IPv6 Tutorial

G6

Last modified by: <u>Bernard.Tuy@renater.fr</u>

on 8 Feb. 2004

Contributions

Main authors

- Laurent Toutain, ENST-Bretagne IRISA, France
- Bernard Tuy, Renater, France

Contributors

- Octavio Medina, ENST-Bretagne, France
- Mohsen Souissi, AFNIC, France
- Vincent Levigneron, AFNIC, France
- Thomas Noel, LSIIT, France
- Alain Durand, Sun Microsystems, USA
- Alain Baudot, France Telecom R&D, France
- Bill Manning, ISI, USA
- David Kessens, Qwest, USA
- Pierre-Emmanuel Goiffon, Renater, France
- Jérôme Durand, Renater, France

Agenda

- Why a new version for IP?
- IPv6 Protocol
- Address formats, addressing architecture
- Protocols associated to IPv6
- IPv6 support in the DNS (DNSv6)
- IPv6 Mobility
- IPv6 Security with IPsec
- Early experiences and deployments
- IPv6 and OS/applications
- IPv4 / IPv6 integration
- Equipment Configuration
- Conclusion

Why a new version for IP?

Historical facts

- 1983 : Research network for ~ 100 computers
- 1992 : Commercial activity
- Exponential growth
- 1993 : Exhaustion of the class B address space
- Forecast of network collapse for 1994!

IPv4 address space consumption

IANA Allocations (/8)

IPv4 address space consumption /2

Emergency measures

- Allocate exceptionally class B addresses
- Re-use class C address space
- CIDR (Classless Internet Domain Routing)
 - RFC 1519 (PS)
 - network address = prefix/prefix length
 - less address waste
 - recommend aggregation (reduce routing table length)

Emergency Measures: Private Addresses (RFC 1918 BCP)

- Allow private addressing plans
- Addresses are used internally
- Similar to security architecture with firewall
- Use of proxies or NAT to go outside
 - RFC 1631, 2663 and 2993
- NAPT is the most commonly used of NAT variations

Emergency Measures (continued)

Public address space

Private address space

Network Address Translation

NAT (continued)

NAT (continued)

NAT (continued)

Advantages:

- Reduce the need of official addresses
- Ease the internal addressing plan
- Transparent to some applications
- Security ?

Disadvantages:

- Translation sometime complex (e.g. FTP)
- Does not scale
- Introduce states inside the network:
 - Multihomed networks
- Breaks the end-to-end paradigm
- Security with IPsec

=> Should be reserved for small sites in Client/Server mode

Emergency Measures (continued)

- These emergency measures give time to develop a <u>new version</u> of IP, named IPv6
- IPv6 keeps principles that have made the success of IP
- Corrects what was wrong with the current version (v4)
- BUT are emergency measures enough?

IPv6 Protocol (RFC 2460 DS)

IPv4 Header

IPv4 Header

IPv4 Header

IPv6: Header simplification

G6 Tutorial

21

Is it enough for the future?

- Address length
 - Between 1 564 and 3 911 873 538 269 506 102 addresses by m²
 - Justification of a fix address length
- Hop Limit
 - Should not be a problem
- Payload Length
 - Use Jumbogram for specific cases

QoS support in IPv6

- The Traffic Class field: used as in IPv4
 - Work done in diffserv wg (closed): RFCs 2474, 2475, 2597, 3260, ...
- The Flow Label field: designed to enable classification of packets belonging to a specific flow
 - A flow is a sequence of packets that should receive specific non-default handling from the network
 - Intuitively: 5-tuple of the same source/destination address/port and transport protocol values
 - Without the flow label the classifier must use transport next header value and port numbers
 - Less efficient (need to parse the option headers)
 - May be impossible (fragmentation or IPsec ESP)
 - Further info:
 - http://www.ietf.org/internet-drafts/draft-ietf-ipv6-flow-label-09.txt (RFC XXXX (PS))

IPv6: Optional headers

IPv6 Header Next Header = TCP

TCP Header + DATA

IPv6 Header Next Header = Routing Routing Header
Next Header
= TCP

TCP Header + DATA

IPv6 Header Next Header = Routing Routing Header Next Header = Fragment

Fragment Header
Next Header
= TCP

TCP Header + DATA

IPv6: Optional extensions

- Hop-by-hop (jumbogram, router alert)
 - Always the first extension
 - Replace IPv4 options,
 - Analyzed by every router.
- Destination
- Routing (loose source routing)
- Fragmentation
- Authentication
- Security

v4 options vs. v6 extensions

v4 options vs. v6 extensions

Order is important

IPv6 Addressing

Addressing scheme

- RFC 3513 (obsoletes RFC 2373)
- RFC 3587 (obsoletes RFC 2374)
- 128 bit long addresses
 - Allow hierarchy
 - Flexibility for network evolutions
- Use CIDR principles:
 - Prefix / prefix length
 - 2001:660:3003::/48
 - 2001:660:3003:2:a00:20ff:fe18:964c/64
 - Aggregation reduces routing table size
- Hexadecimal representation
- Interfaces have several IPv6 addresses

Textual Address Format

- Base format (a 16-byte Global IPv6 Address) :
 - 2001:0660:3003:0001:0000:0000:6543:210F
- Compact Format:

