sound; the nature of interaction with a user; virtual environments

 Computer vision: Role in deducing properties and the structure of a three dimensional world from one or more two
dimensional images; tools used for this and their role in computer engineering

Learning outcomes:

1. Understand the nature of graphical design and implement a simple graphical activity using a standard software package.
2. Appreciate the role of visualization technologies and demonstrate them through the development of a simple application.
3. Appreciate the benefits of virtual reality and the nature of the advantages this offers.
4. Demonstrate a simple application of computer vision technology in a computer engineering context.

CE-HCI10 Multimedia systems [elective]

Topics:

 The use of multi-media in computer engineering applications; the benefit, especially in reinforcement and in a context of
human diversity

 The implications of performance requirements associated with multi-media for the hardware, the software and
communications aspects of computer based systems

 Considerations resulting from interaction of various kinds
 Design concerns associated with the development of multi-media interfaces
 Implementation issues; synchronization aspects, tools
 Quality considerations
 Guidelines and standards

Learning outcomes:

1. Select system components which are suitable for the realization of multi-media interfaces of high quality
2. Design and develop a multi-media interface for a simple computer engineering application.

- A.48 -

Computing Curricula - Computer Engineering Appendix A - Body of Knowledge
Final Report 2004 December 12

Computer Networks (CE-NWK)

CE-NWK0 History and overview [core]
CE-NWK1 Communications network architecture [core]
CE-NWK2 Communications network protocols [core]
CE-NWK3 Local and wide area networks [core]
CE-NWK4 Client-server computing [core]
CE-NWK5 Data security and integrity [core]
CE-NWK8 Wireless and mobile computing [core]
CE-NWK6 Performance evaluation [elective]
CE-NWK7 Data communications [elective]
CE-NWK9 Network management [elective]
CE-NWK10 Compression and decompression [elective]

CE-NWK0 History and overview [core]
Minimum core coverage time: 1 hour

Topics:

 Indicate some reasons for studying networks
 Highlight some people that influenced or contributed to the area of networks
 Indicate some important topic areas such as network architectures and protocols, network types (LAN, WAN, MAN, and

wireless), data security, data integrity, and network performance
 Describe some of the hardware and software components of networks
 Describe the operation of some network devices such as repeaters, bridges, switches, routers, and gateways
 Indicate some network topologies such as mesh, star, tree, bus, and ring
 Describe the purpose of network protocols
 Mention some popular protocols
 Explore some additional resources associated with networks
 Explain the purpose and role of networks in computer engineering

Learning outcomes:

1. Identify some contributors to networks and relate their achievements to the knowledge area.
2. Identify some components of a network.
3. Name some network devices and describe their purpose.
4. Describe advantages of a star topology over a ring topology.
5. Describe advantages of a ring topology over a star topology.
6. Define the meaning of a protocol.
7. Explain the importance of security when dealing with networks.
8. Describe how computer engineering uses or benefits from networks.

CE-NWK1 Communications network architecture [core]
Minimum core coverage time: 3 hours

Topics:

 Network line configuration (point-to-point, multipoint)
 Networking and internetworking devices: Repeaters, bridges, switches, routers, gateways
 Network Topologies (mesh, star, tree, bus, ring)
 Connection-oriented and connectionless services

Learning outcomes:

1. Understand fundamental concepts of networks and their topologies.
2. Understand the concept of network architecture and its hardware components.

CE-NWK2 Communications network protocols [core]
Minimum core coverage time: 4 hours

Topics:

 Network protocol (syntax, semantics, timing)
 Protocol suites (TCP/IP)
 Layered protocol software (stacks): Physical layer networking concepts; data link layer concepts; internetworking and routing
 Network Standards and standardization bodies

Learning outcomes:

1. Demonstrate understanding of the elements of a protocol, and the concept of layering.
2. Recognize the importance of networking standards, and their regulatory committees.

- A.49 -

Computing Curricula - Computer Engineering Appendix A - Body of Knowledge
Final Report 2004 December 12

3. Describe the seven layers of the OSI model.
4. Compare and contrast the OSI model with the TCP/IP model.
5. Demonstrate understanding of the differences between circuit switching and packet switching.

CE-NWK3 Local and wide area networks [core]
Minimum core coverage time: 4 hours

Topics:

 LAN topologies (bus, ring, star)
 LAN technologies (Ethernet, token Ring, Gigabit Ethernet)
 Error detection and correction
 Carrier sense multiple access networks (CSMA)
 Large networks and wide areas
 Circuit switching and packet switching
 Protocols (addressing, congestion control, virtual circuits, quality of service)

Learning outcomes:

1. Understand the basic concepts of LAN and WAN technologies and topologies.
2. Demonstrate understanding of different components and requirements of network protocols.
3. Demonstrate understanding of basic concepts of error detection and correction at the data link layer and below.
4. Design and build a simple network by implementing (and designing) a simple network protocol that operates at the physical

and data link layers of the OSI model.

CE-NWK4 Client-server computing [core]
Minimum core coverage time: 3 hours

Topics:

 Web technologies: Server-side programs; common gateway interface (CGI) programs; client-side scripts; The applet concept
 Characteristics of web servers: Handling permissions; file management; capabilities of common server architectures
 Support tools for web site creation and web management

Learning outcomes:

1. Explain the different roles and responsibilities of clients and servers for a range of possible applications.
2. Select a range of tools that will ensure an efficient approach to implementing various client-server possibilities.
3. Design and build a simple interactive web-based application (e.g., a simple web form that collects information from the client

and stores it in a file on the server).

CE-NWK5 Data security and integrity [core]
Minimum core coverage time: 4 hours

Topics:

 Fundamentals of secure networks; cryptography
 Encryption and privacy: Public key, private key, symmetric key
 Authentication protocols
 Packet filtering
 Firewalls
 Virtual private networks
 Transport layer security

Learning outcomes:

1. Understand common barriers to network security and the major issues involved in implementing proper security measures.
2. Describe the purpose of encryption and the function of public and private keys.
3. Compare and contrast the various types of firewalls.
4. Generate and distribute a PGP key pair and use the PGP package to send an encrypted e-mail message.
5. Explain the concept of and necessity for transport layer security.

CE-NWK6 Wireless and mobile computing [core]
Minimum core coverage time: 2 hours

Topics:

 Overview of the history, evolution, and compatibility of wireless standards
 The special problems of wireless and mobile computing
 Wireless local area networks and satellite-based networks
 Mobile Internet protocol
 Mobile aware adaptation

- A.50 -

Computing Curricula - Computer Engineering Appendix A - Body of Knowledge
Final Report 2004 December 12

 Extending the client-server model to accommodate mobility
 Mobile data access: server data dissemination and client cache management
 The software packages to support mobile and wireless computing
 The role of middleware and support tools
 Performance issues
 Emerging technologies

Learning outcomes:

1. Describe the main characteristics of mobile IP and explain how differs from IP with regard to mobility management and
location management as well as performance.

2. Illustrate (with home agents and foreign agents) how e-mail and other traffic is routed using mobile IP.
3. Be aware of the many areas of interest that lie within this area, including networking, multimedia, wireless, and mobile

computing, and distributed computing.

CE-NWK7 Performance evaluation [elective]

Topics:

 Privacy and public networks
 Virtual private networks
 Service paradigms: connection-oriented service; connectionless service; network performance characteristics; delay,

throughput

Learning outcomes:

1. Define performance metrics.
2. Describe how each affects a particular network and/or service paradigm.

CE-NWK8 Data communications [elective]

Topics:

 Encoding and modulating: A/D and D/A conversion
 Interfaces and modems
 Transmission media
 Multiplexing
 Error detection and correction

Learning outcomes:

1. Demonstrate understanding of the fundamental concepts of data communications.
2. Understand signals and signal encoding methods to communication service methods and data transmission modes.

CE-NWK9 Network management [elective]

Topics:

 Overview of the issues of network management
 Use of passwords and access control mechanisms
 Domain names and name services
 Issues for Internet service providers (ISPs)
 Security issues and firewalls
 Quality of service issues: performance, failure recovery

Learning outcomes:

1. Explain the issues for network management arising from a range of security threats, including viruses, worms, Trojan horses,
and denial-of-service attacks

2. Summarize the strengths and weaknesses associated with different approaches to security.
3. Develop a strategy for ensuring appropriate levels of security in a system designed for a particular purpose.
4. Implement a network firewall.

CE-NWK10 Compression and decompression [elective]

Topics:

 Analog and digital representations
 Encoding and decoding algorithms
 Lossless and lossy compression
 Data compression: Huffman coding and the Ziv-Lempel algorithm
 Audio compression and decompression
 Image compression and decompression

- A.51 -

Computing Curricula - Computer Engineering Appendix A - Body of Knowledge
Final Report 2004 December 12

 Video compression and decompression
 Performance issues: timing, compression factor, suitability for real-time use

Learning outcomes:

1. Summarize the basic characteristics of sampling and quantization for digital representation.
2. Select, giving reasons that are sensitive to the specific application and particular circumstances, the most appropriate

compression techniques for text, audio, image, and video information.
3. Explain the asymmetric property of compression and decompression algorithms.
4. Illustrate the concept of run-length encoding.
5. Illustrate how a program like the UNIX compress utility, which uses Huffman coding and the Ziv-Lempel algorithm, would

compress a typical text file.

- A.52 -

Computing Curricula - Computer Engineering Appendix A - Body of Knowledge
Final Report 2004 December 12

Operating Systems (CE-OPS)

CE-OPS0 History and overview [core]
CE-OPS1* Design principles [core]
CE-OPS2* Concurrency [core]
CE-OPS3* Scheduling and dispatch [core]
CE-OPS4* Memory management [core]
CE-OPS5* Device management [elective]
CE-OPS6* Security and protection [elective]
CE-OPS7* File systems [elective]
CE-OPS8* System performance evaluation [elective]

* Consult the CC2001 Report [ACM/IEEECS, 2001] OS Knowledge Area for more detail

CE-OPS0 History and overview [core]
Minimum core coverage time: 1 hour

Topics:

 Indicate some reasons for studying operating systems
 Highlight some people that influenced or contributed to the area of operating systems
 Indicate some important topic areas such as function and design, concurrency, scheduling, dispatch, memory management,

device management, file systems, security, and protection
 Describe the purpose of an operating system
 Indicate the meaning of an interrupt
 Describe the meaning of concurrency and the reasons for its importance
 Illustrate the manner in which scheduling and dispatch take place in a computer through its operating system
 Describe the manner and importance of memory management
 Describe the manner and importance of device management
 Explore some additional resources associated with operating systems
 Explain the purpose and role of operating systems in computer engineering

Learning outcomes:

1. Identify some contributors to operating systems and relate their achievements to the knowledge area.
2. Provide some reasons for a computer to have an operating system.
3. Describe concurrency and reasons for its importance.
4. Describe scheduling and illustrate how it works to improve computer performance.
5. Sketch an example of how and why a compute would need to manage memory.
6. Identify some devices an operating system would manage.
7. Describe how computer engineering uses or benefits from operating systems.

CE-OPS1 Design principles [core]
Minimum core coverage time: 5 hours

Topics:

 Functionality of a typical operating system
 Mechanisms to support client-server models, hand-held devices
 Design issues (efficiency, robustness, flexibility, portability, security, compatibility)
 Influences of security, networking, multimedia, windows
 Structuring methods (monolithic, layered, modular, micro-kernel models)
 Abstractions, processes, and resources
 Concepts of application program interfaces (APIs) specific to operating systems
 Applications needs and the evolution of hardware/software techniques
 Device organization
 Interrupts: methods and implementations
 Concept of user/system state and protection, transition to kernel mode

Learning outcomes:

1. Demonstrate understanding of Operating Systems as an interface between user programs and the computer hardware.
2. Demonstrate understanding of the logical layers and the benefits of building these layers in a hierarchical fashion.
3. Relate system state to user protection.
4. Explain the range of requirements that a modern operating system has to address.
5. Define the functionality that a modern operating system must deliver to meet a particular need.
6. Articulate design tradeoffs inherent in operating system design.

- A.53 -

Computing Curricula - Computer Engineering Appendix A - Body of Knowledge
Final Report 2004 December 12

CE-OPS2 Concurrency [core]
Minimum core coverage time: 6 hours

Topics:

 States and state diagrams
 Structures (ready list, process control blocks, and so forth)
 Dispatching and context switching
 The role of interrupts
 Concurrent execution: advantages and disadvantages
 The “mutual exclusion” problem and some solutions
 Deadlock: causes, conditions, prevention
 Models and mechanisms (semaphores, monitors, condition variables, rendezvous)
 Producer-consumer problems and synchronization
 Multiprocessor issues (spin-locks, reentrancy)

Learning outcomes:

1. Justify the presence of concurrency within the framework of an operating system.
2. Demonstrate the potential run-time problems arising from the concurrent operation of many (possibly a dynamic number of)

tasks.
3. Summarize the range of mechanisms (at an operating system level) that are useful to realize concurrent systems and be able to

describe the benefits of each.
4. Explain the different states that a task may pass through and the data structures needed to support the management of many

tasks.

CE-OPS3 Scheduling and dispatch [core]
Minimum core coverage time: 3 hours

Topics:

 Preemptive and non-preemptive scheduling
 Schedulers and policies
 Processes and threads
 Deadlines and real-time issues

Learning outcomes:

1. Compare and contrast the common algorithms used for both preemptive and non-preemptive scheduling of tasks in operating
systems.

2. Describe relationships between scheduling algorithms and application domains.
3. Investigate the wider applicability of scheduling in such contexts as disk I/O, networking scheduling, and project scheduling.

CE-OPS4 Memory management [core]
Minimum core coverage time: 5 hours

Topics:

 Review of physical memory and memory management hardware
 Overlays, swapping, and partitions
 Paging and segmentation
 Placement and replacement policies
 Working sets and thrashing
 Caching

Learning outcomes:

1. Introduce memory hierarchy and cost-performance tradeoffs.
2. Explain virtual memory and its realization in hardware and software.
3. Examine the wider applicability and relevance of the concepts of virtual entity and of caching.
4. Evaluate the trade-offs in terms of memory size (main memory, cache memory, auxiliary memory) and processor speed.
5. Defend the different ways of allocating memory to tasks based on the relative merits of each.

CE-OPS5 Device management [elective]

Topics:

 Characteristics of serial and parallel devices
 Abstracting device differences
 Buffering strategies
 Direct memory access
 Recovery from failures

- A.54 -

Computing Curricula - Computer Engineering Appendix A - Body of Knowledge
Final Report 2004 December 12

Learning outcomes:

1. Identify the relationship between the physical hardware and the virtual devices maintained by the operating system.
2. Differentiate the mechanisms used in interfacing a range of devices (including hand-held devices, networks, multimedia) to a

computer and explain the implications of these for the design of an operating system.
3. Implement a simple device driver for a range of possible devices.

CE-OPS6 Security and protection [elective]

Topics:

 Overview of system security
 Policy/mechanism separation
 Security methods and devices
 Protection, access, and authentication
 Models of protection
 Memory protection
 Encryption
 Recovery management

Learning outcomes:

1. Defend the need for protection and security, and the role of ethical considerations in computer use.
2. Summarize the features of an operating system used to provide protection and security, and describe the limitations of each of

these.
3. Compare and contrast current methods for implementing security.

CE-OPS7 File systems [elective]

Topics:

 Files: data, metadata, operations, organization, buffering, sequential, nonsequential
 Directories: contents and structure
 File systems: partitioning, mount/unmount, and virtual file systems
 Standard implementation techniques
 Memory-mapped files
 Special-purpose file systems
 Naming, searching, access, backups

Learning outcomes:

1. Summarize the full range of considerations that support file systems.
2. Compare and contrast different approaches to file organization, recognizing the strengths and weaknesses of each.

CE-OPS8 System performance evaluation [elective]

Topics:

 Why and what system performance needs to be evaluated
 Policies for caching, paging, scheduling, memory management, security, and so forth
 Evaluation models: deterministic, analytic, simulation, or implementation-specific
 How to collect evaluation data (profiling and tracing mechanisms)

Learning outcomes:

1. Describe the performance metrics used to determine how a system performs.
2. Explain the main evaluation models used to evaluate a system.

- A.55 -

Computing Curricula - Computer Engineering Appendix A - Body of Knowledge
Final Report 2004 December 12

Programming Fundamentals (CE-PRF)

CE-PRF0 History and overview [core]
CE-PRF1* Programming paradigms [core]
CE-PRF2* Programming constructs [core]
CE-PRF3* Algorithms and problem-solving [core]
CE-PRF4* Data structures [core]
CE-PRF5* Recursion [core]
CE-PRF6* Object-oriented programming [elective]
CE-PRF7* Event-driven and concurrent programming [elective]
CE-PRF8* Using APIs [elective]

* Consult the CC2001 Report [ACM/IEEECS, 2001] PF Knowledge Area for more detail ail

CE-PRF0 History and overview [core]
Minimum core coverage time: 1 hour

Topics:

 Indicate some reasons for studying programming fundamentals
 Highlight some people that influenced or contributed to the area of programming fundamentals
 Indicate some important topic areas such as programming constructs, algorithms, problem solving, data structures,

programming paradigms, recursion, object-oriented programming, event-driven programming, and concurrent programming
 Contrast between an algorithm and a data structure
 Distinguish between a variable, type, expression, and assignment
 Highlight the role of algorithms in solving problems
 Describe some of the fundamental data structures such as array, record, stack, and queue
 Explain the various programming paradigms such as procedural, functional, logic, and object oriented
 Explain how divide-and-conquer strategies lend themselves to recursion
 Explore some additional resources associated with programming fundamentals
 Explain the purpose and role of programming fundamentals in computer engineering

Learning outcomes:

1. Identify some contributors to programming fundamentals and relate their achievements to the knowledge area.
2. Define the meaning of algorithm and data structure.
3. Know the reasons that a way to solve problems is by using algorithms.
4. Distinguish the difference between a stack and a queue.
5. Identify the difference between various programming paradigms.
6. Explain recursion and the way it works.
7. Describe how computer engineering uses or benefits from programming fundamentals.

CE-PRF1 Programming paradigms [core]
Minimum core coverage time: 5 hours

Topics:

 Procedural programming
 Functional programming
 Object-oriented design
 Encapsulation and information-hiding
 Separation of behavior and implementation
 Classes, subclasses, and inheritance
 Event-Driven programming

Learning outcomes:

1. Identify the paradigm used by pseudo-code snippets.
2. Identify the appropriate paradigm for a given programming problem.