2001:660:3003:1::6543:210F

In order to avoid ambiguity, "::" can occur only once

Address Space

Reserved	0000 0000	1/256	
Unassigned	0000 0001	1/256	
Reserved for NSAP Allocation	0000 001	1/128	
Reserved for IPX Allocation	0000 010	1/128	
Unassigned	0000 011	1/128	
Unassigned	0000 1	1/32	
Unassigned	0001	1/16	
Aggregatable Global Unicast Addresses	001	1/8	[RFC2374,
RFC 3587]			,
Unassigned	010	1/8	
Unassigned	011	1/8	
Unassigned	100	1/8	
Unassigned	101	1/8	
Unassigned	110	1/8	
Unassigned	1110	1/16	
Unassigned	1111 0	1/32	
Unassigned	1111 10 1/64		
Unassigned	1111 110	1/128	
Unassigned	1111 1110 0	1/512	
Link-Local Unicast Addresses	1111 1110 10	1/1024	
Site-Local Unicast Addresses	1111 1110 11	1/1024	
Multicast Addresses	1111 1111	1/256	

IPv6 Addresses

- Loopback ::1
- Link local FE80:....
- Site local FEC0:...
- Global
 - 6bone: 3FFE....
 - Official: 2001:...
 - IPv4 mapped
 - 6to4: 2002::...

- Unicast
- Multicast
- Anycast

specific to IPv4/IPv6 integration

Local Addresses

Link-local

10 bits	54 bits	64 bits
1111111010	00	Interface ID

FE80

Site-local (in the process of being deprecated)

10 bits	54 bits	64 bits
1111111011	Subnet ID	Interface ID

FEC0

Interface Identifier

- 64 bits to be compatible with IEEE 1394 (FireWire)
- Eases auto-configuration
- IEEE defines the mechanism to create an EUI-64 from IEEE 802 MAC addresses (Ethernet, FDDI)

Interface Identifier (2)

- Links with non global identifier (e.g., the Localtalk 8 bit node identifier) → fill first left bits with 0
- For links without identifiers, there are different ways to proceed (e.g., tunnels, PPP):
 - Choose the identifier of another interface
 - Random number
 - Manual configuration
- **THEN**: Invert IEEE EUI-64 "u" bit to become an "interface identifier"

Interface Identifier (3)

(Privacy issues)

- IEEE 24 bit OUI can be used to identify HW:
 - http://standards.ieee.org/regauth/oui/oui.txt
- Interface Identifier can be used to trace a user:
 - The prefix changes, but the interface ID remains the same,
 - Psychological issue.
- Possibility to change Interface ID (RFC 3041 PS):
 - If local storage, use MD5 algorithm
 - Otherwise draw a random number

Multicast Addresses

11111111	Flag	Scope	Group ID
8 bits	4 bits	4 bits	112 bits

Flag bits: 0 R P T

T = 0 permanent addresses (managed by IANA)

T = 1 transient multicast addresses

• P = 1 derived from unicast prefix (RFC3306)

• R = 1 embedded RP addresses (I-D)

Scope

0: Reserved

1: Interface-local

2: Link-local

3 : Subnet-local

4: Admin-local

5: Site-local

8 : Organization-local

E: Global

F: Reserved

Anycast Addresses (RFC 3513)

- Anycast addresses have been defined for routers only so far
- It cannot be distinguished from a Unicast address
- Reserved anycast addresses are defined in RFC 2526
- Subnet anycast router address is :
 - Subnet ID::0/subnet prefix length

IPv6 Addresses (continued)

		48 bits	80 bits		
001	TLA-ID	NLA-ID	SLA-ID	Interface ID	
3 bits	13 bits	32 bits	16bits	64 bits	
Pι	ıblic T	Гороlоду	Private Topology		

TLA : Top Level Aggregator => (/16)

NLA : Next Level Aggregator => (/48)

SLA : Site Level Aggregator => (/64)

RFC 2471: Aggregatable Test Addresses

3	13	X	32 - x	16	64
001	TLA		NLA	SLA	Interface ID

- Used in the 6bone
- TLA value is 0x1FFE => Prefix = 3FFE::/16
- pTLA in the NLA part assigned by ngtrans wg

http://www.6bone.net/6bone_pTLA_list.html

```
49 \times ::/24
  INNER/US-VA
                           3FFE:0000::/24
  TELEBIT/DK
                           3FFE:0100::/24
  SICS/SE
                           3FFE:0200::/24
  G6/FR
                           3FFE:0300::/24
  JOIN/DE
                           3FFE:0400::/24
45 \times ::/28
                           3FFE:8xyz::/28
27 \times ::/32
                           3FFE:4xyz::/32
                                               (2003/11/21)
```


6Bone

G6bone Addressing Scheme

RFC 3587: Aggregatable Global Unicast (obsoletes RFC 2374)

Production Addressing Scheme

Production Addressing Scheme (2)

Source: http://www.iana.org/assignments/ipv6-tla-assignments

TLA Identifier Assignments

TLA Identifiers are defined in [RFC2374] and are assigned from the Format Prefix (FP) 001 (binary) in [RFC2373].

TLA ID assignments are listed below.

IPv6 Prefix	FP	TLA Binary	Value 1	TLA Hex Assignment
2000::/16 2001::/16 2002::/16 3FFE::/16 3FFF::/16	001 001 001	0 0000 0000 0000 0 0000 0000 0001 0 0000 0000 0010 1 1111 1111 1110 1 1111 1111 1111	0x0000 0x0001 0x0002 0x1FFE 0x1FFF	Reserved Sub-TLA Assignments [RFC2450] "6to4" [RFC3056 et 3068] 6bone Testing [RFC2471] Reserved

Note: Hex values are right justified.