CE-PRF2 Programming constructs [core]
Minimum core coverage time: 7 hours

Topics:

 Basic syntax and semantics of a high-level language
 Variables, types, expressions, and assignment
 Simple I/O
 Conditional and iterative control structures
 Functions and parameter passing

- A.56 -

Computing Curricula - Computer Engineering Appendix A - Body of Knowledge
Final Report 2004 December 12

Learning outcomes:

1. Analyze and explain the behavior of simple programs involving the fundamental programming constructs covered by this
unit.

2. Write a program that uses each of the following fundamental programming constructs: basic computation, simple I/O,
standard conditional and iterative structures, and the definition of procedures and functions.

CE-PRF3 Algorithms and problem-solving [core]
Minimum core coverage time: 8 hours

Topics:

 Problem-solving strategies
 The role of algorithms in the problem-solving process
 Implementation strategies for algorithms
 Debugging strategies
 The concept and properties of algorithms
 Structured decomposition

Learning outcomes:

1. Define the basic properties of an algorithm.
2. Develop algorithms for solving simple problems.
3. Use a suitable programming language to implement, test, and debug algorithms for solving simple problems.
4. Apply the techniques of structured decomposition to break a program into smaller pieces.

CE-PRF4 Data structures [core]
Minimum core coverage time: 13 hours

Topics:

 Primitive types
 Arrays
 Records
 Strings and string processing
 Data representation in memory
 Static, stack, and heap allocation
 Runtime storage management
 Pointers and references
 Linked structures
 Implementation strategies for stacks, queues, and hash tables
 Implementation strategies for graphs and trees
 Strategies for choosing the right data structure

Learning outcomes:

1. Identify data structures useful to represent specific types of information and discuss the tradeoffs among the different
possibilities.

2. Write programs that use each of the following data structures: arrays, records, strings, linked lists, stacks, queues, and hash
tables.

3. Describe the way a computer allocates and represents these data structures in memory.

CE-PRF5 Recursion [core]
Minimum core coverage time: 5 hours

Topics:

 The concept of recursion
 Recursive mathematical functions
 Divide-and-conquer strategies
 Recursive backtracking
 Implementation of recursion

Learning outcomes:

1. Explain the concept of recursion.
2. Explain the structure of the divide-and-conquer approach.
3. Write, test, and debug simple recursive functions and procedures.
4. Describe how recursion can be implemented using a stack.

- A.57 -

Computing Curricula - Computer Engineering Appendix A - Body of Knowledge
Final Report 2004 December 12

CE-PRF6 Object-oriented programming [elective]

Topics:

 Polymorphism
 Class hierarchies
 Collection classes and iteration protocols
 Fundamental design patterns

Learning outcomes:

1. Outline the philosophy of object-oriented design and the concepts of encapsulation, subclassing, inheritance, and
polymorphism.

2. Design, code, test, and debug simple programs in an object-oriented programming language.
3. Select and apply appropriate design patterns in the construction of an object-oriented application.

CE-PRF7 Event-driven and concurrent programming [elective]

Topics:

 Event-handling methods
 Event propagation
 Managing concurrency in event handling
 Exception handling

Learning outcomes:

1. Design, code, test, and debug simple event-driven programs that respond to user events.
2. Defend the need for concurrency control and describe at least one method for implementing it.
3. Develop code that responds to exception conditions raised during execution.

CE-PRF8 Using APIs [elective]

Topics:

 API programming
 Class browsers and related tools
 Programming by example
 Debugging in the API environment
 Component-based computing
 Middleware

Learning outcomes:

1. Explain the value of application programming interfaces (APIs) in software development.
2. Design, write, test, and debug programs that use large-scale API packages.

- A.58 -

Computing Curricula - Computer Engineering Appendix A - Body of Knowledge
Final Report 2004 December 12

Probability and Statistics (CE-PRS)

CE-PRS0 History and overview [core]
CE-PRS1 Discrete probability [core]
CE-PRS2 Continuous probability [core]
CE-PRS3 Expectation [core]
CE-PRS4 Stochastic processes [core]
CE-PRS5 Sampling distributions [core]
CE-PRS6 Estimation [core]
CE-PRS7 Hypothesis tests [core]
CE-PRS8 Correlation and regression [elective]

CE-PRS0 History and overview [core]
Minimum core coverage time: 1 hour

Topics:

 Indicate some reasons for studying probability and statistics
 Highlight some people that influenced or contributed to the area of probability and statistics
 Indicate some important topic areas such as discrete probability, continuous probability, expectation, sampling, estimations,

stochastic process, correlation, and regression
 Describe the meaning of discrete probability
 Describe the meaning of continuous probability
 Contrast discrete from continuous probability
 Provide a context for considering probabilistic expectation
 Indicate the reason for using sampling distributions
 Define a stochastic process
 Mention the need for considering stochastic processes
 Describe the need for probabilistic estimation in computer engineering
 Highlight the importance of correlation
 Provide examples for using regression
 Explore some additional resources associated with probability and statistics
 Explain the purpose and role of probability and statistics in computer engineering

Learning outcomes:

1. Identify some contributors to probability and statistics and relate their achievements to the knowledge area.
2. Contrast the difference between probability and statistics.
3. Give some examples for using probability and statistics.
4. Contrast the difference between discrete and continuous probability.
5. Identify some discrete and continuous probability distributions.
6. Articulate the importance of estimation.
7. Identify the meaning of correlation.
8. Identify the meaning of regression.
9. Describe how computer engineering uses or benefits from probability and statistics.

CE-PRS1 Discrete probability [core]
Minimum core coverage time: 6 hours

Topics:

 Randomness, finite probability space, probability measure, events
 Conditional probability, independence, Bayes’ theorem
 Discrete random variables
 Binomial, Poisson, geometric distributions
 Mean and variance: concepts, significance, computations, applications
 Integer random variables

Learning outcomes:

1. Calculate probabilities of events and expectations of random variables for elementary problems such as games of chance.
2. Differentiate between dependent and independent events.
3. Apply binomial theorem to independent events and Bayes’ theorem to dependent events.
4. Apply the tools of probability to solve problems such as in the Monte Carlo method, the average case analysis of algorithms and hashing.

CE-PRS2 Continuous probability [core]
Minimum core coverage time: 6 hours

Topics:

- A.59 -

Computing Curricula - Computer Engineering Appendix A - Body of Knowledge
Final Report 2004 December 12

 Continuous random variables, the nature of these, illustrations of use
 Exponential and normal distribution: probability density functions, calculation of mean and variance
 The central limit theorem and the implications for the normal distribution
 Joint distribution

Learning outcomes:

1. Recognize situations in which it is appropriate to consider the relevance of the normal distribution and/or the exponential distribution.
2. Calculate the mean and the variance for given distributions involving continuous random variables.

CE-PRS3 Expectation [core]
Minimum core coverage time: 4 hours

Topics:

 Moments, transform methods, mean time to failure
 Conditional expectation, examples
 Imperfect fault coverage and reliability

Learning outcomes:

1. Understand the significance and be able to compute expectation of functions of more than one variable and transform.
2. Compute fault coverage and reliability in simple hardware and software applications.

CE-PRS4 Stochastic processes [core]
Minimum core coverage time: 6 hours

Topics:

 Introduction: Bernoulli and Poisson processes, renewal process, renewal model of program behavior
 Discrete parameter Markov chains: transition probabilities, limiting distributions
 Queuing: M/M1 and M/G/1, birth and death process
 Finite Markov chains, program execution times

Learning outcomes:

1. Become familiar with the concepts and tools to manipulate stochastic processes.
2. Apply the concepts and tools of stochastic processes to analyze the performance of simple hardware and software systems.

CE-PRS5 Sampling distributions [core]
Minimum core coverage time: 4 hours

Topics:

 Purpose and the nature of sampling, its uses and applications
 Random approaches to sampling: basic method, stratified sampling and variants thereof, cluster sampling
 Non-random approaches: purposive methods, sequential sampling
 Data analysis; tools; graphical and numerical summaries
 Multivariate distributions, independent random variables

Learning outcomes:

1. Recognize situations in which the different approaches to sampling are relevant.
2. Demonstrate the ability to apply appropriate sampling methods in a range of situations.

CE-PRS6 Estimation [core]
Minimum core coverage time: 4 hours

Topics:

 Nature of estimates: point estimates, interval estimates
 Criteria to be applied to single point estimators: unbiased estimators, consistent estimators, efficiency and sufficiency of estimators
 Maximum likelihood principle approach, least squares approach; applicability conditions for these
 Confidence intervals
 Estimates for one or two samples

Learning outcomes:

1. Describe the fundamental principles behind the concept of estimation and give examples that illustrate its beneficial application.
2. Given a distribution, apply basic principles to derive estimators that exhibit desirable properties.

CE-PRS7 Hypothesis tests [core]
Minimum core coverage time: 2 hours

- A.60 -

Computing Curricula - Computer Engineering Appendix A - Body of Knowledge
Final Report 2004 December 12

Topics:

 Development of models and associated hypotheses, the nature of these
 Hypothesis formulation: null and alternate hypotheses
 Testing hypothesis based on a single parameter, choice of test statistic; choice of samples and distributions
 Criteria for acceptance of hypothesis
 t-test, chi-squared test; applicability criteria for these

Learning outcomes:

1. Explain the role of hypothesis testing, describing the main steps in the process.
2. Given a sample situation, formulate a hypothesis and carry out appropriate tests to check its acceptability.

CE-PRS8 Correlation and regression [elective]

Topics:

 The nature of correlation and regression, definitions
 Definition and calculation of correlation coefficients
 Approaches to correlation: the linear model approach, the least squares fitting approach, strengths and weaknesses of these and

conditions for applicability

Learning outcomes:

1. Recognize circumstances under which it is appropriate to investigate relationships between variables.
2. Given a suitable circumstance, apply correlation and regression techniques with a view to establishing relationships between variables.

- A.61 -

Computing Curricula - Computer Engineering Appendix A - Body of Knowledge
Final Report 2004 December 12

Social and Professional Issues (CE-SPR)

CE-SPR0 History and overview [core]
CE-SPR1* Public policy [core]
CE-SPR2* Methods and tools of analysis [core]
CE-SPR3* Professional and ethical responsibilities [core]
CE-SPR4* Risks and liabilities [core]
CE-SPR5* Intellectual property [core]
CE-SPR6* Privacy and civil liberties [core]
CE-SPR7* Computer crime [elective]
CE-SPR8* Economic issues in computing [core]
CE-SPR9* Philosophical frameworks [elective]

* Consult the CC2001 Report [ACM/IEEECS, 2001] SP Knowledge Area for more detail

CE-SPR0 History and overview [core]
Minimum core coverage time: 1 hour

Topics:

 Indicate some reasons for studying social and professional issues
 Highlight some people that influenced or contributed to the area of social and professional issues
 Indicate some important topic areas such social context of computing, professional and ethical responsibilities, risks and

trade-offs, intellectual property, privacy, and codes of ethics and professional conduct
 Contrast between what is legal to what is ethical
 Explain the importance of ethical integrity in the practice of computer engineering
 Mention some ways a computer engineer may have to make conflicting ethical choices in practicing the engineering

profession
 Explain the meaning of whistle blowing and the dilemma it sometimes places on computer engineers
 Explain professionalism relative to a practicing engineer
 Show that credentialing preserves the integrity of a professional
 Describe risk and its contrast with safety
 Explain the difference between a patent and a copyright
 Describe how privacy issues affect the practice of computer engineering
 Explore some additional resources associated with social and professional issues
 Explain the purpose and role of social and professional issues in computer engineering

Learning outcomes:

1. Identify some contributors to social and professional issues and relate their achievements to the knowledge area.
2. Contrast between ethical and legal issues.
3. Contrast between a patent and a copyright.
4. Identify some ways of credentialing a person to practice computer engineering.
5. Describe issues that contrast risk issues with safety issues.
6. Identify some issues in computer engineering that address privacy.
7. Describe whistle blowing and the conflicts between ethics and practice that may result from doing so.
8. Describe how computer engineering uses or benefits from social and professional issues.

CE-SPR1 Public policy [core]
Minimum core coverage time: 2 hours

Topics:

 Introduction to the social implications of computing
 Social implications of networked communication
 Growth of, control of, and access to the Internet
 Gender-related issues
 International issues

Learning outcomes:

1. Interpret the social context of a particular implementation.
2. Identify assumptions and values embedded in a particular design.
3. Evaluate a particular implementation using empirical data.
4. Describe positive and negative ways in which computing altars the modes of interaction between people.
5. Explain why computing/network access is restricted in some countries.

CE-SPR2 Methods and tools of analysis [core]
Minimum core coverage time: 2 hours

- A.62 -

Computing Curricula - Computer Engineering Appendix A - Body of Knowledge
Final Report 2004 December 12

Topics:

 Making and evaluating ethical arguments
 Identifying and evaluating ethical choices
 Understanding the social context of design
 Identifying assumptions and values

Learning outcomes:

1. Analyze an argument to identify premises and conclusion.
2. Illustrate the use of example, analogy, and counter-analogy in ethical argument.
3. Detect use of basic logical fallacies in an argument.
4. Identify stakeholders in an issue and our obligations to them.
5. Articulate the ethical tradeoffs in a technical decision.

CE-SPR3 Professional and ethical responsibilities [core]
Minimum core coverage time: 2 hours

Topics:

 Community values and the laws by which we live
 The nature of professionalism
 Various forms of professional credentialing and the advantages and disadvantages
 The role of the professional in public policy
 The role of licensure and practice in engineering
 Contrasts of licensure in engineering but not other disciplines
 Maintaining awareness of consequences
 Ethical dissent and whistle blowing
 Codes of ethics, conduct, and practice (NSPE, IEEE, ACM, SE, AITP, and so forth)
 Dealing with harassment and discrimination
 “Acceptable use” policies for computing in the workplace

Learning outcomes:

1. Identify progressive stages in a whistle-blowing incident.
2. Specify the strengths and weaknesses of relevant professional codes as expressions of professionalism and guides to decision-

making.
3. Provide arguments for and against licensure in non-engineering professions.
4. Identify ethical issues that arise in software development and determine how to address them technically and ethically.
5. Develop a computer use policy with enforcement measures.

CE-SPR4 Risks and liabilities [core]
Minimum core coverage time: 2 hours

Topics:

 Historical examples of software risks such as the Therac-25 case
 Product safety and public consumption
 Implications of software complexity
 Risk assessment and management

Learning outcomes:

1. Explain the limitations of testing as a means to ensure correctness.
2. Recognize the importance of product safety when designing computer systems.
3. Describe the differences between correctness, reliability, and safety.
4. Recognize unwarranted assumptions of statistical independence of errors.
5. Discuss the potential for hidden problems in reuse of existing components.

CE-SPR5 Intellectual property [core]
Minimum core coverage time: 2 hours

Topics:

 Foundations of intellectual property
 Copyrights, patents, and trade secrets
 Software piracy
 Software patents
 Transnational issues concerning intellectual property

Learning outcomes:

1. Distinguish among patent, copyright, and trade secret protection.

- A.63 -

Computing Curricula - Computer Engineering Appendix A - Body of Knowledge
Final Report 2004 December 12

2. Discuss the legal background of copyright in national and international law.
3. Explain how patent and copyright laws may vary internationally.
4. Outline the historical development of software patents.

CE-SPR6 Privacy and civil liberties [core]
Minimum core coverage time: 2 hours

Topics:

 Ethical and legal basis for privacy protection
 Privacy implications of massive database systems
 Technological strategies for privacy protection
 Freedom of expression in cyberspace
 International and intercultural implications

Learning outcomes:

1. Summarize the legal bases for the right to privacy and freedom of expression in one’s own nation.
2. Discuss how those concepts vary from country to country.
3. Describe current computer-based threats to privacy.
4. Explain how the Internet may change the historical balance in protecting freedom of expression.

CE-SPR7 Computer crime [core]
Minimum core coverage time: 1 hour

Topics:

 History and examples of computer crime
 “Cracking” (“hacking”) and its effects
 Viruses, worms, and Trojan horses
 Crime prevention strategies

Learning outcomes:

1. Outline the technical basis of viruses and denial-of-service attacks.
2. Enumerate techniques to combat “cracker” attacks.
3. Discuss several different “cracker” approaches and motivations.
4. Identify the professional’s role in security and the tradeoffs involved.

CE-SPR8 Economic issues in computing [core]
Minimum core coverage time: 2 hours

Topics:

 Costing out jobs with considerations on manufacturing, hardware, software, and engineering implications
 Cost estimates versus actual costs in relation to total costs
 Use of engineering economics in dealing with finances
 Entrepreneurship: prospects and pitfalls
 Monopolies and their economic implications
 Effect of skilled labor supply and demand on the quality of computing products
 Pricing strategies in the computing domain
 Differences in access to computing resources and the possible effects thereof

Learning outcomes:

1. Describe the assessment of total job costs.
2. Evaluate the risks of entering one’s own business.
3. Apply engineering economic principles when considering fiscal arrangements.
4. Summarize the rationale for antimonopoly efforts.
5. Describe several ways in which shortages in the labor supply affect the information technology industry.
6. Suggest and defend ways to address limitations on access to computing.

CE-SPR9 Philosophical frameworks [elective]

Topics:

 Philosophical frameworks, particularly utilitarianism and deontological theories
 Problems of ethical relativism
 Scientific ethics in historical perspective
 Differences in scientific and philosophical approaches

- A.64 -

Computing Curricula - Computer Engineering Appendix A - Body of Knowledge
Final Report 2004 December 12

Learning outcomes:

1. Summarize the basic concepts of relativism, utilitarianism, and deontological theories.
2. Recognize the distinction between ethical theory and professional ethics.
3. Identify the weaknesses of the “hired agent” approach, strict legalism, naïve egoism, and naïve relativism as ethical

frameworks.