All TLA ID values not listed above are reserved.

Production Addressing Scheme (3)

```
IPv6 Prefix sub-TLA Binary Values
                                  Allocated to
                                                     Date
2001:0000::/23
                  0000 000X XXXX X IANA
                                                     Jul 99
2001:0200::/23
                                                     Jul 99
                  0000 001X XXXX X APNIC
2001:0400::/23
                  0000 010X XXXX X ARIN
                                                     Jul 99
2001:0600::/23
                  0000 011x xxxx x RIPE NCC
                                                     Jul 99
2001:0800::/23
                  0000 100x xxxx x RIPE NCC
                                                     May 02
2001:0A00::/23
                  0000 101x xxxx x
                                  RIPE NCC
                                                     Nov 02
2001:0c00::/23
                  0000 110X XXXX X APNIC
                                                     May 02
2001:0E00::/23
                  0000 111X XXXX X APNIC
                                                     Jan 03
                  0001 000X XXXX X (future assignment)
2001:1000::/23
2001:1200::/23
                  0001 001X XXXX X LACNIC
                                                     Nov 02
2001:1400::/23
                 0001 010x xxxx x
                                                     Feb 03
                                  RIPE NCC
2001:1600::/23
                 0001 011x xxxx x
                                                     Jul 03
                                  RIPE NCC
2001:1800::/23
              0001 100x xxxx x ARIN
                                                     Apr 03
where "X" indicates "0" or "1".
All other Sub-TLA ID values not listed above are reserved.
```


Production Addressing Scheme (4)

RIR allocations

- Started July '99
- New allocated prefix length since July 1th 2002, ::/32 instead of ::/35
- Allocated prefixes (up to 6 Feb. 2004) = 528
 - http://www.ripe.net/ripencc/mem-services/registration/ipv6/ipv6allocs.html
 - APNIC
 - 133 prefixes
 - within 2001:{02, 0C, 0E}00::/23
 - ARIN
 - 95 prefixes
 - within 2001: {04, 18}00::/23
 - RIPE-NCC
 - 294 prefixes
 - within 2001:{06, 08, 0A, 14, 16}00::/23
 - LACNIC
 - 6 prefixes
 - within 2001:1200::/23

Initial RIR allocation Policy & Procedure

- Get the RIPE documents [246-250, 256, 261, 267, 274, 275, 280-282]
 - http://www.ripe.net/ripe/docs/ipv6.html
- Criteria: RIPE-267
 - http://www.ripe.net/ripe/docs/ipv6plicy.html
- To qualify for an initial allocation of IPv6 address space, an organization must:
 - be an LIR : not be an end site
 - plan to provide IPv6 connectivity to organizations to which it will assign /48s, by advertising that connectivity through its single aggregated address allocation (/32 prefix)

and

 have a plan for making at least 200 x /48 assignments to other organizations within two years.

Exemple d'adressage du service IPv6 dans Renater-3 le service 6R3

IPv6 associated Protocols

New Protocols

- New features specified in IPv6 Protocol (RFC 2460 DS)
- Neighbor Discovery (ND) (RFC 2461 DS)
- Auto-configuration :
 - Stateless Address Auto-configuration (RFC 2462 DS)
 - DHCPv6: Dynamic Host Configuration Protocol for IPv6 (RFC 3315 PS)
 - Path MTU discovery (pMTU) (RFC 1981 PS)

New Protocols (2)

- MLD (Multicast Listener Discovery) (RFC 2710 PS)
 - Multicast group management over an IPv6 link
 - Based on IGMPv2
 - MLDv2 (equivalent to IGMPv3 in IPv4)
- ICMPv6 (RFC 2463 DS) "Super" Protocol that :
 - Covers ICMP (v4) features (Error control, Administration, ...)
 - Transports ND messages
 - Transports MLD messages (Queries, Reports, ...)

Neighbor Discovery

- IPv6 nodes which share the same physical medium (link) use Neighbor Discovery (NDP) to:
- discover their mutual presence
- determine link-layer addresses of their neighbors
- find routers
- maintain neighbors' reachability information (NUD)
- not directly applicable to NBMA (Non Broadcast Multi Access) networks → ND uses multicast for certain services.

Neighbor Discovery (2)

Protocol features:

- Router discovery
- Prefix(es) discovery
- Parameters discovery (link MTU, Max Hop Limit, ...)
- Address auto-configuration
- Address resolution
- Next Hop determination
- Neighbor Unreachability Detection
- Duplicate Address Detection
- Redirect

Neighbor Discovery (3): Comparison with IPv4

- It is the synthesis of:
 - ARP
 - R-Disc
 - ICMP redirect

— ...