- A.65 -

Computing Curricula - Computer Engineering Appendix A - Body of Knowledge
Final Report 2004 December 12

Software Engineering (CE – SWE)

CE-SWE0 History and overview [core]
CE-SWE1* Software processes [core]
CE-SWE2* Software requirements and specifications [core]
CE-SWE3* Software design [core]
CE-SWE4* Software testing and validation [core]
CE-SWE5* Software evolution [core]
CE-SWE6* Software tools and environments [core]
CE-SWE7* Language translation [elective]
CE-SWE8* Software project management [elective]
CE-SWE9* Software fault tolerance [elective]

* Consult the CC2001 Report [ACM/IEEECS, 2001] SE Knowledge Area for more detail

CE-SWE0 History and overview [core]
Minimum core coverage time: 1 hour

Topics:

 Indicate some reasons for studying software engineering
 Highlight some people that influenced or contributed to the area of software engineering
 Indicate some important topic areas such as the software process, requirements, specifications, design, testing, validation,

evolution, and project management
 Contrast software engineering with computer engineering
 Mention some examples that would use the software engineering approach
 Indicate the existence of formalized software processes such as the software life cycle
 Explain that requirements and specifications may change slightly as a software project evolves
 Indicate the importance of language selection when doing software design
 Highlight the importance of testing and validation in a software projects
 Explore some additional resources associated with software engineering
 Explain the purpose and role of software engineering in computer engineering

Learning outcomes:

1. Identify some contributors to software engineering and relate their achievements to the knowledge area.
2. Provide examples of the software process.
3. Articulate the difference between software engineering and computer engineering.
4. Articulate some of the components of a software process.
5. Provide some examples that would use software engineering.
6. Give reasons for the importance of testing and validation in the development of software.
7. Describe how computer engineering uses or benefits from software engineering.

CE-SWE1 Software processes [core]
Minimum core coverage time: 2 hours

Topics:

 Software life cycle and process models
 Process assessment models
 Software process metrics

Learning outcomes:

1. Select, with justification, the software development models most appropriate for the development and maintenance of diverse
software products.

2. Explain the role of process maturity models.

CE-SWE2 Software requirements and specifications [core]
Minimum core coverage time: 2 hours

Topics:

 Requirements elicitation
 Requirements analysis modeling techniques
 Functional and nonfunctional requirements
 Prototyping
 Basic concepts of formal specification techniques

- A.66 -

Computing Curricula - Computer Engineering Appendix A - Body of Knowledge
Final Report 2004 December 12

Learning outcomes:

1. Apply key elements and common methods for elicitation and analysis to produce a set of software requirements for a
medium-sized software system.

2. Use a common, non-formal method to model and specify (in the form of a requirements specification document) the
requirements for a medium-size software system (e.g., structured analysis or object-oriented-analysis).

3. Conduct a review of a software requirements document using best practices to determine the quality of the document.
4. Translate into natural language a software requirements specification written in a commonly used formal specification

language.

CE-SWE3 Software design [core]
Minimum core coverage time: 2 hours

Topics:

 Fundamental design concepts and principles
 Software architecture
 Structured design
 Object-oriented analysis and design
 Component-level design
 Design for reuse

Learning outcomes:

1. Evaluate the quality of multiple software designs based on key design principles and concepts.
2. Using a software requirement specification and a common program design methodology and notation, create and specify the

software design for a medium-size software product (e.g., using structured design or object-oriented design).
3. Using appropriate guidelines, conduct the review of a software design.

CE-SWE4 Software testing and validation [core]
Minimum core coverage time: 2 hours

Topics:

 Validation planning
 Testing fundamentals, including test plan creation and test case generation
 Black-box and white-box testing techniques
 Unit, integration, validation, and system testing
 Object-oriented testing
 Inspections

Learning outcomes:

1. Demonstrate the application of the different types and levels of testing (unit, integration, systems, and acceptance) to software
products of medium size.

2. Undertake, as part of a team activity, an inspection of a medium-size code segment.
3. Describe the role that tools can play in the validation of software.

CE-SWE5 Software evolution [core]
Minimum core coverage time: 2 hours

Topics:

 Software maintenance: the different forms of maintenance; the associated disciples and the role and the nature of
configuration management and version control

 Impact analysis; regression testing; associated software support
 Characteristics of maintainable software
 Software re-use in its different forms – their strengths and weaknesses
 Reengineering
 Legacy systems

Learning outcomes:

1. Identify the principal issues associated with software evolution and explain their impact on the software life cycle.
2. Develop a plan for re-engineering a medium-sized product in response to a change request.
3. Discuss the advantages and disadvantages of software reuse.
4. Demonstrate the ability to exploit opportunities for software reuse in a variety of contexts.

CE-SWE6 Software tools and environments [core]
Minimum core coverage time: 2 hours

- A.67 -

Computing Curricula - Computer Engineering Appendix A - Body of Knowledge
Final Report 2004 December 12

Topics:

 Programming environments
 Requirements analysis and design modeling tools
 Testing tools
 Configuration management tools
 Tools based on databases – their design and development
 Additional possibilities including CASE tools
 Tool integration mechanisms

Learning outcomes:

1. Select, with justification, an appropriate set of tools to support the software development of a range of software products.
2. Analyze and evaluate a set of tools in a given area of software development (e.g., management, modeling, or testing).
3. Demonstrate the capability to use a range of software tools in support of the development of a software product of medium

size.

CE-SWE7 Language translation [elective]

Topics:

 The range of tools that support software development for the computer engineer; the role of a formal semantics of a language
 Different possibilities regarding language translation: comparison of interpreters and compilers for high-level languages, and

silicon compilers for hardware description languages, additional possibilities
 Language translation phases (lexical analysis, parsing, generation phase, optimization); separate compilation or translation -

the benefits and the mechanisms; machine-dependent and machine-independent aspects of translation

Learning outcomes:

1. Compare and contrast compiled and interpreted execution models, outlining the relative merits of each.
2. Describe the phases of program translation from source code to executable code and the files produced by these phases.
3. Explain the differences between machine-dependent and machine-independent translation.
4. Show the manner in which these differences are evident in the translation process.

CE-SWE8 Software project management [elective]

Topics:

 Team management: team processes; team organization and decision-making, roles and responsibilities in a software team;
role identification and assignment; project tracking; team problem resolution

 Project scheduling
 Software measurement and estimation techniques
 Risk analysis
 Software quality assurance
 Software configuration management
 Project management tools

Learning outcomes:

1. Demonstrate through involvement in a team project the central elements of team building and team management.
2. Prepare a project plan for a software project that includes estimates of size and effort, a schedule, resource allocation,

configuration control, change management, and project risk identification and management.
3. Compare and contrast the different methods and techniques used to assure the quality of a software product.

CE-SWE9 Software fault tolerance [elective]

Topics:

 Software reliability models
 Software fault-tolerance methods: N-version programming, recovery blocks, rollback and recovery
 Fault tolerance in operating systems and data structures
 Fault tolerance in database and distributed systems

Learning outcomes:

1. Understand the concept of software faults and reliability of software.
2. Understand various redundancy methods used to allow software to detect software faults and produce correct results in the

presence of software faults.
3. Understand software fault tolerance approaches used in operating systems, database systems, and distributed systems.

- A.68 -

Computing Curricula - Computer Engineering Appendix A - Body of Knowledge
Final Report 2004 December 12

VLSI Design and Fabrication (CE-VLS)

CE-VLS0 History and overview [core]
CE-VLS1 Electronic properties of materials [core]
CE-VLS2 Function of the basic inverter structure [core]
CE-VLS3 Combinational logic structures [core]
CE-VLS4 Sequential logic structures [core]
CE-VLS5 Semiconductor memories and array structures [core]
CE-VLS6 Chip input/output circuits [elective]
CE-VLS7 Processing and layout [elective]
CE-VLS8 Circuit characterization and performance [elective]
CE-VLS9 Alternative circuit structures/low power design [elective]
CE-VLS10 Semi-custom design technologies [elective]
CE-VLS11 ASIC design methodology [elective]

CE-VLS0 History and overview [core]
Minimum core coverage time: 1 hour

Topics:

 Indicate some reasons for studying VLSI and ASIC design
 Highlight some people that influenced or contributed to the area of VLSI and ASIC design
 Indicate some important topic areas such as MOS transistors, inverter structure, circuit performance, combinational and

sequential circuits, memory and array structures, chip I/O design, and application-specific integrated circuits
 Describe a transistor and relate it to a semiconductor
 Indicate the characteristics of a MOS transistor
 Describe CMOS transistors and contrast them with MOS technologies
 Describe some sequential logic circuits such as latches and clock distribution
 Describe the structure of memory design
 Contrast memory structures with array structures
 Contrast the advantages of SRAM and DRAM memory devices
 Describe at which point a circuit becomes a chip
 Provide some examples of application-specific integrated circuits
 Explore some additional resources associated with VLSI and ASIC design
 Explain the purpose and role of VLSI and ASIC design in computer engineering

Learning outcomes:

1. Identify some contributors to VLSI and ASIC design and relate their achievements to the knowledge area.
2. Define a semiconductor.
3. Explain the difference between MOS and CMOS transistors.
4. Define a sequential circuit.
5. Identify some memory devices related to VLSI circuits.
6. Define the meaning of a chip.
7. Give an example of an ASIC chip design.
8. Describe how computer engineering uses or benefits from VLSI and ASIC design.

CE-VLS1 Electronic properties of materials [core]
Minimum core coverage time: 2 hours

Topics:

 Solid-state materials
 Electronics and holes
 Doping, acceptors and donors
 p- and n-type material
 Conductivity and resistivity
 Drift and diffusion currents, mobility and diffusion

Learning outcomes:

1. Understand the current carrying mechanism and the I/V characteristics of intrinsic and doped semiconductor materials.
2. Understand the behavior and the I/V characteristics of a reverse-biased and forward-biased PN junction.
3. Understand the function of a PMOS and a NMOS field effect transistor (FET).
4. Indicate a method to model that function using the device equations.
5. Understand the effect of sub-micron device sizes on the function of MOSFETS.
6. Understand the origin and effect of parasitic resistances and capacitances within the transistor itself.

- A.69 -

Computing Curricula - Computer Engineering Appendix A - Body of Knowledge
Final Report 2004 December 12

CE-VLS2 Function of the basic inverter structure [core]
Minimum core coverage time: 3 hours

Topics:

 Connectivity, layout, and basic functionality of a CMOS inverter
 The CMOS inverter voltage transfer characteristic (VTC)
 Analysis of the CMOS VTC for switching threshold, VOH, VOL, VIH, VIL, and noise margins
 Effect of changing the inverter configuration on the CMOS VTC
 Connectivity and basic functionality of a Bipolar ECL inverter (optional)
 Connectivity and basic functionality of a Bipolar TTL inverter (optional)

Learning outcomes:

1. Understand the basic functionality of the CMOS inverter.
2. Understand how the VTC of a CMOS inverter is derived from the PMOS and NMOS characteristic ID vs. VDS family of

curves.
3. Analyze the VTC to determine switching threshold, VOH, VOL, VIH, VIL, and Noise Margins.
4. Understand how these quantities reflect the ability of the inverter to operate in the presence of noise.
5. Understand how changing the configuration of the inverter and the MOSFETS that make it up changes the VTC and thus the

inverter’s operation.
6. Understand the functionality of bipolar-based logic gates. (Optional)

CE-VLS3 Combinational logic structures [core]
Minimum core coverage time: 1 hour

Topics:

 Basic CMOS gate design
 Layout techniques for combinational logic structures
 Transistor sizing for complex CMOS logic devices
 Transmission gates
 Architectural building blocks (multiplexers, decoders, adders, counters, multipliers)

Learning outcomes:

1. Understand the method to perform circuit design for CMOS logic gates.
2. Understand the techniques, such as Euler paths and stick diagrams, used to optimize the layout of CMOS logic circuits.
3. Understand how the size for each transistor in a CMOS logic gate can be determined.
4. Understand the functionality of the CMOS transmission gate.
5. Demonstrate how to use these gates in several logic functions (e.g. multiplexers, transmission gate-based XOR gates).
6. Understand the functionality of several of the more important architectural building blocks identified above.
7. Demonstrate how to optimize these blocks for CMOS implementation.

CE-VLS4 Sequential logic structures [core]
Minimum core coverage time: 1 hour

Topics:

 Storage mechanisms in CMOS logic
 Dynamic latch circuits
 Static latch and flip-flop circuits
 Sequential circuit design
 Single and multiphase clocking
 Clock distribution, clock skew

Learning outcomes:

1. Understand how to use charge storage (capacitance) and feedback to store values in CMOS logic.
2. Understand the circuit design, functionality, advantages, and disadvantages of dynamic latches in CMOS.
3. Understand the circuit design, functionality and advantages and disadvantages of static latches and flip-flops (including edge-

triggered) in CMOS.
4. Understand the concepts of bi-stability and metastability in static flip-flops.
5. Understand how latches and flip-flops are used in the design of state machines and data paths
6. Understand the functionality, advantages, and disadvantages of single phase clocking, both level sensitive and edge triggered.
7. Understand the functionality, advantages, and disadvantages of multi (two) phase clocking.
8. Understand the problems arising from clock skew and how one can use clock distribution schemes (including the use of

PLLs) to solve it.

- A.70 -

Computing Curricula - Computer Engineering Appendix A - Body of Knowledge
Final Report 2004 December 12

CE-VLS5 Semiconductor memories and logic arrays [core]
Minimum core coverage time: 2 hours

Topics:

 Latches
 Flip-flops
 Dynamic read-write memory (DRAM) circuits
 Static read-write memory (SRAM) circuits
 Memory system organization
 Read-only memory circuits
 EPROM/EEPROM/Flash memory circuits
 Programmable Logic Array (PLA) circuits
 FPGA and related devices
 Sense amplifiers

Learning outcomes:

1. Understand how we organize memory systems and why we do not typically organize them in the most simplistic arrangement
such as in a one-dimensional word array.

2. Understand the circuit-level implementations possible for read-only memory (ROM) organizations.
3. Understand the layout and function of the specialized transistors used in non-volatile ROM devices and how their

characteristics influence the circuit-level implementations of ROMs using them.
4. Understand the functionality and layout of cells used to implement static RAM (SRAM) memories.
5. Understand how SRAMs are typically organized and how their associated peripheral circuitry (sense amps, decoders, address

translation detectors, etc.) is organized and functions.
6. Understand how a typical 3-transistor and 1-transistor DRAM cell functions and how to represent them.
7. Understand how DRAMs are typically organized and accessed, and how their associated peripheral circuitry (sense amps,

decoders, etc.) is organized and functions.
8. Understand how PLAs function, how can be implemented in CMOS, and how logic functions are mapped to them.

CE-VLS6 Chip input/output circuits [elective]

Topics:

 General I/O pad issues
 Bonding pads
 ESD Protection circuits
 Input, Output, Bidirectional, and analog pads
 VDD and VSS pads

Learning outcomes:

1. Understand the unique functions that I/O circuits must perform and their general circuit-level implementations.
2. Understand the functions of signal I/O pads and their general transistor-level implementations.
3. Understand the functions of VDD and VSS pads for both the core and padframe, and their general transistor-level

implementations.

CE-VLS7 Processing and layout [elective]

Topics:

 Processing steps for patterning SiO2 on a silicon wafer
 CMOS processing technology steps and their results
 Layout design rules and their objectives
 Scalable (�-based) design rules
 Design-rule checking

Learning outcomes:

1. Understand the basic steps of photolithography, its limitations, and how that determines minimum line width and device sizes.
2. Understand the processing steps required for fabrication of CMOS devises and the general results of each step.
3. Understand the physical defects that can arise in silicon processing and how design rules attempt to minimize their effects.
4. Understand the spacing and minimum device sizes specified by a typical set of design rules.
5. Understand the benefits and tradeoffs of a �-based scalable design rule.
6. Understand the process and tools used for design rule checking.

- A.71 -

Computing Curricula - Computer Engineering Appendix A - Body of Knowledge
Final Report 2004 December 12

- A.72 -

CE-VLS8 Circuit characterization and performance [elective]

Topics:

 Switching characteristics (rise and fall times, gate delays)
 Power dissipation
 Resistance and capacitance estimation
 CMOS transistor sizing
 Conductor sizing

Learning outcomes:

1. Understand the basic causes of propagation delay and power dissipation in CMOS logic.
2. Understand the techniques for estimating parasitic resistance and capacitance for various layers on a CMOS integrated circuit.
3. Understand the effects of changing (and optimizing) the transistor widths in CMOS logic.
4. Understand the effects of changing (and optimizing) the conductor widths on a CMOS integrated circuit.

CE-VLS9 Alternative circuit structures/low power design [elective]

Topics:

 NMOS
 Pseudo-NMOS,
 Domino-CMOS
 CVSL
 Low power design

Learning outcomes:

1. Understand how to implement MOSFET-based logic families other than CMOS.
2. Understand the advantages and disadvantages of these logic families.
3. Understand the reasons for dynamic and static leakage power.
4. Understand how to design CMOS circuits for low power.

CE-VLS10 Semi-custom design technologies [elective]

Topics:

 Full custom methodology
 Standard cell methodology
 Gate array technologies
 Structured ASICs
 Programmable logic technologies
 Field-programmable gate arrays (FPGAs)
 Time to market and design economics

Learning outcomes:

1. Understand the different design techniques, methodologies, and implementation technologies available to implement a
function on a single integrated circuit.

2. Understand the advantages and disadvantages of each technique.
3. Demonstrate how a designer might go about selecting a specific technique for his or her current project.

CE-VLS11 ASIC design methodology [elective]

Topics:

 ASIC design flow (custom, semicustom)
 Design hierarchy
 Computer-aided design (CAD): design modeling and capture (schematic, HDL); design verification (formal, simulation, timing

analysis); automated synthesis; layout, floorplanning, place and route; back annotation
 Semi-custom design with programmable logic devices and programmable gate arrays
 System-on-chip (SOC) design and intellectual property (IP) cores
 Testing and design for testability
 Verification

Learning outcomes:

1. Understand the more detailed design issues present in implementing a given digital system on an application-specific
integrated circuit (ASIC)

2. Understand the function, capabilities, and disadvantages of the various computer-aided design (CAD) tools available to the
ASIC designer to automate portions of the design process.

3. Understand the issues that come with implementing a real world, complex design in an ASIC for a production environment.
4. Understand the basic principles of test generation and design for testability
5. Understand the difference between testing and verification

Computing Curricula - Computer Engineering Appendix B – Sample Curricula
Final Report 2004 December 12

Appendix B

Computer Engineering

Sample Curricula

T

his appendix to the Computing Curricula - Computer Engineering (CE2004) report contains four
example curricula that illustrate possible implementations of four-year degree programs that satisfy
the required specifications of the body of knowledge detailed in the main body of the report. These

implementations illustrate how undergraduate programs of different flavors and of different characteristics
may be effectively implemented to suit different institutional requirements and resource constraints, and
hence serve a wide variety of educational goals and student needs. None of these examples is intended to
be prescriptive.
 The table below summarizes the sample curricula. This table can serve as a guide to identifying
sample curricula that are most relevant to particular institutional needs and priorities.

Implementation Administrative Entity
A Computer Science Department
B Electrical & Computer Engineering Department
C Joint - Computer Science and Electrical Engineering Departments
D United Kingdom

B.1 Format and Conventions

All four sample curricula presented in this appendix are presented using a common format, with five logical
components:

1. A set of educational objectives for the program of study and an explanation of any institutional,
college, department, or resource constraints that are assumed;

2. A summary of degree requirements, in tabular form, to indicate the curricular content in its entirety;
3. A sample four-year schedule that a typical student might follow;
4. A map showing coverage of the Computer Engineering Body of Knowledge by courses in the

curriculum;
5. A set of course descriptions for those courses in the computing component of the curriculum.

 To clarify the identification of courses, levels, and implementations, each course is numbered in a way
that identifies the implementation in which it appears and the level at which it is normally taught. Thus, a
course numbered CSCX100 is a course in implementation X that is commonly taught in the first year (at the
freshman level); CSCX200 is a course that is commonly taught in the second year (at the sophomore level);
CSCX300 is a course that is commonly taught in the third year (at the junior level); and course CSCX400 is
commonly taught in the fourth year (at the senior level).
 To provide ease of comparison, all four implementations are presented as a set of courses, designed for
a U.S. semester system in which a semester provides 14 weeks of lecture, lab, and recitation (in-class
problem solving) time. This does not typically include time for final examination, vacations, and reading
periods. For simplicity, lecture, lab, and recitation times are specified in “hours”, where one “hour” of
lecture, lab, or recitation is typically 50-minutes in duration.
 Each course is assigned a number of semester credit hours, according to the number and types of
formal activities within a given week. These are determined as follows.

- B.1 -

Computing Curricula - Computer Engineering Appendix B – Sample Curricula
Final Report 2004 December 12

 Lecture hours: presentation of material in a classroom setting
o 1 credit hour = 1 “hour” of lecture per week

 Laboratory hours: formal experimentation in a laboratory setting
o 1 credit hour = one 3-“hour” laboratory session per week

 Recitation hours: problem-solving sessions, programming, etc. in support of lecture material
o 1 “hour” of recitation per week is assigned no additional credit

Examples:

3-credit lecture course
 3 lecture “hours” per week for 14 weeks = 42 lecture “hours”

3-credit lecture course with a 1-hour recitation session per week
 3 lecture “hours” per week for 14 weeks = 42 lecture “hours”
 1 recitation “hour” per week for 14 weeks = 14 recitation “hours”

1-credit laboratory course:
 One 3-“hour” laboratory session per week for 14 weeks = 42 lab “hours”

3-credit course with two lectures and a lab session each week:
 2 lecture “hours” per week for 14 weeks = 28 lecture “hours”
 One 3-“hour” lab per week for 14 weeks = 42 lab “hours”

3-credit senior project design course
 1 classroom meeting per week for 14 weeks = 14 lecture “hours”
 2 credits of “laboratory” = 6 “hours” of laboratory per week for 14 weeks = 84 lab “hours”

B.2 Preparation to Enter the Profession

The four sample curricula in this appendix have as a major goal the preparation of graduates for entry into
the computer engineering profession. There are many ways of building a curriculum whose graduates are
well-educated computer engineers. To emphasize this point, the four programs of study outlined in this
section are quite distinct. These programs differ in their emphasis and in the institutional constraints.
 These curricula are designed to ensure appropriate coverage of the core topics of the computer
engineering BOK as defined in this report. However, as also discussed in the main report, there are many
other elements to creating a program that will effectively prepare graduates for the professional practice of
computer engineering, such as design and laboratory experience, oral and written communication, and
usage of modern engineering tools. Accordingly, professional accreditation addresses more than just
curriculum, and readers interested in accreditation should consult the relevant criteria from the local
accrediting agency (EAC/ABET [1], etc.) for complete accreditation criteria.
 In addition, each individual computer engineering program may have educational objectives that are
unique to that program and not directly reflected in the computer engineering BOK and curriculum models
presented in this report. It is the responsibility of each program to ensure that its students achieve each
learning outcome essential to the educational objectives of the program.

B.3 Curricula Commonalities

Students desiring to study the application of computers and digital systems will find computer engineering
to be a rewarding experience. Study is intensive and students desiring to develop proficiency in the
subfields of computer engineering such as hardware, software, and systems that arise in the design,
analysis, development, and application of computers and digital systems, will find this program to be a

- B.2 -

Computing Curricula - Computer Engineering Appendix B – Sample Curricula
Final Report 2004 December 12

challenge. Applied skills will enable students to analyze, design, and test digital computer systems,
architectures, networks, and processes.
 Each sample curriculum leads to a bachelor’s degree in computer engineering and provides a balanced
treatment of hardware and software principles; each provides a broad foundation in some combination of
computer science and electrical/electronic engineering of computers and digital systems with emphasis on
theory, analysis, and design. Additionally, each of the first three curricula samples (Curricula A, B, and C)
provides a broad foundation in the sciences, discrete and continuous mathematics, and other aspects of a
general education. The last sample curriculum model (Curriculum D) demonstrates a typical program in
computer engineering as one might find in the United Kingdom, Europe, Asia, and other parts of the world.
The demonstrated three-year degree program would lead to a typical Bachelor of Engineering degree. The
four-year curriculum would lead to a typical Master’s of Engineering degree.
 The common requirements spread widely across a range of courses and allow revisiting the subject
matter with spiral learning taking place. Each curriculum contains sufficient flexibility to support various
areas of specialization. Each program structure allows a broadly based course of study and provides
selection from among many professional electives. In all cases, the capstone design experience takes place
after students in the program have developed sufficient depth of coverage in the core subject areas. A
combination of theory, practice, application, and attitudes accompany the construction of each course.
 The goals of each program are to prepare students for a professional career in computer engineering by
establishing a foundation for lifelong learning and development. It also provides a platform for further
work leading to graduate studies in computer engineering as well as careers in fields like business, law,
medicine, management and others. Students develop design skills progressively, beginning with their first
courses in programming, circuit analysis, digital circuits, computer architectures, and networks and they
apply their accumulating knowledge to practical problems throughout the curriculum. The process
culminates in the capstone design course, which complements the analytical part of the curriculum. The
thorough preparation afforded by the computer engineering curriculum includes the broad education
necessary to understand the impact of engineering solutions in a global and societal context.
 Graduates of each program should be well prepared for professional employment or advanced studies.
They should understand the various areas of computer engineering such as applied electronics, digital
devices and systems, software design, and computer architectures, systems, and networks. Graduates
should be able to apply their acquired knowledge and skills to these and other areas of computer
engineering. They will also possess design skills and have a deep understanding of hardware issues,
software issues, models, the interactions between these issues, and related applications. The thorough
preparation afforded by this computer engineering curriculum includes the broad education necessary to
understand the impact of engineering solutions in a global and societal context.

- B.3 -

Computing Curricula - Computer Engineering Appendix B – Sample Curricula
Final Report 2004 December 12

B.4 Curriculum Implementation A
 A Computer Engineering Program Administered by a

Typical Computer Science Department

B.4.1 Program Goals and Features

A computer science department would sponsor this B.S. program in computer engineering. This program
assumes an evolution from a computer science program, and therefore it might be of interest to schools that
have a computer science department but not a large engineering program. As is typical of many computer
science programs, this model has a larger general education component than the other curricula presented
in this appendix, and therefore fewer hours devoted to computer engineering topics. Consequently, several
courses have been designed specifically to provide coverage of the core topics of the CPE BOK. In
particular, courses that cover the traditional EE topics in the CPE BOK core have been designed to cover
the core material without going significantly beyond these topics. In contrast, a number of the computer
science courses do go beyond the core material, although not as much as in the other three curricula
presented in this appendix.

B.4.2 Summary of Requirements

This program of study builds around a set of eleven required courses in computer science (including a
culminating design project) and four from electrical engineering, comprising 47 credit hours of study. The
program achieves flexibility through a judicious choice of three technical electives and a capstone project.
The computer engineering segment of the curriculum, including technical electives and capstone,
comprises 56 credit-hours of study. Laboratory experience is provided in the first two introductory
computer science courses and in the circuits and digital logic courses. The total number of hours devoted
to laboratory experience is less than in the other three curriculum models presented in this appendix. In
addition, since there are fewer courses that incorporate engineering design, the capstone design project
course extends two full semesters (six credits) to ensure that all graduates have significant design
experience, as well as experience with teamwork and modern engineering tools. Oral and written
communication skills are assumed to be emphasized in both the general education and in the computer
engineering segments of this curriculum.
 This curriculum utilizes a relatively traditional course structure and content. It requires 39 courses,
with credit hours distributed as follows:

Credit-hours Topic areas
20 Mathematics and statistics
12 Basic science (physics, chemistry)
33 Humanities, social sciences, composition, and literature
27 Required computer science
15 Required electrical engineering
5 Design project (from computer science)
9 Technical electives (from computer science or engineering)
3 Free electives

124 TOTAL Credit Hours for Computer Engineering Program

- B.4 -

Computing Curricula - Computer Engineering Appendix B – Sample Curricula
Final Report 2004 December 12

B.4.3 Four-Year Curriculum Model for Curriculum A

Course Description Credit Course Description Credit

Semester 1 Semester 2
MTH 101 Calculus I 4 MTH 102 Calculus II 4

PHY 101 Physics I 4 PHY 102 Physics II 4

CSCA101 Computer Science I 4 CSCA102 Computer Science II 4

 English Composition 3 Humanities / Social Science 3

 Total Credit Hours 15 Total Credit Hours 15

Semester 3 Semester 4
MTH 201 Differential Equations 3 MTH 202 Linear Algebra 3

CHM 201 Chemistry I 4 CSCA202 Computer Organization 3

CSCA201 Algorithm Design 3 ELEA202 Circuits and Systems 4

ELEA201 Digital Logic 4 Humanities / Social Science 3

 Humanities / Social Science 3 Humanities / Social Science 3

 Total Credit Hours 17 Total Credit Hours 16

Semester 5 Semester 6
MTHA301 Discrete Structures 3 MTHA302 Probability and Statistics 3

CSCA301 Computer Architecture 3 CSCA302 Embedded Systems I 3

ELEA301 Electronics 4 CSCA303 Computer Networks 3

 Technical Writing 3 ELEA302 Digital Signal Processing 3

 Humanities / Social Science 3 Humanities / Social Science 3

 Total Credit Hours 16 Total Credit Hours 15

Semester 7 Semester 8
CSCA401 Embedded Systems II 3 CSCA404 Senior Project II 3

CSCA402 Computer Ethics 1 Technical elective 3

CSCA403 Senior Project I 2 Technical elective 3

 Technical elective 3 Humanities / Social Science 3

 Humanities / Social Science 3 Free Elective 3

 Humanities / Social Science 3

 Total Credit Hours 15 Total Credit Hours 15

- B.5 -

Computing Curricula - Computer Engineering Appendix B – Sample Curricula
Final Report 2004 December 12

B.4.4 Mapping of Computer Engineering BOK to Curriculum A

BOK Area

Course

A
L
G

C
A
O

C
S
E

C
S
G

D
B
S

D
I
G

D
S
C

D
S
P

E
L
E

E
S
Y

H
C
I

N
W
K

O
P
S

P
R
F

P
R
S

S
P
R

S
W
E

V
L
S

CSCA101 0-2 0-4

CSCA102 0-2 5-8 0-2

CSCA201 0-5 3-4 3-6

CSCA202 0-4 0-1

CSCA301 5-9

CSCA302 0-8 0-4

CSCA303 0-8

CSCA401 6-7 0-7

CSCA402 0-8

CSCA403

CSCA404

ELEA201
0-6
8,9

ELEA202 0-7

ELEA301 0-
10 0-6

ELEA302 8 0-
11

MTHA301 0-6

MTHA302 0-7

Required
BOK Hours 30 63 18 43 5 57 33 17 40 20 8 21 20 39 33 16 13 10

Required
BOK Units 0-5 0-9 0-8 0-6 0-2 0-9 0-6 0-6 0-

10 0-6 0-4 0-6 0-4 0-5 0-7 0-8 0-6 0-5

Elective
BOK Units 6 10 9-

11 7-9 3-8 10 7-
11

11-
14

7-
10

5-
10

7-
10 5-8 6-8 8 9 7-9 6-

11

- B.6 -

Computing Curricula - Computer Engineering Appendix B – Sample Curricula
Final Report 2004 December 12

B.4.5 Curriculum A – Course Summaries

MTHA301: Discrete Structures

Review of propositional and predicate logic; methods of theorem proving; strong and weak induction; finite
and infinite sets, set operations; introductions to computational complexity, theta and big-O notation;
combinatorics, including permutations and combinations; discrete probability and binomial distribution.
 Prerequisites: Pre-calculus or equivalent.

Credit Hours: 3 Lecture Hours: 42 Lab Hours: 0 Recitation Hours: 14
CE2004 BOK Coverage: CE-DSC 0-6.

CSCA101: Computer Science I

Introduction to computing; algorithmic thinking, data structures, data transformation and processing, and
programming in a media and communication context.

Prerequisites: Pre-calculus or equivalent.
Credit Hours: 4 Lecture Hours: 42 Lab Hours: 42 Recitation Hours: 0
CE2004 BOK Coverage: CE-DBS 0-2, CE-PRF 0-4.

CSCA102: Computer Science II

Second course in programming languages and systems. Topics include data structures, assemblers, compilers,
and syntactical methods; recursion, string manipulation and list processing; concepts of executive programs
and operating systems; introduction to time-sharing systems.

Prerequisites: CSCA101
Credit Hours: 4 Lecture Hours: 42 Lab Hours: 42 Recitation Hours: 0
CE2004 BOK Coverage: CE-HCI 0-2, CE-PRF 5-8, CE-SWE 0-2.

CSCA201: Algorithm Design

Design and analysis techniques for solving domain specific problems, algorithm design strategies, distributed
algorithms.

Prerequisites: CSCA102
Credit Hours: 3 Lecture Hours: 42 Lab Hours: 0 Recitation Hours: 0
CE2004 BOK Coverage: CE-ALG 0-5, CE-HCI 3-4, CE-SWE 3-6.

CSCA202: Computer Organization

Introductory course in computer organization and architecture. Topics include basic hardware and software
structure, addressing methods, programs control, processing units, I-O organization, arithmetic, main-
memory organization, peripherals, microprocessor families, RISC architectures, and multiprocessors.

Prerequisites: CSCA101
Credit Hours: 3 Lecture Hours: 42 Lab Hours: 0 Recitation Hours: 0
CE2004 BOK Coverage: CE-CAO 0-4, CE-DIG 0-1.

CSCA301: Computer Architecture

Topics include a review of logic circuits, bus structures, memory organization, interrupt structures, arithmetic
units, input-output structures, state generation, central processor organization, control function
implementation, and data communication, design of digital systems.

Prerequisites: CSCA202
Credit Hours: 3 Lecture Hours: 42 Lab Hours: 0 Recitation Hours: 0
CE2004 BOK Coverage: CE-CAO 5-9.

CSCA302: Embedded Systems I

Interfacing of microcomputers to peripherals or other computers for purposes of data acquisition, device
monitoring and control, and other communications. The interfacing problem is considered at all levels
including computer architecture, logic, timing, loading, protocols, and software laboratory for building and
simulating designs.

Prerequisites: CSCA202
Credit Hours: 3 Lecture Hours: 42 Lab Hours: 0 Recitation Hours: 14
CE2004 BOK Coverage: CE-CSE 0-8, CE-OPS 0-4.

CSCA303: Computer Networks

Introduction to the design and performance analysis of local computer networks. Emphasis is on performance
analysis of representative multi-access procedures.

- B.7 -

Computing Curricula - Computer Engineering Appendix B – Sample Curricula
Final Report 2004 December 12

Prerequisites: CSCA102, MTH 102
Credit Hours: 3 Lecture Hours: 42 Lab Hours: 0 Recitation Hours: 14
CE2004 BOK Coverage: CE-NWK 0-8.

CSCA401: Embedded Systems II

Design of embedded digital systems; microcontrollers, embedded programs, real-time operating systems,
design methodologies, hardware-software codesign, hardware modeling and computer-aided design,
prototyping with FPGAs.

Prerequisites: CSCA302
Credit Hours: 3 Lecture Hours: 42 Lab Hours: 0 Recitation Hours: 14
CE2004 BOK Coverage: CE-ESY 0-7, CE-DIG 6-7

CSCA402: Computer Ethics

Critical examination of ethical problems associated with computer science and engineering. Legal and quasi-
legal (i.e., policy and regulative) issues are also considered. Topics addressed include the process of ethical
decision-making, privacy and confidentiality, computer crime, professional codes and responsibilities,
software piracy, the impact of computers on society.

Prerequisites: Junior standing
Credit Hours: 1 Lecture Hours: 14 Lab Hours: 0 Recitation Hours: 0
CE2004 BOK Coverage: CE-SPR 0-8

CSCA403: Senior Project I

Individually designed projects oriented toward providing experience in the establishment of objectives,
criteria, synthesis, analysis, construction, testing, and evaluation; solution of open-ended problems; design
methodology.

Prerequisites: CSCA301, CSCA302
Credit Hours: 2 Lecture Hours: 14 Lab Hours: 42 Recitation Hours: 0
CE2004 BOK Coverage: None.

CSCA404: Senior Project II

Continuation of Senior Project I focused upon implementation of a project design.
Prerequisites: CSCB403
Credit Hours: 3 Lecture Hours: 14 Lab Hours: 84 Recitation Hours: 0
CE2004 BOK Coverage: None.

ELEA201: Digital Logic

Study of logic with an introduction to Boolean algebra; number systems and representation of information;
use of integrated circuits to implement combinational and sequential logic functions and computing elements;
organization and structure of computing systems.