Neighbor Discovery (4)

- ND specifies 5 types of ICMP packets:
 - Router Advertisement (RA) :
 - periodic advertisement (of the availability of a router) which contains:
 - » list of prefixes used on the link (autoconf)
 - » a possible value for Max Hop Limit (TTL of IPv4)
 - » value of MTU
 - Router Solicitation (RS) :
 - the host needs RA immediately (at boot time)

Neighbor Discovery (5)

– Neighbor Solicitation (NS):

- to determine the link-layer @ of a neighbor
- or to check its impeachability
- also used to detect duplicate addresses (DAD)

– Neighbor Advertisement (NA):

- answer to a NS packet
- to advertise the change of physical address

– Redirect :

 Used by a router to inform a host of a better route to a given destination

Address Resolution

- Find the mapping: Dst IP @ → Link-Layer (MAC) @
- Recalling IPv4 & ARP
 - ARP Request is broadcasted
 - e.g. ethernet @: FF-FF-FF-FF
 - Btw, it contains the Src's LL @
 - ARP Reply is sent in unicast to the Src
 - It contains the Dst's LL @

Address Resolution (2) IPv6 with Neighbor Discovery

At boot time, every IPv6 node has to join 2 special multicast groups for each network interface:

- All-nodes multicast group: ff02::1
- Solicited-node multicast group: ff02:1:ffxx:xxxx (derived from the lower 24 bits of the node's address)

H2: IP2, MAC2

$$S3 = IP1 \mid S2 = MAC1$$

$$\mathbf{NA}$$
 D3 = IP1 D2 = MAC1 S3 = IP2 $\mathbf{S2} = \mathbf{MAC2}$

Address Resolution (3) Solicited Multicast Address

Concatenation of the prefix FF02::1:FF00:0/104 with the last 24 bits of the IPv6 address

Example:

Dst IPv6 @: 2001:0660:010a:4002:4421:21ff:fe24:87c1

Sol. Mcast @: |FF02:0000:0000:0000:0000:0001:FF24:87c1

ethernet: FF-FF-FF-24-87-c1

Path MTU discovery (RFC 1981)

- Derived from RFC 1191, (IPv4 version of the protocol)
- Path: set of links followed by an IPv6 packet between source and destination
- link MTU: maximum packet length (bytes) that can be transmitted on a given link without fragmentation
- Path MTU (or pMTU) = min { link MTUs } for a given path
- Path MTU Discovery = automatic pMTU discovery for a given path

Path MTU discovery (2)

Protocol operation

- makes assumption that pMTU = link MTU to reach a neighbor (first hop)
- if there is an intermediate router such that link MTU
 pMTU → it sends an ICMPv6 message: "Packet size Too Large"
- source reduces pMTU by using information found in the ICMPv6 message
- => Intermediate equipments aren't allowed to perform packet fragmentation

Auto-configuration

- Hosts should be plug & play
- Use ICMPv6 messages (Neighbor Discovery)
- When booting, the host asks for network parameters:
 - IPv6 prefix(es)
 - default router address(es)
 - hop limit
 - (link local) MTU

— ...

Auto-configuration (continued)

- Only routers have to be manually configured
 - but work on prefix delegation is in progress
 (draft-ietf-ipv6-prefix-delegation-requirement-01.txt)
- Hosts can get automatically an IPv6 address
 - BUT it is not automatically registered in the DNS
 - If the address is always the same: may be manually registered
- ⇒ NEED for DNS Dynamic Update (RFC 2136 PS and RFC 3007 PS) for IPv6
 - Security issues ...

Stateless auto-configuration

- IPv6 Stateless Address Auto-configuration
 - RFC 2462 DS
 - Does not apply to routers
- Allows a host to create a global IPv6 @ from:
 - Its interface identifier = EUI64(MAC @)
 - router advertisements coming from router(s) on the link
- => GA = concat (RA, EUI64)

Stateful auto-configuration (DHCPv6)

- Dynamic Host Configuration Protocol for IPv6
 - RFC 3315
 - IPv4 version of DHCP (RFC 1541, RFC 2131)
 - based on BOOTP (RFC 951)

Server

- Memorises client's state
- Optionally provides the client with IPv6 addresses and configuration parameters

Client

 Sends requests and acknowledgements in accordance with the protocol (DHCP)

Auto-configuration example

Router Renumbering (RFC 2894 PS)

- Allow to change/add prefixes into routers
 - end-systems will use Neighbor Discovery Protocol to automatically discover and configure the new prefix(es)
- Several actions are sent to routers using wellknown multicast groups:
 - Change prefix
 - Add prefix
- Security needs (IPsec, no replay)

Routing Protocols

- RFC 2080 (PS) & 2081 (INFO) : RIPng
- RFC 2740 (PS) : OSPF v3
- draft-ietf-isis-ipv6-05.txt: IS-IS (01/2003)
- RFC 2545 (PS): based on MBGP (RFC 2848)
 - Multi-extension protocol for BGP-4
- ⇒ No major differences with IPv4
- RFC 3031 : MPLS : MultiProtocol Label Switching
- and 6PE : MPLS Provider Edge IPv6 routing
 - Internet Draft : bgp-tunnel-04.txt

IPv6 support in the DNS (DNSv6)

Overview

- How important is the DNS?
- DNS Resource Lookup
- The Two Approaches to the DNS
- DNS Extensions for IPv6
- About the Required IPv6 glue in DNS Zones
- Lookups in an IPv6-aware DNS Tree
- DNS Service Continuity through IP Networks
- DNSv6 Operational Requirements & recommendations
- AFNIC Initiatives in the DNSv6 Field
- IPv6-capable DNS Software
- References

How important is the DNS?