Prerequisites: CSCA101
Credit Hours: 4 Lecture Hours: 42 Lab Hours: 42 Recitation Hours: 0
CE2004 BOK Coverage: CE-DIG 0-6, 8-9.

ELEA202: Circuits and Systems

DC resistive circuits, Kirchhoff's Laws, Nodal and Mesh emphasis, sources, Thevenin's and Norton's
theorems, RC, RL, RCL circuit solutions with initial condition using homogenous or nonhomogenous
ordinary differential equations having constant coefficients, sinusoidal steady state solution, three-phase
circuits, complex frequency and network functions, frequency response, two-port parameters, magnetically-
coupled circuits, Laplace transforms, and introduction to Fourier series and transforms..

Prerequisites: MTH 201, PHY 102
Credit Hours: 4 Lecture Hours: 42 Lab Hours: 42 Recitation Hours: 0
CE2004 BOK Coverage: CE-CSG 0-7

ELEA301: Electronics

Introduction to electronic materials and devices; principles of design; design of DC and AC circuits using
diodes, bipolar junction transistors, field-effect transistors and use of transistors in digital circuits, physical
design of simple gates, flip-flops, and memory circuits.

Prerequisites: ELEA202
Credit Hours: 4 Lecture Hours: 56 Lab Hours: 0 Recitation Hours: 0
CE2004 BOK Coverage: CE-ELE 0-10, CE-VLS 0-6

- B.8 -

Computing Curricula - Computer Engineering Appendix B – Sample Curricula
Final Report 2004 December 12

ELEA302: Digital Signal Processing

Digital processing of signals, sampling, difference equations, discrete-time Fourier transforms,
discrete and fast Fourier transforms, digital filter design.

Prerequisites: ELEA202
Credit Hours: 3 Lecture Hours: 42 Lab Hours: 0 Recitation Hours: 0
CE2004 BOK Coverage: CE-DSP 0-11, CE-CSG 8

- B.9 -

Computing Curricula - Computer Engineering Appendix B – Sample Curricula
Final Report 2004 December 12

B.5 Curriculum Implementation B

A Computer Engineering Program Administered by an
Electrical and Computer Engineering Department

B.5.1 Program Goals and Features

This program leads to a bachelors degree in computer engineering, as might be offered by a traditional
electrical and computer engineering (ECE) department. Foundation courses in computer science typically
are offered by a computer science department; the remaining courses taught by the ECE department. As is
typical of most programs in engineering, this program has a smaller general education component than
Curriculum A described in this appendix, with more hours devoted to computer engineering topics. This
program is characterized by a greater emphasis on some of the traditional electrical engineering topics
(circuits, electronics) than the other curricula in this appendix, providing coverage well beyond the
minimum recommended core coverage of these topics. However, coverage of such topics as computer
architecture, embedded systems, software design, and related computer science topics is also significant.
Graduates should be well prepared to pursue careers that entail hardware and system design (VLSI and
ASIC design, embedded systems, networks, etc.), with sufficient background in software to enable them to
be effective computer engineers.

B.5.2 Summary of Requirements

This program of study builds around a set of eighteen required courses in computer engineering (and
electrical engineering), comprising 49 credit hours of study. It incorporates flexibility through choice of
nine credits of electives in electrical and computer engineering. Design and the use of modern tools are
emphasized throughout the curriculum, culminating in a one-semester capstone design course. The
laboratory experience includes four required lab courses in electric circuits, digital logic circuits, computer
systems, and digital systems design, and provides additional opportunities for team-based projects. Oral
and written communication skills are addressed in required oral communication and technical writing
courses, and are assumed to be reinforced throughout the laboratory courses and the capstone project.
 The computer engineering segment of the curriculum, including professional electives, comprises 58
semester credit hours of study, supported by 9 additional hours of required computer science courses. This
curriculum requires 43 courses, with credit hours distributed as follows:

Credit-hours Topics
18 Mathematics
12 Basic Science (Physics, Chemistry)
21 English composition, humanities and social sciences
9 Required computer science

49 Required electrical and computer engineering
9 Elective electrical and computer engineering
6 Other engineering courses

124 TOTAL Credit Hours for Computer Engineering Program

- B.10 -

Computing Curricula - Computer Engineering Appendix B – Sample Curricula
Final Report 2004 December 12

B.5.3 Four-Year Curriculum Model for Curriculum B

Course Description Credit Course Description Credit

Semester 1 Semester 2
MTH 101 Calculus I 3 MTH 102 Calculus II 3
CHM 101 Chemistry I 3 CHM 102 Chemistry II 3
CSCB101 Programming & Prob. Solving I 3 CSCB102 Programming & Prob. Solving II 3
 English Composition I 3 ENG 101 Engineering Problem Solving 3
 Humanities & Social Science 3 English Composition II 3
 Total Credit Hours 15 Total Credit Hours 15

Semester 3 Semester 4
MTH 201 Calculus III 3 MTH 203 Linear Differential Equations 3
MTHB202 Discrete Structures 3 CSCB201 Algorithms & Data Structures 3
PHY 201 Physics I 3 ECEB204 Signals & Systems 3
ECEB201 Digital Logic Circuits 3 ECEB205 Electric Circuits Lab 1
ECEB202 Electric Circuits 3 ECEB206 Digital Electronics 3
ECEB203 Digital Logic Lab 1 ECEB207 Computer Organization 3
 Total Credit Hours 16 Total Credit Hours 16

Semester 5 Semester 6
MTH 301 Linear Algebra 3 ECEB304 Digital System Design 3
PHY 301 Physics II 3 ECEB305 Digital Systems Lab 1
ECEB301 Operating Systems 3 ECEB306 Analog Electronics 3
ECEB302 Computer Architecture 3 ECEB307 Random Signals & Systems 3
ECEB303 Computer Design Lab 1 Fine Arts Elective 3
 Humanities & Soc Science II 3 Oral Communication 3
 Total Credit Hours 16 Total Credit Hours 16

Semester 7 Semester 8
ECEB401 Fundamentals of Software Design 3 ECEB403 Computer Networks 3
ECEB402 Embedded Computing Systems 3 ECEB404 Ethics, Society, Profession 3
ENG 401 Engineering Economics 3 ECEB405 Senior Design Project 3
 ECE Elective I 3 ECE Elective II 3
 Technical Writing 3 ECE Elective III 3
 Total Credit Hours 15 Total Credit Hours 15

- B.11 -

Computing Curricula - Computer Engineering Appendix B – Sample Curricula
Final Report 2004 December 12

B.5.4 Mapping of Computer Engineering BOK to Curriculum B

BOK Area

Course

A
L
G

C
A
O

C
S
E

C
S
G

D
B
S

D
I
G

D
S
C

D
S
P

E
L
E

E
S
Y

H
C
I

N
W
K

O
P
S

P
R
F

P
R
S

S
P
R

S
W
E

V
L
S

CSCB101 0-4

CSCB102 5-8

CSCB201 0-6 0-2

ECEB201 0-5

ECEB202 0-5

ECEB203 0-5

ECEB204 6-9 0-6

ECEB205 0-3

ECEB206 0-7 0-6

ECEB207 0-3,
9

 6-7

ECEB301 3,5,8 0-9

ECEB302 3-10 6

ECEB303 3-5

ECEB304 0-7 7 10,11

ECEB305 0-7 7 10,11

ECEB306 9-
14

ECEB307 0-7

ECEB401 0-8 0-4 0-7

ECEB402 5 8 0-
10

ECEB403 0-8

ECEB404 0-8

ECEB405

MTHB202 0-6

Required
BOK Hours 30 63 18 43 5 57 33 17 40 20 8 21 20 39 33 16 13 10

Required
BOK Units 0-5 0-9 0-8 0-6 0-2 0-9 0-6 0-6 0-

10 0-6 0-4 0-6 0-4 0-5 0-7 0-8 0-6 0-5

Elective
BOK Units 6 10 9-

11 7-9 3-8 10 7-
11

11-
14

7-
10

5-
10

7-
10 5-8 6-8 8 9 7-9 6-11

- B.12 -

Computing Curricula - Computer Engineering Appendix B – Sample Curricula
Final Report 2004 December 12

B.5.5 Curriculum B – Course Summaries

MTHB202: Discrete Structures

Review of propositional and predicate logic; methods of theorem proving; strong and weak induction; finite
and infinite sets, set operations; introductions to computational complexity, theta and big-O notation;
combinatorics, including permutations and combinations; discrete probability and binomial distribution.
 Prerequisites: Pre-calculus or equivalent.

Credit Hours: 3 Lecture Hours: 42 Lab Hours: 0 Recitation Hours: 14
CE2004 BOK Coverage: CE-DSC 0-6.

CSCB101: Programming and Problem Solving I

First course in programming languages, syntax, fundamental data structures, algorithms and basic problem-
solving.

Prerequisites: Pre-calculus or equivalent
Credit Hours 3 Lecture Hours: 42 Lab Hours: 0 Recitation Hours: 14
CE2004 BOK Coverage: CE-PRF 0 – 4

CSCB102: Programming and Problem Solving II

Second course in programming languages and systems. Topics include assemblers, compilers, and syntactical
methods; string manipulation and list processing; concepts of executive programs and operating systems;
introduction to time-sharing systems.

Prerequisites: CSCB101
Credit Hours 3 Lecture Hours: 42 Lab Hours: 0 Recitation Hours: 14
CE2004 BOK Coverage: CE-PRF 5 – 8

CSCB201: Algorithms and Data Structures

Design and analysis techniques for solving domain specific problems, algorithm design strategies, distributed
algorithms, introduction to database systems and data modeling.

Prerequisites: CSCB102, MTH 202
Credit Hours 3 Lecture Hours: 42 Lab Hours: 0 Recitation Hours: 0
CE2004 BOK Coverage: CE-ALG 0 – 6, CE-DBS 0-2

ECEB201: Digital Logic Circuits

Study of logic with an introduction to Boolean algebra; number systems and representation of information;
use of integrated circuits to implement combinational and sequential logic functions and computing elements;
organization and structure of computing systems.

Prerequisites: CSCB101
Credit Hours 3 Lecture Hours: 42 Lab Hours: 0 Recitation Hours: 0
CE2004 BOK Coverage: CE-DIG 0 – 5

ECEB202: Electric Circuits

DC resistive circuits, Kirchhoff's Laws, Nodal and Mesh emphasis, sources, Thevenin's and Norton's
theorems, RC, RL, RCL circuit solutions with initial condition using homogenous or nonhomogenous
ordinary differential equations having constant coefficients. Develop sinusoidal steady state solution.

Prerequisites: MTH 102
Credit Hours 3 Lecture Hours: 42 Lab Hours: 0 Recitation Hours: 0
CE2004 BOK Coverage: CE-CSG 0 – 5

ECEB203: Digital Logic Laboratory

Hands-on experience in using digital electronics by way of logic gates and integrated circuits; practical
construction, testing, and implementation of combinational and sequential logic circuits.

Corequisite: ECEB201
Credit Hours 1 Lecture Hours: 0 Lab Hours: 42 Recitation Hours: 0
CE2004 BOK Coverage: CE-DIG 1-5

ECEB204: Signals & Systems

Time-domain and frequency-domain methods for modeling and analyzing continuous and discrete-data
signals and systems, Laplace transforms, Fourier series and transforms, sampling, discrete signals, z-
transforms, digital filters.

- B.13 -

Computing Curricula - Computer Engineering Appendix B – Sample Curricula
Final Report 2004 December 12

Prerequisites: ECEB202
Credit Hours 3 Lecture Hours: 42 Lab Hours: 0 Recitation Hours: 0
CE2004 BOK Coverage: CE-CSG 6 – 9, CE-DSP 0-6

ECEB205: Electrical Circuits Laboratory

Principles of measurement and instruments used to measure parameters and dynamic variables in electric
circuits, steady state and transient measurements in DC and AC circuits, and data analysis methods.

Prerequisite: ECEB202
Credit Hours 1 Lecture Hours: 0 Lab Hours: 42 Recitation Hours: 0
CE2004 BOK Coverage: CE-CSG 0-3

ECEB206: Digital Electronics

Introduction to electronic materials and devices; principles of design; design of DC and AC circuits using
diodes, bipolar junction transistors, field-effect transistors and use of transistors in digital circuits, including
combinational and sequential circuits.

Prerequisites: ECEB201, ECEB204
Credit Hours 3 Lecture Hours: 42 Lab Hours: 0 Recitation Hours: 0
CE2004 BOK Coverage: CE-ELE 0 –7, CE-VLS 0-6

ECEB207: Computer Organization

Introductory course in computer organization and architecture. Topics include basic hardware and software
structure, addressing methods, programs control, processing units, I-O organization, arithmetic, main-
memory organization, peripherals, microprocessor families, RISC architectures, and multiprocessors.

Prerequisites: CSCB101, ECEB201
Credit Hours 3 Lecture Hours: 42 Lab Hours: 0 Recitation Hours: 0
CE2004 BOK Coverage: CE-CAO 0 – 3, 9, CE-DIG 6-7

ECEB301: Operating Systems

Basic operating system components and their functions, concurrency, scheduling and dispatch, memory and
device management, file systems, and performance evaluation.

Prerequisites: CSCB201, ECEB207
Credit Hours 3 Lecture Hours: 42 Lab Hours: 0 Recitation Hours: 0
CE2004 BOK Coverage: CE-OPS 0 –9, CE-CAO 3, 5, 8

ECEB302: Computer Architecture

Computer bus structures, memory organization, interrupt structures, arithmetic units, input-output structures,
central processor organization, control function implementation, pipelining, performance measurement, and
distributed system models.

Prerequisites: ECEB207
Credit Hours 3 Lecture Hours: 42 Lab Hours: 0 Recitation Hours: 0
CE2004 BOK Coverage: CE-CAO 3–10, CE-DIG 6

ECEB303: Computer Design Laboratory

Laboratory experiments include interfacing memory and peripheral devices to a microcomputer, the design of
software to control these devices, and the integration of computer hardware and software to control a system.

Prerequisites: ECEB203, ECEB207
Credit Hours 1 Lecture Hours: 0 Lab Hours: 42 Recitation Hours: 0
CE2004 BOK Coverage: CE-CAO 3-5

ECEB304: Digital System Design

Hierarchical modular design of digital systems, design modeling with a hardware description language,
functional and timing simulation of digital systems, implementation in programmable logic devices and field-
programmable gate arrays, formal verification, fault models and testing. Designs are developed, simulated
and implemented in field-programmable gate arrays in laboratory sessions.

Prerequisites: ECEB207
Credit Hours 3 Lecture Hours: 42 Lab Hours: 0 Recitation Hours: 0
CE2004 BOK Coverage: CE-DIG 7, CE-CSE 0–7, VLS 10-11

ECEB305: Digital Systems Laboratory

Digital system designs are developed, modeled, simulated and implemented in field-programmable gate
arrays.

- B.14 -

Computing Curricula - Computer Engineering Appendix B – Sample Curricula
Final Report 2004 December 12

Corequisites: ECEB304
Credit Hours 1 Lecture Hours: 0 Lab Hours: 42 Recitation Hours: 0
CE2004 BOK Coverage: CE-DIG 7, CE-CSE 0–7, VLS 10-11

ECEB306: Analog Electronics

Design and analysis of single-stage and multistage transistor amplifiers; biasing for integrated circuit design;
small-signal modeling; operational amplifier circuits; IC design techniques; noise and RF amplifiers; D/A and
A/D converters.

Prerequisites: ECEB206
Credit Hours 3 Lecture Hours: 42 Lab Hours: 0 Recitation Hours: 0
CE2004 BOK Coverage: CE-ELE 9-14

ECEB307: Random Signals & Systems

Introduction to engineering problems of a probabilistic nature. Systems transformations, statistical averages,
simulation, and estimation of system parameters.

Prerequisites: ECEB204
Credit Hours 3 Lecture Hours: 42 Lab Hours: 0 Recitation Hours: 0
CE2004 BOK Coverage: CE-PRS 0-7

ECEB401: Fundamentals of Software Design

Foundations of software design, reasoning about software, the calculus of programs, survey of formal
specification techniques and design languages, human-computer interaction, input/output, graphical user
interfaces.

Prerequisites: CSCB201
Credit Hours 3 Lecture Hours: 42 Lab Hours: 0 Recitation Hours: 0
CE2004 BOK Coverage: CE-SWE 0 – 7, CE-CSE 0-8, CE-HCI 0-4

ECEB402: Embedded Computing Systems

Interfacing of microcomputers to peripherals or other computers for purposes of data acquisition, device
monitoring and control, and other communications. The interfacing problem is considered at all levels
including computer architecture, logic, timing, loading, protocols, and software laboratory for building and
simulating designs.

Prerequisites: ECEB302, ECEB303
Credit Hours 3 Lecture Hours: 42 Lab Hours: 0 Recitation Hours: 0
CE2004 BOK Coverage: CE-ESY 0–10, CE-CAO 5, CE-ELE 8

ECEB403: Computer Networks

Introduction to the design and performance analysis of computer networks. Architectures, protocols,
standards and technologies of computer networks; design and implementation of networks based on
requirements; applications of information networks for data, audio and video communications; performance
analysis.

Prerequisites: ECEB207, ECEB301
Credit Hours 3 Lecture Hours: 42 Lab Hours: 0 Recitation Hours: 0
CE2004 BOK Coverage: CE-NWK 0–8

ECEB404: Ethics, Society, Profession

Critical examination of ethical problems associated with computer engineering. Discussion of these problems
is conducted within the framework of classical philosophical ethical theories. Legal and quasi-legal (i.e.,
policy and regulative) issues are also considered. Topics addressed include the process of ethical decision-
making, privacy and confidentiality, computer crime, professional codes and responsibilities, software piracy,
the impact of computers on society.

Prerequisites: Junior standing
Credit Hours 3 Lecture Hours: 42 Lab Hours: 0 Recitation Hours: 0
CE2004 BOK Coverage: CE-SPR 0-8

ECEB405: Design Projects in Computer Engineering

Individually defined projects oriented toward providing experience in establishment of objectives and
criteria, synthesis, analysis, construction, testing, and evaluation; development of student creativity through
the solution of open-ended problems; individual instruction in design methodology.

Prerequisites: ECEB304, ECEB401
Credit Hours 3 Lecture Hours: 14 Lab Hours: 84 Recitation Hours: 0

- B.15 -

Computing Curricula - Computer Engineering Appendix B – Sample Curricula
Final Report 2004 December 12

CE2004 BOK Coverage: none

Sample ECE Elective Courses

ECEB501: Communications Systems

Study of communication systems design and analysis. Topics include signals and spectra, baseband signaling
and detection in noise, digital and analog modulation and demodulation techniques, and communications link
budget analysis.

ECEB502: Digital Electronics
Electronic devices and circuits of importance to digital computer operation and to other areas of electrical
engineering are considered. Active and passive waveshaping, waveform generation, memory elements,
switching, and logic circuits are some of the topics. Experimentation with various types of circuits is
provided by laboratory projects.

ECEB503: Instrumentation
Theory and analysis of transducers and related circuits and instrumentation. Generalized configurations and
performance characteristics of instruments are considered. Transducer devices for measuring physical
parameters such as motion, force, torque, pressure, flow, and temperature are discussed.

ECEB504: Integrated Circuit Design
Design concepts and factors influencing the choice of technology; fundamental MOS device design; silicon
foundries, custom and semi-custom integrated circuits; computer-aided design software/hardware trends and
future developments; hands-on use of CAD tools to design standard library cells; systems design
considerations, testing, and packaging.

ECEB505: Computer-Aided Analysis and Design
Principles and methods suited to the solution of engineering problems on the digital computer. Topics include
widely used methods for the solution of the systems of algebraic and/or differential equations which arise in
modeling of engineering systems, data approximation and curve fitting, continuous system simulation
languages, and design-oriented programming systems.

ECEB506: Introduction to Digital Signal Processing
Introduction to characteristics, design, and applications of discrete time systems; design of digital filters;
introduction to the Fast Fourier Transform (FFT); LSI hardware for signal processing applications.

ECEB507: Knowledge Engineering
Introduction to the theoretical and practical aspects of knowledge engineering or applied artificial
intelligence. Topics include symbolic representation structures and manipulation, unification, production
systems and structures, rule-based and expert systems, planning and AI system architectures; system design
in PROLOG and LISP. Project is required.

ECEB508: Digital Communications
Study of digital communication systems. Topics include error-control coding, synchronization, multiple-
access techniques, spread spectrum signaling, and fading channels.

- B.16 -

Computing Curricula - Computer Engineering Appendix B – Sample Curricula
Final Report 2004 December 12

B.6 Curriculum Implementation C

Computer Engineering Program Administered Jointly by a
Computer Science Department and an Electrical Engineering Department

B.6.1 Program Goals and Features

A computer science department and an electrical engineering department (or perhaps a general engineering
department) jointly sponsor this program leading to a bachelor’s degree in computer engineering. This
curriculum provides a broad foundation in the science and engineering of computers and digital systems
with emphasis on theory, analysis, design, natural science, and discrete and continuous mathematics. The
curriculum is characterized by a general education component comparable to that of Curriculum B
described earlier, with a balanced coverage of traditional electrical engineering topics, fundamentals of
computer science, computer architecture, embedded systems, networks, and software design, as well as the
interactions between these elements. The minimum recommended core coverage is exceeded in most of
these areas, with four technical electives available to allow students to emphasize a selected area if they
choose. Graduates should thus be well prepared to pursue careers that entail the design of hardware,
software, and/or systems.
 The thorough preparation afforded by the computer engineering curriculum includes the broad
education necessary to understand the impact of engineering solutions in a global and societal context.
Hence, graduates will be well prepared for professional employment or advanced studies.

B.6.2 Summary of Requirements

This program of study is built around a set of thirteen required courses in computer science and thirteen
required courses in electrical engineering, comprising 67 required credit hours of study. The program
achieves flexibility through a judicious choice of four technical electives. Design and the use of modern
tools are emphasized throughout the curriculum, culminating in a one-semester capstone design course.
The laboratory experience includes four required lab courses in electric circuit analysis, digital logic
circuits, electronics, and computer architecture, and provides additional opportunities for team-based
projects. Oral and written communication skills are addressed in the laboratory courses and the capstone
project, as well as in courses on ethics, technology and society, and others.
 The computer engineering segment of the curriculum, including professional electives, comprises 79
semester credit-hours of study. This curriculum utilizes a relatively traditional course structure and
content. It requires 44 courses, with credit hours distributed as follows:

Credit-hours Topic areas
15 Mathematics
14 Basic science (physics, chemistry)
21 Humanities, social sciences, composition, literature
35 Required computer science
32 Required electronic engineering
12 Technical electives (computer science or engineering)

129 TOTAL Credit Hours for Computer Engineering Program

- B.17 -

Computing Curricula - Computer Engineering Appendix B – Sample Curricula
Final Report 2004 December 12

B.6.3 Four-Year Curriculum Model for Curriculum C

Course Description Credit Course Description Credit

Semester 1 Semester 2

Calculus I 4 MTH 102 Calculus II 4

CSC 101 C Discrete Structures for Computer Sci. 3 PHY 101 Physics I + Lab 5

CSC 102 C Programming I 3 CSC 103 C

MTH 101

Programming II 3

ENG 101 Introduction to Engineering 2 English Composition II 3 C

 English Composition I 3 Humanities / Social Science 3

 Total Credit Hours 15 Total Credit Hours 18

Semester 3 Semester 4
MTH 201 Calculus III 4 CHM 201 Chemistry I + Lab 4

PHY 201 Physics II + Lab 5 CSC 202 Intro to Computer Organization 3 C

CSC 201 Algorithms and Data Structures 3 ENG 203 C Circuit Analysis Lab 1 C

ENG 201 Engineering Circuit Analysis 3 Literature 3 C

ENG 202 Digital and Logic Design 3 Humanities / Social Science 3 C

 Humanities / Social Science 3

 Total Credit Hours 18 Total Credit Hours 17

Semester 5 Semester 6
MTH 301 Engineering Mathematics I 3 CSC 302 C Computing, Ethics & Society 1

CSC 301 Operating Systems 3 CSC 303 Computer Network Communications 3 C C

ENG 301 C Electronic Circuits 3 CSC 304 Applied Probability and Statistics 3 C

ENG 302 Digital and Logic Design Lab 1 ENG 305 VLSI Design 3 C C

ENG 303 Embedded Microprocessor Systems 3 ENG 306 Electronics Lab 1 C C

ENG 304 Signals and Linear Systems 3 Technical elective 3 C

 Literature 3

 Total Credit Hours 16 Total Credit Hours 17

Semester 7 Semester 8

CSCC401 Computer Architecture 3 CSC 403 Computer Architecture Lab 1 C

CSC 402 Software Engineering 3 CSC 404 Simulation and Modeling 3 C C

ENG 401 C
Digital Communication and Signal
Processing 3 ENGC403 Computer Engineering Design 3

ENGC402 Technology & Society 3 Technical elective 3

 Technical elective 3 Technical elective 3

 Total Credit Hours 15 Total Credit Hours 13

- B.18 -

Computing Curricula - Computer Engineering Appendix B – Sample Curricula
Final Report 2004 December 12

B.6.4 Mapping of Computer Engineering BOK to Curriculum C

BOK Area

Course

A
L
G

C
A
O

C
S
E

C
S
G

D
B
S

D
I
G

D
S
C

D
S
P

E
L
E

E
S
Y

H
C
I

N
W
K

O
P
S

P
R
F

P
R
S

S
P
R

S
W
E

V
L
S

CSCC101 0-6

CSCC102 0-4 0-1

CSCC103 5-8 2-3

CSCC201 0-6 4-5

CSCC202 0-4

CSCC301 0-3 0-8

CSCC302 0-1 0-9

CSCC303 0-8

CSCC304 0-8

CSCC401 3-
10

CSCC402 0-2 0-4 0-9

CSCC403 3-5
8-9

CSCC404 7-
10

ENGC101 0-1 0-1

ENGC201 0-3

ENGC202 0-6

ENGC203 1-3

ENGC301 0-8

ENGC302 2-6

ENGC303 0-8

ENGC304 0-6

ENGC305 0-
11

ENGC306 9-
14

ENGC401 0-
11

ENGC402 5-
10 5-9

ENGC403 0-9

Required
BOK Hours 30 63 18 43 5 57 33 17 40 20 8 21 20 39 33 16 13 10

Required
BOK Units 0-5 0-9 0-8 0-6 0-2 0-9 0-6 0-6 0-

10 0-6 0-4 0-6 0-4 0-5 0-7 0-8 0-6 0-5

Elective
BOK Units 6 10 9-

11 7-9 3-8 10 7-
11

11-
14

7-
10

5-
10

7-
10 5-8 6-8 8 9 7-9 6-

11

- B.19 -

Computing Curricula - Computer Engineering Appendix B – Sample Curricula
Final Report 2004 December 12

B.6.5 Curriculum C – Course Summaries

CSCC101: Discrete Structures for Computer Science

Review of propositional and predicate logic; methods of theorem proving; strong and weak induction; finite
and infinite sets, set operations; introductions to computational complexity, theta and big-O notation;
combinatorics, including permutations and combinations; discrete probability and binomial distribution.
 Prerequisites: Pre-calculus or equivalent.

Credit Hours: 3 Lecture Hours: 42 Lab Hours: 0 Recitation Hours: 14
CE2004 BOK Coverage: CE-DSC 0-6.

CSCC102: Programming I

Introduction to computer science with emphasis on problem solving, programming and algorithm design; use
of a high-level programming language for solving problems and emphasizing program design and
development; topics include basic programming constructs, expressions, conditional statements, loop
statements, functions, classes and objects, data types, arrays, and strings.

Prerequisites: Pre-calculus or equivalent.
Credit Hours: 3 Lecture Hours: 42 Lab Hours: 0 Recitation Hours: 14
CE2004 BOK Coverage: CE-PRF 0-4; CE-SWE 0-1.

CSCC103: Programming II

Investigate the essential properties of data structures, abstract data types, and algorithms for operating on
them; to use these structures as tools to assist algorithm design; introduction of searching and sorting
techniques.

Prerequisites: CSCC102
Credit Hours: 3 Lecture Hours: 42 Lab Hours: 0 Recitation Hours: 14
CE2004 BOK Coverage: CE-PRF 5–8; CE-SWE 2-3.

CSCC201: Algorithms and Data Structures

The study of representations for lists, stacks, queues, trees, and graphs; fundamental algorithms and their
implementation for sorting, searching, merging, hashing, graph theoretic models, and recursive procedures.

Prerequisites: CSCC101, CSCC103
Credit Hours: 3 Lecture Hours: 42 Lab Hours: 0 Recitation Hours: 0
CE2004 BOK Coverage: CE-ALG 0–6; CE-SWE 4-5.

CSCC202: Introduction to Computer Organization

Internal organization of computers; registers, organization, control mechanisms; instruction sets,
microprogramming, hardware interfaces; datapaths and pipelining; structural, data, and branch hazards;
optimization; memory and caching; non-von Neumann designs.

Prerequisites: CSCC101, ENGC202
Credit Hours: 3 Lecture Hours: 42 Lab Hours: 0 Recitation Hours: 0
CE2004 BOK Coverage: CE-CAO 0-4.

CSCC301: Operating Systems

A study of the internal design of operating systems; topics include memory management, multiprogramming,
virtual memory, paging and segmentation; job and process scheduling; multiprocessor systems; device and
file management; thrashing, cache memory.

Prerequisites: CSCC201, CSCC202
Credit Hours: 3 Lecture Hours: 14 Lab Hours: 0 Recitation Hours: 0
CE2004 BOK Coverage: CE-DBS 0-3; CE-OPS 0-8.

CSCC302: Computing, Ethics, and Society

Critical examination of ethical problems associated with computer technology; discussion of these problems
conducted within the framework of classical philosophical ethical theories; legal and quasi-legal (i.e., policy
and regulative) issues; topics addressed include the process of ethical decision-making, privacy and
confidentiality, computer crime, professional codes and responsibilities, software piracy, the impact of
computers on society.

Prerequisites: Sophomore standing
Credit Hours: 1 Lecture Hours: 42 Lab Hours: 0 Recitation Hours: 0
CE2004 BOK Coverage: CE-HCI 0-1; CE-SPR 0-9.

- B.20 -

Computing Curricula - Computer Engineering Appendix B – Sample Curricula
Final Report 2004 December 12

CSCC303: Computer Networks

Technical introduction to data communication; OSI reference model, layer services, protocols, LANs, packet
switching and X.25, ISDN; file transfer, virtual terminals, system management and distributed processing.

Prerequisites: CSCC103, MTH 101
Credit Hours: 3 Lecture Hours: 42 Lab Hours: 0 Recitation Hours: 0
CE2004 BOK Coverage: CE-NWK 0-8.

CSCC304: Applied Probability and Statistics

Systematic development of the concept of probability and random process theory; topics include probability
and set theory, random variables, density and distribution functions, multivariate distributions, sampling
statistics and distributions, central limit theorem, estimation and the philosophy of applied statistics;
application to problems in the physical sciences and engineering.

Prerequisites: MTH 102
Credit Hours: 3 Lecture Hours: 42 Lab Hours: 0 Recitation Hours: 0
CE2004 BOK Coverage: CE-PRS 0-8

CSCC401: Computer Architecture

Study of computer architecture from classical to advanced perspectives; explores architectural characteristics
of modern computer systems such as performance, instruction sets, assemblers, datapaths, pipelining,
caching, memory management, I/O considerations, multiprocessing, wireless communication, and other
advanced systems.

Prerequisites: CSCC202, ENGC202, and Senior Standing
Credit Hours: 3 Lecture Hours: 42 Lab Hours: 0 Recitation Hours: 0
CE2004 BOK Coverage: CE-CAO 3-10.

CSCC402: Software Engineering

Study of the nature of the program development task when many people, modules and versions are involved
in designing, developing and maintaining a large program or system; issues addressed include software
design, specification, version control, testing, cost estimation and management; study of software systems in
different domains such as database systems and HCI systems are also addressed.

Prerequisites: CSCC201
Credit Hours: 3 Lecture Hours: 42 Lab Hours: 0 Recitation Hours: 0
CE2004 BOK Coverage: CE-DBS 0-2; CE-HCI 0-4; CE-SWE 0-9.

CSCC403: Computer Architecture Laboratory

Experiments provide laboratory experience in the designs and operations of different types of computer
architecture, memory architectures, I/O and bus subsystems, special purpose architectures, parallel
processing, and distributed systems; explore hardware and software issues and tradeoffs in the design,
implementation, and simulation of working computer systems.

Prerequisites: ENGC302, CSCC401
Credit Hours: 1 Lecture Hours: 0 Lab Hours: 42 Recitation Hours: 0
CE2004 BOK Coverage: CE-CAO 3-5,8-9

CSCC404: Simulation and Modeling

Fundamental principles of modeling and simulation; methodology including model formation, design of
simulation experiments, analysis of generated data and validation of results; survey of applications; design
project.

Prerequisites: CSCC103
Credit Hours: 3 Lecture Hours: 42 Lab Hours: 0 Recitation Hours: 0
CE2004 BOK Coverage: CE-DIG 7-10

- B.21 -

Computing Curricula - Computer Engineering Appendix B – Sample Curricula
Final Report 2004 December 12

ENGC101: Introduction to Engineering

Overview of the engineering profession, its genesis and evolution to the present day, including fields of
engineering and career paths within same; study of ethics and with emphasis on the engineering workplace;
engineering design and analysis techniques, development of problem-solving skills, communication skills;
student design projects.

Prerequisites: Freshman standing
Credit Hours: 2 Lecture Hours: 28 Lab Hours: 0 Recitation Hours: 0
CE2004 BOK Coverage: CE-HCI 0-1; CE-SPR 0-1.

ENGC201: Engineering Circuit Analysis

Principles of linear system analysis introduced through the study of electric networks containing lumped
circuit elements; DC resistive circuit analysis techniques; transient analysis with capacitors and inductors;
steady-state AC analysis using phasors to study impedance and resonance.

Corequisites: MTH 201, PHY 201
Credit Hours: 3 Lecture Hours: 42 Lab Hours: 0 Recitation Hours: 0
CE2004 BOK Coverage: CE-CSG 0-3.

ENGC202: Digital and Logic Design

Internal structure of computers; number systems and arithmetic, two’s-complement arithmetic; Boolean
algebra, logic design, gates, synthesis of combinatorial networks; flip-flops, registers, sequential circuits,
control mechanisms, timing; data and control flow in a typical computer.

Prerequisites: CSCC101, CSCC103
Credit Hours: 3 Lecture Hours: 42 Lab Hours: 0 Recitation Hours: 0
CE2004 BOK Coverage: CE-DIG 0-6.

ENGC203: Circuit Analysis Laboratory

The laboratory is designed to enhance the understanding and proper use of selected principles from circuit
theory; experiments introduce basic measurement techniques and problem solving; comparisons between
theoretical and experimental results are investigated in a written laboratory report; topics include meter
calibration, oscilloscope use, transient and steady-state analysis, AC parallel and series circuits, electric
filters, Thevenin’s theorem, and operational amplifiers.

Prerequisites: ENGC201
Credit Hours: 1 Lecture Hours: 0 Lab Hours: 42 Recitation Hours: 0
CE2004 BOK Coverage: CE-CSG 1-3.

ENGC301: Electronics Circuits

Principles of semiconductor electronic devices: operational amplifiers, diodes and bipolar junction
transistors; amplifier specification and external characteristics; analysis of electronic circuits using graphical
methods and electronic device models; analysis and design of electronic application circuits such as rectifiers,
clippers, inverting amplifiers and voltage followers; introduction to digital simulators.

Prerequisites: ENGC201
Credit Hours: 3 Lecture Hours: 42 Lab Hours: 0 Recitation Hours: 0
CE2004 BOK Coverage: CE-ELE 0-8.

ENGC302: Digital and Logic Design Laboratory

Hands-on experience in using digital electronics by way of integrated circuits without engineering bias;
practical construction, testing, and implementation of circuits useful in digital circuits and modules.

Prerequisites: ENGC202
Credit Hours: 1 Lecture Hours: 0 Lab Hours: 42 Recitation Hours: 0
CE2004 BOK Coverage: CE-DIG 2-6.

ENGC303: Embedded Microprocessor Systems

Implementation of microprocessors and microcontrollers in embedded digital computer systems; topics
include architecture, operations, software; hardware/software design methodology.