- Getting the IP address of the remote computer is necessary for every communication between TCP/IP applications
- Humans are unable to memorize millions of IP addresses S
- To a larger extent: the Domain Name System (DNS) provides applications with several types of resources (name servers, mail exchanges, reverse lookup, ...) they need
- DNS design
 - hierarchy
 - distribution
 - redundancy

DNS Resource Lookup

DNS Extensions for IPv6

- ❖ RFC 1886 (PS) → RFC 3596 (DS) (upon successful interoperability tests).
- * AAAA (RFC 3596): forward lookup ('Name \rightarrow IPv6 Address'):
 - > Equivalent to 'A' record
 - **Example:**

```
ns3.nic.fr. IN A 192.134.0.49
IN AAAA2001:660:3006:1::1:1
```

- ❖ PTR : reverse lookup ('IPv6 Address → Name'):
 - > Reverse tree equivalent to in-addr.arpa
 - Nibble (4 bits) boundary
 - New tree: ip6.arpa (RFC 3596), under deployment
 - Former tree: ip6.int (RFC 1886), still maintained
 - > Example:

```
$ORIGIN 1.0.0.0.6.0.0.3.0.6.6.0.1.0.0.2.ip6.{int,arpa}.
1.0.0.0.1.0.0.0.0.0.0.0.0.0.0 PTR ns3.nic.fr.
```


The Two Approaches to the DNS

- The DNS seen as a *Database*
 - Stores different types of *Resource Records* (RR):
 SOA, NS, A, AAAA, MX, PTR, TXT, ...
 - → DNS data are independent of the IP version (v4/v6) the DNS server is running on!
- The DNS seen as a TCP/IP application
 - The service is accessible in either transport modes (UDP/TCP) and over either IP versions (v4/v6)
 - → Information given over both IP versions MUST BE CONSISTENT!

Lookups in an IPv6-aware DNS Tree

DNS Service Continuity through IP Networks (2)

About Required IPv6 Glue in DNS Zones

- When the DNS zone is delegated to a DNS server (among others) contained in the zone itself
- Example: In zone file rennes.enst-bretagne.fr

```
@
              rsm.rennes.enst-bretagne.fr. fradin.rennes.enst-bretagne.fr.
   IN
                      2003111700; serial
                               :refresh
                      86400
                      3600
                                ; retry
                      3600000
                               :expire
                      86400
                                ;negative ttl
        IN
             NS
                 rsm
                 univers.enst-bretagne.fr.
             NS
        IN
Γ...]
ipv6
                 rhadamanthe.ipv6
        IN
             NS
                 ns3.nic.fr.
        ΤN
             NS
        IN
             NS
                 rsm
rhadamanthe.ipv6
                               192.108.119.134
                      IN
                           AAAA 2001:660:7301:1::1
                      IN
[...]
```

- <u>IPv4 glue</u> (A 192.108.119.134) <u>is required</u> to reach rhadamanthe over <u>IPv4 transport</u>
- IPv6 glue (AAAA 2001:660:73001:1::1) is required to reach rhadamanthe over IPv6 transport
 G6 Tutorial

IPv6 Support for the Root Servers

- When ?
 - Nobody knows ☺

Why not?

- No room available for an extra root server IP(v4/v6) address
- DNS response size limit is 512 bytes unless EDNS.0 is used
- "IPv6 infrastructure is not mature yet" for the operation of the root servers
- While waiting...
 - Go to the RS.NET Testbed: http://www.rs.net/
 - Test and prove that new technologies (IPv6, DNSsec, IDN) are harmless
 - Several TLDs participate in the testbed (FR, JP, SE, ...)

Putting AAAA Glue Records in the Root Zone

- Who can put them?
 - IANA/ICANN
- When?
 - Soon (hopefully)...
- Why is it so slow?
 - FR & JP asked IANA to add their AAAA glue several months ago
 - IANA/ICANN had some technical concerns about the general case
 - Several technical documents (theoretical and practical) published
 - RSSAC met several times to discuss the issue
 - RSSAC is finally making recommendations to IANA/ICANN to move forward

Putting AAAA Glue Records in the Root Zone (2)

Related documents

- draft (Kato-Vixie) on DNS response size (dnsop WG)
 - DNS response size from root servers
 - For a TLD in general
 - For common and uncommon names, average and worst cases
- Experiments results from NLnet Labs & RIPE NCC
 - Real life traffic replayed on L & K root servers
 - Conclusion: Adding AAAA glue to the root zone has no negative effect on the root servers
- DNS response size and name compression by AFNIC
 - Theoretical calculations on DNS response size from root servers
 - General case and FR specific case
 - Name compression benefits (more space for extra AAAA glue)

DNS Discovery

- A Stub Resolver needs a Recursive Name Server address for name resolution and a Search Path
- In IPv4 world, the DNS parameters are:
 - Either configured <u>manually</u> in the **stub resolver** (e.g. /etc/resolv.conf)
 - Or discovered via <u>DHCPv4</u>
- In IPv6 world:
 - So far, only manual configuration is available ☺
 - Proposals for DNS Discovery:
 - <u>Under discussion</u> IETF ipv6/dnsop WGs
 - Stateless Discovery: RA-Based vs Stateful Discovery: DHCPv6(-light)
 - Well-known address (anycast or uniscast): seems to be out of date

When there is no DNS available

In case:

- No manual or automatic DNS configuration has been performed
- DNS servers do not respond or respond wit error