Prerequisites: CSCC103, CSCC202
Credit Hours: 3 Lecture Hours: 28 Lab Hours: 42 Recitation Hours: 0
CE2004 BOK Coverage: CE-ESY 0-8.

ENGC304: Signals and Linear Systems
Analysis of discrete time and continuous-time signals and systems; development of Fourier analysis;

- B.22 -

Computing Curricula - Computer Engineering Appendix B – Sample Curricula
Final Report 2004 December 12

determination of transfer functions and impulse response of linear systems; design of continuous-time electric
filters; sampling and the Nyquist criterion; introduction of state-variable concepts.

Prerequisites: ENGC201, MTH 301
Credit Hours: 3 Lecture Hours: 42 Lab Hours: 0 Recitation Hours: 0
CE2004 BOK Coverage: CE-CSG 0-6.

ENGC305: VLSI Design

Study of basic methods of circuit design are presented followed by execution analysis and optimization using
algorithms developed by the student; emphasis will be on structured design methodologies for MOS systems
with focus on performance considerations and design methodologies for VLSI IC chips; VLSI ASIC design
software packages are used to design and simulate a small CMOS chip.

Prerequisites: ENGC301, CSCC202
Credit Hours: 3 Lecture Hours: 42 Lab Hours: 0 Recitation Hours: 0
CE2004 BOK Coverage: CE-VLS 0-11.

ENGC306: Electronics Laboratory

The laboratory is designed to enhance the understanding and proper use of selected principles of electronic
circuits; topics cover diode and transistor applications, including feedback analysis and design, BJT and FET
amplifier design and the analysis of measurement limitations of selected instruments.

Prerequisites: ENGC301, ENGC203
Credit Hours: 1 Lecture Hours: 0 Lab Hours: 42 Recitation Hours: 0
CE2004 BOK Coverage: CE-ELE 9-14.

ENGC401: Digital Communication and Signal Processing
Study of basic digital communication principles; digital spectral analysis, discrete Fourier transforms,
sampling and quantization; digital signal processing basics such as transformation, filtering, and basic audio
and image processing concepts.

Prerequisites: ENGC304
Credit Hours: 3 Lecture Hours: 42 Lab Hours: 0 Recitation Hours: 0
CE2004 BOK Coverage: CE-DSP 0-11.

ENGC402: Technology and Society

The interrelationship between technology and society in the past and present is established; technological
achievements of major civilizations from the Egyptians and Babylonians through the classical Mediterranean,
Medieval, Renaissance, and modern industrialized eras; worldviews of different cultures toward technology
are investigated, as well as both the desired and the unforeseen consequences of technological change.

Prerequisites: Junior standing
Credit Hours: 3 Lecture Hours: 42 Lab Hours: 0 Recitation Hours: 0
CE2004 BOK Coverage: CE-HCI 5-10; CE-SPR 5-9.

ENGC403: Computer Engineering Design

Integration of physical principles with mathematical analysis and/or experimental techniques; develop a basis
for an individually required design project in computer engineering; design of suitable project.

Prerequisites: Senior standing
Credit Hours: 3 Lecture Hours: 14 Lab Hours: 84 Recitation Hours: 0
CE2004 BOK Coverage: CE-CSE 0-9.

- B.23 -

Computing Curricula - Computer Engineering Appendix B – Sample Curricula
Final Report 2004 December 12

B.7 Curriculum Implementation

Computer Engineering Program Representative of a
Program in the United Kingdom and Other Nations

B.7.1 Program Goals and Features

This curriculum model demonstrates a typical program in computer engineering as one might find in the
United Kingdom, Europe, Asia, and other parts of the world. With slight and differing modifications, the
demonstrated three-year degree program would be a typical Bachelor of Engineering degree in England.
The four year curriculum would be a typical Masters of Engineering degree in England or, with some slight
modification, a Bachelor of Engineering degree in Scotland A heavy emphasis on technical material with
little room for broader general education classes characterizes this model.
 Students desiring intensive study in computer engineering will find this program to be a challenging
and rewarding experience. The curriculum provides a broad foundation in the science and engineering of
computers and digital systems with emphasis on theory, analysis, and design. The curriculum will also
develop analytical, computer and applied skills which will enable students to analyze, design and test
digital and computer systems, architectures, networks, and processes. Graduates of the program will be
able to apply and evaluate various areas of computer engineering such as applied electronics, digital
devices and systems, electromagnetic fields and waves, computer architectures, systems, and networks.
They will also have a deep understanding of hardware issues, software issues, models, the interactions
between these issues, and related applications. Graduates will possess design skills and they will have the
capacity to apply their accumulating knowledge to computer systems. The thorough preparation afforded
by this computer engineering curriculum includes the broad education necessary to understand the impact
of engineering solutions in a global and societal context.
 A combination of theory, practice, application, and attitudes accompany the construction of each
module or course. The intention is to convey a certain ethos about computer engineering. Especially in the
early years of a course, this is an important consideration. Any model curriculum of this kind should
contain general aims (or goals) and specific objectives for the program of study; it should also capture the
intended characteristics of its graduates.
 For the purposes of ease of comparison, this model attempts to outline the degree in conformity with
the three previous curricula implementations. This means that the curriculum comprises courses having
three credit hours (or 42 contact hours) of study with approximately ten courses per year. Both three and
four-year curriculum models are presented, since in many places, especially in Europe, these programs only
take three years because all or most of the mathematics, science, general education experiences take place
in the “gymnasium” before beginning university studies. Thus, the three-year program that follows is
equivalent to an undergraduate program in many places.

B.7.2 Summary of Requirements

In these models, the introduction of concepts in computer engineering appears in the early years. The
justification for this is that students really should sample the discipline they will study, a matter deemed
important for motivational purposes. For the third and fourth years, the curriculum includes a number of
optional classes. With regard to a four-year implementation of this model, the fourth year exposes the
student with a substantial influx on new and innovative subject matter representing the current activities
and developments in computer engineering. Such an approach allows students to develop specializations or
specialty tracts with the intent of having a focused orientation of their studies. It also indicates that degrees
in computer engineering can have different emphases and individual students can follow different
specializations.
 In these programs of study, one would expect that some element of laboratory experience would
constitute an integral part of each course in computer engineering; the purpose of this integration is to
reinforce and illustrate the work of the associated lectures. In some classes, the amount of laboratory work
would typically be heavier than in other parts. Accordingly, we have adopted the following convention:

- B.24 -

Computing Curricula - Computer Engineering Appendix B – Sample Curricula
Final Report 2004 December 12

 where intensive laboratory activity is desirable, a 3-credit class is typically composed of 28 hours of
lectures and 28 hours of laboratory work plus associated recitation time

 where less intensive laboratory activity is desired, then typically 14 hours of laboratory work and 42
hours of lecture work is required together with the associated recitation hours

 The illustration of a program in computer engineering using this model appears in two forms: A three-
year and a four-year illustration. The three-year illustration contains 30 courses and 90 credit hours of
study. The four-year illustration contains 40 courses and 120 credit hours of study. The distribution of
credit hours for these two illustrations of this model is as follows:

Three-year
Program

Four-year
Program

Credit hours Credit hours Topic areas
15 15 Mathematics
21 39 Required computer engineering
12 12 Required computer science
21 21 Required electrical engineering
15 15 Required software engineering
 6 6 Third-year electives in computer engineering

 12 Fourth-year electives
90 120 TOTAL Credit Hours for Computer Engineering Program

 The two illustrations allow for electives (options) available in the third year and the fourth year of
study. Students may chose two third-year electives selected from a set of four computer engineering
courses (modules). For programs following the four-year illustration, students may choose any four fourth-
year electives selected from a set of fourteen computer engineering courses and four software engineering
courses. The course options are as follows.

Third-year Electives (computer engineering)

Computer Graphics Intelligent Systems and Robotics
Device Development Multimedia Systems

Fourth-year Electives (computer engineering)

Advanced Computer Design Computer Vision
Control Systems Engineering Fault Tolerant Systems Design
Grid Computing Hardware Software Co-design
High Performance Computing Intelligent Systems
Mobile Computer Systems Network Security
Parallel Computing and Neuro-computing Robotics and Simulation
Safety Critical Systems Software for Telecommunications

Fourth-year Electives (software engineering)

Computer Graphics and Multimedia Formal Software Development
Information Systems Development Interactive Systems Design

 What follows is a representation of two possible curriculum models shown as a Four-year Illustration
and a Three-year Illustration. Following the Three-year Illustration is a mapping of courses from the three-
year program to the body of knowledge for computer engineering. The four-year model is not applicable
here because the fourth year generally has a specific focus more likely found in post-baccalaureate
programs. The courses (or modules) appear in the Course Summaries, which follows the Three-Year
Illustration of the computer engineering curriculum.

- B.25 -

Computing Curricula - Computer Engineering Appendix B – Sample Curricula
Final Report 2004 December 12

B.7.3 Four-Year Curriculum Model for Curriculum D

Course Description Credit Course Description Credit

Semester 1 Semester 2
MTHD101 Discrete Structures for Computing 3 MTH 103 Advanced Calculus 3

MTHD102 Applied Probability and Statistics 3 MTH 104 Differential and Difference Equations 3

CSCD101 Computer and Information Systems 3 CPED101 Concepts in Computer Engineering 3

ELED101 Foundations of Electronics 3 ELED102 Digital Circuits I 3

SWED101 Programming Basics 3 SWED102 Programming Fundamentals 3

 Total Credit Hours 15 Total Credit Hours 15

Semester 3 Semester 4

MTH 201 Mathematics for Engineers 3 CPED203 Operating Systems and Net-Centric
Computing 3

CPED201 Computer Organization 3 CPED204 Computer Systems Engineering 3

CPED202 Professional Issues in Computer
Engineering 3 CSCD202 Information Management 3

CSCD201 Analysis and Design of Algorithms 3 ELED202 Analog Circuits 3

ELED201 Digital Circuits II 3 SWED201 Building Software Systems 3

 Total Credit Hours 15 Total Credit Hours 15

Semester 5 Semester 6

CPED301 Networking and Communications 3 CPED302 Embedded Computer Systems 3

CSCD301 Programming Languages and Syntax-
Directed Tools 3 CPED303 Computer Architecture 3

ELED301 Signals and Systems 3 ELED302 System Control 3

SWED301 Software Engineering 3 ELED303 Digital Signal Processing 3

 Third Year Option A 3 Third Year Option B 3

 Total Credit Hours 15 Total Credit Hours 15

Semester 7 Semester 8

CPED401 Project Management 3 CPED404 Entrepreneurship 3

CPED402 Business and Economics of Computer
Engineering 3 CPED405 Ubiquitous and Pervasive Computing 3

CPED403 Individual Project I 3 CPED406 Individual Project II 3

 Fourth Year Option A 3 Fourth Year Option C 3

 Fourth Year Option B 3 Fourth Year Option D 3

 Total Credit Hours 15 Total Credit Hours 15

- B.26 -

Computing Curricula - Computer Engineering Appendix B – Sample Curricula
Final Report 2004 December 12

B.7.4 Three-Year Curriculum Model for Curriculum D

Course Description Credit Course Description Credit

Semester 1 Semester 2
MTHD101 Discrete Structures for Computing 3 MTH 103 Advanced Calculus 3

MTHD102 Applied Probability and Statistics 3 MTH 104 Differential and Difference Equations 3

CSCD101 Computer and Information Systems 3 CPED101 Concepts in Computer Engineering 3

ELED101 Foundations of Electronics 3 ELED102 Digital Circuits I 3

SWED101 Programming Basics 3 SWED102 Programming Fundamentals 3

 Total Credit Hours 15 Total Credit Hours 15

Semester 3 Semester 4

MTH 201 Mathematics for Engineers 3 CPED203 Operating Systems and Net-Centric
Computing 3

CPED201 Computer Organization 3 CPED204 Computer Systems Engineering 3

CPED301 Networking & Communications 3 CSCD202 Information Management 3

CSCD201 Analysis and Design of Algorithms 3 ELED202 Analog Circuits 3

ELED201 Digital Circuits II 3 CPED302 Embedded Computer Systems 3

 Total Credit Hours 15 Total Credit Hours 15

Semester 5 Semester 6

CPED403 Individual Project I 3 CPED406 Individual Project II 3

CSCD301 Programming Languages and Syntax-
Directed Tools 3 CPED303 Computer Architecture 3

ELED301 Signals and Systems 3 ELED302 System Control 3

SWED301 Software Engineering 3 ELED303 Digital Signal Processing 3

 Third Year Option A 3 Third Year Option B 3

 Total Credit Hours 15 Total Credit Hours 15

- B.27 -

Computing Curricula - Computer Engineering Appendix B – Sample Curricula
Final Report 2004 December 12

B.7.5 Mapping of Computer Engineering BOK to Three-Year Curriculum D

BOK Area

Course

A
L
G

C
A
O

C
S
E

C
S
G

D
B
S

D
I
G

D
S
C

D
S
P

E
L
E

E
S
Y

H
C
I

N
W
K

O
P
S

P
R
F

P
R
S

S
P
R

S
W
E

V
L
S

CPED101 0-9

CPED201 0-
4,9

CPED202 0-9
CPED203 0-1 0-7

CPED204 0-
11

CPED301 0-9

CPED302 0-
10

CPED303 5-9
CPED401 7 1-8
CPED402
CPED403
CPED404
CPED405 6
CPED406
CSCD101 0-4 0-2
CSCD201 0-6 3
CSCD202 0-8
CSCD301 6-7
ELED101 0-3 0-4 0-2
ELED102 0-6 3-5
ELED201 6-9 4-8

ELED202 9-
14

ELED301 4-9 0-3
ELED302 9

ELED303 0-
11

SWED101 0-3 0-1
SWED102 4-8 2-3

SWED201 4-
10 8 6-7

SWED301 0-9
SWED302
MTHD101 0-6
MTHD102 0-8

Required
Hours 30 63 18 43 5 57 33 17 40 20 8 21 20 39 33 16 13 10

Required
Units 0-5 0-9 0-8 0-6 0-2 0-9 0-6 0-6 0-10 0-6 0-4 0-6 0-4 0-5 0-7 0-8 0-6 0-5

Elective
Units 6 10 9-

11 7-9 3-8 10 7-
11

11-
14

7-
10

5-
10

7-
10 5-8 6-8 8 9 7-9 6-

11

- B.28 -

Computing Curricula - Computer Engineering Appendix B – Sample Curricula
Final Report 2004 December 12

B.7.6 Curriculum D – Course Summaries

CPED101: Concepts in Computer Engineering

Range of illustrations of the applicability of developments in computer engineering exhibiting the use of
hardware and software systems in a variety of different contexts including simple devices, embedded
systems, systems with an important human computer interface, systems involving computer communications,
and systems of a sensitive nature such as safety critical systems; issues involved in electronics, software,
human computer interface, use of tools, systems, and the engineering dimension.

Prerequisites: Two courses in calculus and two courses in physics
Credit Hours: 3 Lecture Hours: 42 Lab Hours: 14 Recitation Hours: 14
CE2004 BOK Coverage: CE-CSE 0-9

CPED201: Computer Organization

The fundamental elements of digital logic and their use in computer construction; register level description of
computer execution and the functional organization of a computer; essential elements of computer
architecture; major functional components of a modern computer system. Characteristics of machine codes:
instruction formats and addressing modes. The elements of machine and assembly code programming.
Memory hierarchy and organization. Interfacing and communication between processor and peripheral
devices. Experiments provide laboratory experience in hardware and software to interface memory and
peripheral components to a computer system.

Prerequisites: CSCD101
Credit Hours: 3 Lecture Hours: 42 Lab Hours: 14 Recitation Hours: 14
CE2004 BOK Coverage: CE-CAO 0-4, 9

CPED202: Professional Issues in Computer Engineering

Critical examination of ethical problems associated with computer engineering; discussion of these problems
conducted within the framework of classical philosophical ethical theories; legal and quasi-legal (i.e., policy
and regulative) issues; topics addressed include the process of ethical decision-making, privacy and
confidentiality, computer crime, professional codes and responsibilities, professional practice, system
security, impact of computers on society.

Prerequisites: Second-year standing
Credit Hours: 3 Lecture Hours: 42 Lab Hours: 0 Recitation Hours: 14
CE2004 BOK Coverage: CE-SPR 0-9

CPED203: Operating Systems and Net-Centric Computing

The functionality and role of an operating system; major components, design considerations; layered
approach to the design of an operating system, including the major influences on design, including high level
languages, real-time issues, networking, multimedia, security; file systems, hierarchical design; process
management, scheduling strategies; resource allocation strategies including memory allocation strategies;
segmentation, virtual memory, cache; concurrency, synchronization principles, deadlock avoidance;
operating system routines; class libraries; scripting languages, capabilities and possibilities; device
management, buffering issues, interrupts, device drivers; technical issues, and in particular the software
architectures, associated with net-centric computing. Basic concepts in networking and communications.
Security issues.

Prerequisites: CSCD101
Credit Hours: 3 Lecture Hours: 42 Lab Hours: 14 Recitation Hours: 14
CE2004 BOK Coverage: CE-OPS 0-7, CE-NWK 0-1.

CPED204: Computer Systems Engineering

Approaches to the development of systems in computer engineering; the special problems and the issues;
concept of a life cycle, nature of life cycle models, phases of typical life cycles, quality issues; process and
process improvement; issues of teams, team selection, roles in teams, elements of team work; selection of
support tools, standards and technologies; techniques and approaches associated with the different phases;
special problems of design and the issues associated with tradeoffs, special problem of hardware/software
tradeoffs; testing; maintenance; project management.

Prerequisites: CPED101
Credit Hours: 3 Lecture Hours: 28 Lab Hours: 28 Recitation Hours: 14
CE2004 BOK Coverage: CE-CSE 0-11

CPED301: Networking and Communications

- B.29 -

Computing Curricula - Computer Engineering Appendix B – Sample Curricula
Final Report 2004 December 12

Computers and computer communication; problems of security, reliability; speeds, capacity measures,
reliability measures; physical realities and the limitations; wireless possibilities; communications network
architectures, computer network protocols; variants on the basic topologies; local and wide area networks;
client server computing; data integrity and data security, problems and solutions; performance issues;
network management; nature and special problems of mobile computing.

Prerequisites: Two courses in calculus and two courses in physics
Credit Hours: 3 Lecture Hours: 42 Lab Hours: 14 Recitation Hours: 14
CE2004 BOK Coverage: CE-NWK 0-9

CPED302: Embedded Computer Systems

Nature of embedded systems, particular problems, special issues; role in computer engineering; embedded
microcontrollers, embedded software; real time systems, problems of timing and scheduling; testing and
performance issues, reliability; low power computing, energy sources, leakage; design methodologies,
software tool support for development of such systems; problems of maintenance and upgrade; networked
embedded systems.

Prerequisites: Two courses in calculus and two courses in physics
Credit Hours: 3 Lecture Hours: 28 Lab Hours: 28 Recitation Hours: 14
CE2004 BOK Coverage: CE-ESY 0-10

CPED303: Computer Architecture

Design principles associated with modern computer architectures; performance and cost considerations;
architectural features influenced by such features as operating systems and window systems, high level
languages, networking, security considerations; processor implementation strategies, micro-programming,
pipelining, CISC and RISC, vector processors; memory hierarchy, cache, virtual memory organization for
high performance machines; special purpose components and devices; simple demonstrations provide
experience in the designs and operations of different types of computer architecture such as memory
architectures, I/O and bus subsystems, special purpose architectures, parallel processing, and distributed
systems; explore hardware and software issues and tradeoffs in the design, implementation, and simulation of
working computer systems.

Prerequisites: CPED201
Credit Hours: 3 Lecture Hours: 42 Lab Hours: 14 Recitation Hours: 14
CE2004 BOK Coverage: CE-CAO 5-9

CPED401: Project Management in Computer Engineering

Project initiation, management, and success, appraisal and risk, quality systems and implementation,
environmental impacts; contracts, costs, finance, planning, organization, personnel management; contract
strategies and policy; turnkey operations, global issues, international commerce, negotiation, customs, and
law.

Prerequisites: Fourth-year standing
Credit Hours: 3 Lecture Hours: 42 Lab Hours: 14 Recitation Hours: 14
CE2004 BOK Coverage: CE-CSE 7, CE-SPR 1-8.

CPED402: Business and Economics of Computer Engineering

Engineering and uncertainty, engineering processes, strategies, proposals, decision making; economic
concepts, utility, value, cost, consumers; supply and demand; initial costs, maintenance, fixed, variable, and
marginal costs; interest rates, simple and compound interest; money value, past, present, and future values;
cash flow; present and future worth, payback periods.

Prerequisites: Fourth-year standing
Credit Hours: 3 Lecture Hours: 42 Lab Hours: 0 Recitation Hours: 0
CE2004 BOK Coverage: None.

CPED403: Individual Project I

Comprehensive project spanning two semesters; students undertake an individual project which involves
addressing a significant technical problem they embark on this under the guidance of a supervisor; student are
expected to demonstrate an ability to apply the disciplined approaches of the course in addressing the solution
to the problem; students produce a final thesis on the work and this together with a demonstration of the
working system will form the assessment.

Prerequisites: Fourth-year standing
Credit Hours: 3 Lecture Hours: 3 Lab Hours: 56 Recitation Hours: 14
CE2004 BOK Coverage: Project dependent.

- B.30 -

Computing Curricula - Computer Engineering Appendix B – Sample Curricula
Final Report 2004 December 12

CPED404: Entrepreneurship and the Engineer

Discusses basic concepts of marketing, business organization, management accounting, business finance, and
financial feasibility analysis of new business ventures and of new project proposals in established firms;
appreciate the financial risks and rewards; strategies for investing in new ventures; entrepreneurial strategies,
venture development processes, bringing products from the idea to market and operation; business planning,
implementation, operation, and success, business plans, organization, budgets, accounting methods and
processes, capital and debt, business analyses.

Prerequisites: Fourth-year standing
Credit Hours: 3 Lecture Hours: 42 Lab Hours: 0 Recitation Hours: 0
CE2004 BOK Coverage: None.

CPED405: Ubiquitous and Pervasive Computing

Discusses current trends towards universal presence of mobile computing, computer networks, and wireless
communication; how network devices are aware of their environment; identification of current status,
fundamental issues, future problems and applications; current research topics in the area of ubiquitous and
pervasive computing; design issues; integration and processing of sensor-based input; wireless
infrastructures; security and user-interfaces; integrated, multimodal input and output and application areas.

Prerequisites: Fourth-year standing
Credit Hours: 3 Lecture Hours: 42 Lab Hours: 14 Recitation Hours: 14
CE2004 BOK Coverage: CE-NWK 6

CPED406: Individual Project II

Continuation of Individual Project I.
Prerequisites: Fourth-year standing
Credit Hours: 3 Lecture Hours: 0 Lab Hours: 42 Recitation Hours: 42
CE2004 BOK Coverage: Project dependent.

CSCD101: Computer and Information Systems

Representation of data of different kinds; elements of machine code and assembly language coding; role and
function of an operating system (including networking, e-mail and distributed systems) and the associated
functionality; programming language level, facilities and libraries; applications including description of the
functionality of the relevant software (word processors, databases, spreadsheets) and their use; human
interaction, importance and relevance of interface software; elements of computer interaction including
desirable properties of screen design and interfaces; fundamentals of the web; use of browsers and search
engines in information retrieval; simple web page construction; illustrations of information servers; search
strategies; information storage and retrieval; legal issues of copyright and intellectual property rights.

Prerequisites: Two courses in calculus and two courses in physics
Credit Hours: 3 Lecture Hours: 42 Lab Hours: 14 Recitation Hours: 14
CE2004 BOK Coverage: CE-HCI 0-4, CE-PRF 0-2.

CSCD201: Analysis and Design of Algorithms

Elementary ideas and results on discrete probability; mathematical foundations needed to support measures
of complexity and performance; basic concepts from counting; concepts of graphs and trees; basic strategies
that underpin the design of algorithms; fundamental algorithms for counting, searching, sorting, manipulation
of hash tables, symbol tables, queues, trees, and graphs; distributed algorithms for certain simple tasks;
fundamentals of computability theory; relevance to security; relevance of design and analysis of algorithms to
software design and implementation.

Prerequisites: MTHD101, SWED102
Credit Hours: 3 Lecture Hours: 42 Lab Hours: 28 Recitation Hours: 14
CE2004 BOK Coverage: CE-ALG 0-6, CE-PRF 3

CSCD202: Information Management

Relevance of information management in the context of computer engineering; introduction to database
systems and the relational model; normal forms and their benefits; building databases, underlying
methodology, database languages; issues associated with information retrieval; SQL, its use and power;
information systems in the context of networks, intranets, extranets; special systems and applications;
particular issues, access, security, and integrity; relevant legal and ethical issues.

Prerequisites: SWED102
Credit Hours: 3 Lecture Hours: 42 Lab Hours: 14 Recitation Hours: 14
CE2004 BOK Coverage: CE-DBS 0-8

- B.31 -

Computing Curricula - Computer Engineering Appendix B – Sample Curricula
Final Report 2004 December 12

CSCD301: Programming Languages and Syntax-Directed Tools

History of the development of languages; different flavors of languages, programming, scripting, mark-up,
specification; language role, characteristics, comparisons; different programming paradigms, significance,
main areas of application, imperative, functional, logic, object-oriented languages; concurrency; aims and
objectives of language design; principles of language design, including limitations; interaction between
language design and the translation process; basic approaches to translation; aims and objectives of
translation; major components of translation and their implementation; library design, separate compilation,
design considerations, and implementation.

Prerequisites: Two courses in calculus and two courses in physics
Credit Hours: 3 Lecture Hours: 28 Lab Hours: 28 Recitation Hours: 14
CE2004 BOK Coverage: CE-SWE 6-7.

ELED101: Foundations of Electronics

Introduction to basic electrical quantities such as charge, current, voltage, energy and power. Introduction to
classical dynamics, electrostatics, and magnetism. Basic laws such as Kirchoff’s law, Ohm’s law;
Thevenin’s theorem, Norton’s theorem. Resistive circuits and networks, reactive circuits and networks.
Capacitance, inductance, damping, transformers. Electronic properties of materials. Diodes and diode
circuits. MOS transistors and biasing. MOS logic families.

Prerequisites: Two courses in calculus and two courses in physics
Credit Hours: 3 Lecture Hours: 42 Lab Hours: 14 Recitation Hours: 14
CE2004 BOK Coverage: CE-CSG 0-3, CE-ELE 0-4, CE-VLS 0-2.

ELED102: Digital Circuits I

Basic switching theory, combinational logic circuits; modular design of combinational circuits; memory
elements; sequential logic circuits; digital systems design; understanding and analysis of the basic types of
circuits and electrical networks as used in electronics, communications, and power applications.

Prerequisites: Two courses in calculus and two courses in physics
Credit Hours: 3 Lecture Hours: 42 Lab Hours: 14 Recitation Hours: 14
CE2004 BOK Coverage: CE-DIG 0-6, CE-VLS 3-5.

ELED201: Digital Circuits II

Review of MOS families and circuits; bipolar transistors and logic families; digital parameters and issues;
storage elements; interfacing logic families and standard busses; fundamentals of digital systems design
including state diagrams; modeling and simulation, use of relevant tools; use of CAD tools; design carried
out for testability and for other such characteristics; problems of verification and validation; formal
verification.

Prerequisites: ELED102
Credit Hours: 3 Lecture Hours: 28 Lab Hours: 28 Recitation Hours: 14
CE2004 BOK Coverage: CE-DIG 6-9, CE-ELE 4-8.

ELED202: Analog Circuits

Data conversion issues, A/D and D/A circuits; electronic voltage and current sources; low and high pass
filters, Chebyshev and Butterworth approximations, Sallen-Key; negative feedback; operational amplifier
circuits; introduction to bipolar junction transistors.

Prerequisites: ELED201
Credit Hours: 3 Lecture Hours: 42 Lab Hours: 14 Recitation Hours: 14
CE2004 BOK Coverage: CE-ELE 9-14.

ELED301: Signals and Systems

The concept of signals and systems, both continuous and discrete-time; signal manipulation; signal symmetry
and orthogonality; system linearity and time invariants; system impulse response and step response;
frequency response, sinusoidal analysis, convolution, and correlation; sampling in time and quantizing in
amplitude; Laplace transform; Fourier analysis, filters; analysis of discrete time signals and systems using z-
transforms; inverse transformation procedures.

Prerequisites: Two courses in calculus and two courses in physics
Credit Hours: 3 Lecture Hours: 42 Lab Hours: 14 Recitation Hours: 14
CE2004 BOK Coverage: CE-CSG 4-9, CE-DSP 0-3.

ELED302: System Control

Review of complex numbers, superposition, compound systems; frequency domain representation; Laplace
transform representation; system representation in time domain; first and second order systems; damping,

- B.32 -

Computing Curricula - Computer Engineering Appendix B – Sample Curricula
Final Report 2004 December 12

Prerequisites: SWE 102

stability, poles, and zeros; feedback block diagrams; open loop and closed loop systems; steady state error;
introduction to Bode plots and Bode plot analysis introduction to proportional control.

Prerequisites: ELED301
Credit Hours: 3 Lecture Hours: 42 Lab Hours: 14 Recitation Hours: 14
CE2004 BOK Coverage: CE-CSG 9.

ELED303: Digital Signal Processing

Purpose of digital signal processing (DSP), theories and concepts, role of DSP in the context of computer
engineering; analysis of digital spectra; application of discrete Fourier transforms, convolution types;
filtering, digital filtering; transforms; discrete time signals; sampling issues; applications to include image
processing, audio processing; use of relevant software tools.

Prerequisites: ELED301
Credit Hours: 3 Lecture Hours: 42 Lab Hours: 14 Recitation Hours: 14
CE2004 BOK Coverage: CE-DSP 0-11

SWED101: Programming Basics

Introduction to the concepts of requirements and specification; basic concepts associated with programming
languages and their translation; elementary programming, primitive data types, operations, simple language
constructs; simple algorithms and problem solving involving counting, scanning elements, selecting elements
(such as maxima and minima), iteration; use of arrays, strings and simple pre-defined classes; routines or
methods as a fundamental abstraction mechanism; principles associated with and the design and construction
of these; use of simple libraries, classes; simple aspects of quality of software; the related activities of
software testing and validation.

Prerequisites: Two courses in calculus and two courses in physics
Credit Hours: 3 Lecture Hours: 28 Lab Hours: 28 Recitation Hours: 14
CE2004 BOK Coverage: CE-PRF 0-3, CE-SWE 0-1.

SWED102: Programming Fundamentals

Concepts from predicate logic; ideas from object-oriented programming, methods, classes, information
hiding, and inheritance; fundamental algorithms, sorting and searching; fundamental data structures, linked
data structures, user defined classes; concept of recursion, benefits and problems; exception handling; using
APIs; simple graphics programming; concept of software design.

Prerequisites: SWED101
Credit Hours: 3 Lecture Hours: 28 Lab Hours: 28 Recitation Hours: 14
CE2004 BOK Coverage: CE-PRF 4-8, CE-SWE 2-3.

SWED201: Building Software Systems

Concepts of open source, shareware, freeware; issues of quality, conditions of use, availability; issues of
software reuse; program libraries, software components; creation of additional libraries and other
components; application program interfaces; use of separate compilations; use of software libraries and other
software components; problems of building large systems; assessment of software including interfaces such
as metrics and measures; criteria; simple principles of interface design; multimedia issues; special problems
associated with color, sound, video and multimedia; advanced issues in object-oriented programming,
modularity, storage management issues, parallelism; client server computing, different kinds of servers, the
role of middleware; overview of the software support needed for client services and server services;
illustrations of the use of object oriented techniques applied to the building of certain commonly used
software tools; applets and servelets; simple design patterns; nature of the software life cycle and its different
phases; concept of process; differences across various developments and the reasons for the differences.

D
Credit Hours: 3 Lecture Hours: 28 Lab Hours: 28 Recitation Hours: 14
CE2004 BOK Coverage: CE-HCI 4-10, CE-PRF 8, CE-SWE 6-7.

SWED301: Software Engineering

Software engineering, role of software engineers; evaluation of software and principles thereof, software
lifecycle models; notions of requirements, specification, design implementation; main techniques; important
of maintenance; quality concerns at all stages of the software development process; concept of process;
software process maturity models; software process improvement; aspects of software engineering, important
benefits of and good practice in software re-use; verification and validation; the use of metrics; selection of
and use of tools; the nature and structure of teams; human computer interface as a software engineering
activity; related life cycles; standards; use of relevant libraries; importance of practical activity; group activity
as an important skill for these engineers.

- B.33 -

Computing Curricula - Computer Engineering Appendix B – Sample Curricula
Final Report 2004 December 12

- B.34 -

Prerequisites: Two courses in calculus and two courses in physics
Credit Hours: 3 Lecture Hours: 28 Lab Hours: 28 Recitation Hours: 14
CE2004 BOK Coverage: CE-SWE 0-9.

MTHD101: Discrete Structures for Computing
Basic mathematical notions of sets, relations, and functions, and operations involving the same; logic and its
role, propositional logic, truth tables, issues of equivalence, limitations; predicate logic, its power and its
limitations, relevance in the context of computer engineering; proof techniques; commonly occurring
mathematical concepts such as graphs, trees; representational issues; relevance of these to computer
engineering; recursion; counting; combinatorics; relevance of these ideas to computer engineering.

Prerequisites: One course in calculus
Credit Hours: 3 Lecture Hours: 42 Lab Hours: 0 Recitation Hours: 14
CE2004 BOK Coverage: CE-DSC 0-6

MTHD102: Applied Probability and Statistics

Randomness, finite probability space, probability measure, events; conditional probability, independence,
Bayes’ theorem; discrete random variables; binomial and Poisson distributions; concepts of mean and
variance; continuous random variables; exponential and normal distribution, probability density functions,
calculation of mean and variance; central limit theorem and the implications for the normal distribution;
purpose and the nature of sampling; nature of estimates, point estimates, interval estimates; maximum
likelihood principle approach, least squares approach; confidence intervals; estimates for one or two samples;
development of models and associated hypotheses; nature of hypothesis formulation, null and alternate
hypotheses, testing hypotheses; criteria for acceptance of hypothesis t-test, chi-squared test; correlation and
regression; Markov processes, discrete time systems and continuous time systems; queuing theory including
system simulation and modeling, queuing methods; use of appropriate statistical packages.

Prerequisites: Two courses in calculus and two courses in physics
Credit Hours: 3 Lecture Hours: 42 Lab Hours: 14 Recitation Hours: 14
CE2004 BOK Coverage: CE-PRS 0-8.

	CE2004 Task Force Members
	Contents
	Chapter 8Institutional Challenges
	CE-CAO6 Processor systems design [10]
	CE-ELE6 Design parameters and issues [4]
	5.2Design in the Curriculum
	The Role of Engineering Tools
	Professionalism
	Chapter 7
	Curriculum Implementation Issues
	7.2.1Introductory Courses and the Core
	7.2.2Intermediate Courses
	7.2.3Advanced Courses

	Chapter 8

	Institutional Challenges
	CCCE-AppA-2004Dec12.pdf
	CE-CAO6 Processor systems design [10]
	CE-ELE6 Design parameters and issues [4]
	Computer Architecture and Organization (CE-CAO)
	CE-CAO6 Processor systems design [core]
	Minimum core coverage time: 2 hours

	CE-DIG6 Digital systems design [core]
	CE-DIG6 Digital systems design [core]
	CE-ELE6 Design parameters and issues [core]
	
	
	CE-ELE13 Amplifier design [elective]

	Power circuits: class A output stages; class B and class B push-pull output stages; cross over distortion; class AB amplifiers; power semiconductor devices; switching (boost and buck) converters
	Active filters: their properties and characteristics

	CE-NWK8 Data communications [elective]
	CE-VLS1 Electronic properties of materials [core]
	CE-VLS2 Function of the basic inverter structure [core]
	CE-VLS3 Combinational logic structures [core]
	CE-VLS4 Sequential logic structures [core]
	CE-VLS5 Semiconductor memories and logic arrays [core]
	CE-VLS6 Chip input/output circuits [elective]
	CE-VLS8 Circuit characterization and performance [elective]
	CE-VLS9 Alternative circuit structures/low power design [elective]
	CE-VLS10 Semi-custom design technologies [elective]
	CE-VLS11 ASIC design methodology [elective]

	CCCE-AppB-2004Dec12.pdf
	SWED101: Programming Basics
	MTHD101: Discrete Structures for Computing