Link Local Multicast Name Resolution (LLMNR)

- IETF dnsext WG (work in progress)
- The same message format as conventional DNS but different ports
- Each node is authoritative for its own name(s)
- Sender/Responder → LLM/Unicast

mDNS

- Apple's proprietary protocol
- Does not inter-operate with LLMNR

DNSv6 Operational Requirements & Recommendations

- The target today IS NOT the transition from an IPv4-only to an IPv6-only environment
- * It IS RATHER to get from an IPv4-only to a mixed v4-v6 environment where:
 - ➤ Some systems will remain IPv4-only
 - ➤ Some systems will be dual-stacked
 - ➤ Some systems will be IPv6-only
- How to get there?
 - ➤ Start by testing DNSv6 on a small network and get your own conclusion that DNSv6 is harmless
 - > Deploy DNSv6 in an incremental fashion on existing networks
 - > DO NOT BREAK something that works fine (production IPv4 DNS)!

DNSv6 Operational Requirements & Recommendations (2)

- * How to get there? (cont.)
 - For new large IPv6-only networks: enable IPv6-only resolvers to query the DNS for IPv4-only resources by (for example):
 - Letting them query dual-stack forwarders
 - Using some DNS ALG

Bear in mind

- Any DNS zone (and especially if related to an IPv6-only network) SHOULD be served by at least one IPv4 name server
- ➤ All DNS zones (including 'root', yes, yes!) SHOULD be reachable over IPv4 and IPv6

DNS IPv6-capable software

- * BIND (Resolver & Server)
 - http://www.isc.org/products/BIND/
 - ➤ BIND 8.2.4 (or later)
 - ➤ BIND 9
- * On Unix distributions
 - Resolver Library (+ (adapted) BIND)
- NSD (authoritative server only)
 - http://www.nlnetlabs.nl/nsd/
- Microsoft Windows (Resolver & Server)

***** ...

APIs

- getaddrinfo() for forward lookup
 - hostname → addresses
 - Replacement of gethostbyname()
 - With AF_UNSPEC, applications become protocolindependent
- getnameinfo() for reverse lookup
 - address → hostname
 - Replacement of gethostbyaddr()

B

AFNIC Initiatives in the DNSv6 Field

- Native support of DNSv6
 - .fr is the <u>first</u> European ccTLD and the <u>second</u> TLD in the world (after .jp)
- Officially hosting a secondary DNSv6 on ns3.nic.fr for:
 - ccTLD zones:
 - fr, re // delegated to AFNIC
 - br, dz, es, my, af, ...
 - High level reverse zones:
 - ip6.int,
 - [6-9].0.1.0.0.2.ip6.{int,arpa}, ... // Ripe blocs
- DNSv6 cache forwarding service:
 - Name resolution service for IPv6-only sites
 - Efficient and scalable for a well defined community (for instance French IPv6 community)
 - Service running on nscachev6.nic.fr

Standardization process (RFC 1886 inter-operability tests & reports)

RFC 1886: AAAA & ip6.int

RFC 3152: ip6.arpa

- RFC 1886 inter-operability tests
 - Who: 6WIND, AFNIC, FT R&D and IRISA (within « G6 test » activity)
 - When & where: 3 June & 4 July 2002, AFNIC and 6WIND buildings
 - What was tested: support of AAAA and ip6.arpa by different name server/resolver software
 - Results:
 - successful inter-operability tests but found some minor failures
 - http://w6.afnic.fr/RFC1886/testRFC1886.html
- RFC 1886 inter-operability reports
 - When & where: IETF 54 Yokohama (14-19 July 2002) at dnsext working group session
 - Presentation:
 - http://www.ietf.org/proceedings/02jul/slides/dnsext-1/index.html
 - Results:
 - RFC 1886 currently il a Proposed Standard (PS) status
 - Draft Standard (DS) RFC 3596 published in October 2003, obsoletes RFC 1886

References

- DNSv6-related RFCs & Internet-Drafts
 - RFC 3596
 - "DNS IPv6 transport operational guidelines" (A. Durand & J. Ihren, work in progress)

```
<u>draft-ietf-dnsop-ipv6-transport-guidelines-01.txt</u>
```

"DNS Response size issues" (A. Kato & P. Vixie, work in progress)
 <u>draft-ietf-dnsop-respsize-00.txt</u>

Other technical documents

- Adding IPv6 Glue To The Rootzone (R. van der Pol & D. Karrenberg)
 http://www.nlnetlabs.nl/ipv6/publications/v6rootglue.pdf
- "DNS Response Size and Name Compression" (M. Souissi, AFNIC)
 http://w6.nic.fr/dnsv6/dns-resp-size-and-name-compression

Books

DNS and BIND, 4th edition (Paul Albitz & Cricket Liu)

IPv6 DNS and root servers

- DNS root servers ... critical resources
- 13 roots « around » the world (#10 in the US)
- Need for root servers to be installed in other locations (EU, Asia, Africa, ...)
- New technique : anycast DNS server
 - To build a clone from the master/primary server
 - Containing the same information (files)
 - Using the same IP address
- Such anycast servers have already begun to be installed:
 - F root server : Ottawa, Paris (Renater), Hongkong, Dubai, ...
 - K root : London, Amsterdam, ...
 - I root : Stockholm, Milan, …
- B, F, H and M-root servers are IPv6 capable today

IPv6 Mobility

Mobility Overview

- Mobility is much wider than "nomadism"
- Keep the same IP address regardless of the network the equipment is connected to:
 - reachability
 - configuration
 - real mobility
- Difficult to optimize with IPv4 (RFC 3344 PS)
- Use new facility of IPv6: MIPv6

IPv6 Mobility (MIPv6)

- IPv6 mobility relies on:
 - New IPv6 features
 - The opportunity to deploy a new version of IP

Goals:

- Offer the direct communication between the mobile node and its correspondents
- Reduce the number of actors (Foreign Agent (IPv4) no longer used)

MIPv6: RFC XXXX (after a long work in progress, I-D version 24)

General Considerations

- A globally unique IPv6 address is assigned to every Mobile
 Node (MN): Home Address (HA)
- This address enables the MN identification by its
 Correspondent Nodes (CN)
- A MN must be able to communicate with non mobile nodes
- Communications (keep layer 4 connections) have to be maintained while the MN is moving and connecting to foreign (visited) networks

Main features/requirements of MIPv6

CN can:

- Put/get a Binding Update (BU) in/from their Binding Cache
- Learn the position of a mobile node by processing BU options
- Perform direct packet routing toward the MN (Routing Header)

The MN's Home Agent must:

- Be a router in the MN's home network
- Intercept packets which arrive at the MN's home network and whose destination address is its HA
- Tunnel (IPv6 encapsulation) those packets directly to the MN
- Do reverse tunneling (MN → CN)

Mobile Node Addressing

- A MN is always reachable on its Home Address
- While connecting to foreign networks, a MN always obtains a temporary address, "the Care-of Address" (CoA) by autoconfiguration:
 - It receives Router Advertisements providing it with the prefix(es) of the visited network
 - It appends that (those) prefix(es) to its Interface-ID
- Movement detection is also performed by Neighbor Discovery mechanisms

MIPv6: IETF Model

Binding Cache Management

- Every time the MN connects to a foreign network, it sends a Binding Update (BU):
 - Every BU carries a TTL
 - A MN caches the list of CNs to which it sent a BU
 - The MN may have multiple CoAs, the one sent in the BU to the HA is called the *primary CoA*

Communication with a Mobile Node

2 methods:

- Bi-directional Tunneling
 - No mobility requirements on CNs
 - No visibility of MNs for CNs
 - Network load increased
 - HA role much reinforced
- Direct Routing
 - Much more complex mechanism
 - HA role much alleviated

Bi-directional Tunneling

Home Agent

Bi-directional Tunneling (2)

Direct Routing

Direct Routing: MN → CN

Direct Routing: CN → MN

IPv6 Header Routing Ext. Hdr (type 2)

Binding Update Authentication

- BU information needs protection and authentication
 - Sender authentication
 - Data integrity protection
 - Replay protection
- Authentication Data sub-option used to carry necessary data authentication
- IPsec may be used to fulfill all these needs
 - MIPv6 is seen as a good opportunity to boost IPsec (and IPv6) deployment

Mobility Features For IPv6 Hosts

For MNs

- To perform IPv6 packet encapsulation/decapsulation
- To send BUs and receive BAs (process the Mobility Header)
- To keep track of BUs sent

For CNs

- To be able to process the Mobility Header (Binding Update, Binding Acknowledge)
- To use the Routing Header (type 2)
- Maintain a Binding Cache

Mobility Features For IPv6 Routers

 At least one IPv6 router on the Home Link of the MN must be able to act as a Home Agent

- A Home Agent must:
 - Maintain MN's binding information
 - Intercept packets for a MN in a Home Link it is responsible for
 - Encapsulate/decapsulate (tunnel) these packets and forward them to the CoA of the MN

IPv6 Security with IPsec

Security: IPsec

- Work made by the IETF IPsec wg
- Applies to both IPv4 and IPv6 and its implementation is:
 - Mandatory for IPv6
 - Optional for IPv4
- IPsec Architecture: RFC 2401
- IPsec services
 - Authentication
 - Integrity
 - Confidentiality
 - Replay protection
- IPsec modes: Transport Mode & Tunnel Mode
- IPsec protocols: AH (RFC 2402) & ESP (RFC 2406)

IPsec Architecture (RFC 2401)

- Security Policies: Which traffic is treated?
- Security Associations: How traffic is processed?
- Security Protocols: Which protocols (extension headers) are used?
- Key Management: Internet Key Exchange (IKE)
- Algorithms: Authentication and Encryption

IPsec Modes

- Transport Mode
- Above the IP level
- Below the Transport level
- Only the IP datagram payload is protected

- Tunnel Mode
- IP within IP
- Below the transport level
- All the tunneled IP datagram is protected

IPsec Scenarios Scenario 1: H2H

- End-to-end service
- Transport/Tunnel mode between the 2 hosts

IPsec Scenarios Scenario 1: H2H

- End-to-end service
- Transport/Tunnel mode between the 2 hosts

IPsec Scenarios Scenario 2: G2G

- VPN, Site-to-Site/ISP agreements, ...
- Tunnel between the 2 gateways

IP header	Inner IP Payload
-----------	------------------

IPsec Scenarios Scenario 3: H2G, G2H

- Dial-in users
- Tunnel between the "external" host and the gateway

IPsec Protocols

- Authentication Header (AH)
- RFC 2402
- Protocol# (Next Header) = 51
- Provides:
 - Connectionless Integrity
 - Data origin authentication
 - Replay protection
- Is inserted
 - In Transport mode: After the IP header and before the upper layer protocol (UDP, TCP, ...)
 - In Tunnel mode: Before the original IP header (the entire IP header is protected)

- Encapsulation Security Payload Header (ESP)
 - RFC 2406
 - Protocol# (Next Header) = 50
 - Provides:
 - Connectionless Integrity
 - Data origin authentication
 - Replay protection
 - Confidentiality
 - Is inserted
 - In Transport mode: After the IP header and before the upper layer protocol
 - In Tunnel mode: before an encapsulated IP header

IPsec: Protocols, services & modes combinations

	Transport Mode	Tunnel Mode SA
AH	Authenticates IP payload and selected portions of IP header	Authenticates entire inner IP datagram (header + payload), + selected portions of the outer IP header
ESP	Encrypts IP payload	Encrypts inner IP datagram
ESP with Authentication	Encrypts IP payload and authenticates IP payload but not IP header	Encrypts and authenticates inner IP datagram

IPsec: Key Management

- Manual
 - Keys configured on each system
- Automatic: IKE (Internet Key Exchange, RFC 2409)
 - Security Association negotiation: ISAKMP (Internet Security Association and Key Management Protocol, RFC 2408)
 - Different blocs (payloads) are chained together after ISAKMP header
 - Key Exchange Protocols: Oakley, Scheme
 - IKEv2: much simpler (work in progress)
- Algorithms: Authentication and Encryption

Early deployments... Building the Internet v6

Agenda

- 6bone
 - G6bone
- The 6REN initiative
- Large scale deployments
- 6Tap, IPv6 Exchanges
- Renater IPv6 pilot
- Native IPv6 service in Renater-3

6bone

- First IPv6 network
- Started July 15th 1996 between 3 sites:
 - WIDE/JP, UNI-C/DK, G6/FR
- Today: >500 sites in >40 countries
- IETF Working Group: NGtrans
- http://www.6bone.net
 - whois –h whois.6bone.net
- Phase out plan planned for 06/06/2006
 - pTLA allocations stopped (01/2004)

6bone

- Islands of nodes connected with IPv6
- Mainly interconnected through IPv4 tunnels
- Some native links (to 6TAP, ...)
- Routing Protocol:
 - static, at the beginning
 - Now dynamic (RIPng, ISIS, OSPFv3, BGP4+)

G6-bone

- G6-bone was the IPv6 BB operated by the G6
- It became Renater's IPv6 pilot service
- And then Renater production IPv6 service (6R3)
- Renater is the French High Education and Research BB infrastructure

G6 group

- Group of IPv6 testers in France, Tunisia, Senegal, ...
- Academic & industrial partners
 - CNRS, ENST, INRIA, Universities ...
 - AFNIC, 6Wind, Bull, ...
- Launched in 1995 by:
 - Alain Durand
 - Bernard Tuy
- Is today a legal association under French Law (1901)
 - Bernard Tuy, President
- For further information: http://www.g6.asso.fr

G6 charter

- Share experience gained from experimentations
- Diffusion of IPv6 information
 - Book published (O'Reilly)
 - « IPv6, Théorie et pratique », 3rd edition (March 2002)
 - Tutorials and trainings (ISPs, Engineers, netadmins, ...)
- Active in RIPE & IETF working groups
- Responsible of Renater IPv6 pilot service design

Former G6-bone network

- Test infrastructure
- Connecting partners' testbeds
- Connected to the 6bone
 - French part of the 6bone
- Early testbed for a native IPv6 national infrastructure

G6bone PoPs & addressing

6Bone

Sites connected to the G6 PoPs

Paris:

Evry: Université

INT

Noisy-le-Gd: ESIEE Roquencourt: INRIA

Saclay: CEA Lille: EUDIL

Paris:

Aerospatiale/Matra

Brainstorm

CIE

CISI/ATRE

CNAM ENST

Eurocontrol

Informatique P7 Institut Pasteur

Internatif

ISDnet LAAS

LIP6 + Marocco

Logique P7

OpenTransit

Renater2 NOC

Urec/Cnrs

UVSQ

AFNIC

Grenoble:

Echirolles: Bull

Marseille : Ec. Sup. Mécanique

Valbonne: Compaq

Vanoise Grenoble : Allied Signal

COSY IMAG MCS

Thomson-CSF/Detexis

6Bone:

ATT JAnet JOIN INFN Switch Uni-C

Strasbourg:

Belfort: Univ Technol.

Colmar: IUT Nancy: Loria Strasbourg:

Univ. L. Pasteur

IUT

Rennes:

Nantes Brest Tunisia

Bordeaux:

Univ. Reaumur

Caen: CNET

Montbonnot:

The 6REN initiative

6REN:

- IPv6 Research and Education Network
- Initiative of ESnet
- Isn't a network but a coordination for IPv6 preproduction networks
 - Move from experimental status to operational
- Specifications are now standardized, implementations available ...
- It's time to move on and Academic community could act as starters as for IPv4
- More on http://www.6ren.net

6REN

- Oct '98 : first peerings (IPv6/ATM)
 - Esnet, CAIRN, Internet2/vBNS and Ca*net2
 - Then other networks joined
 - WIDE, ...
 - BGP4+

Large scale deployments

Asia/Pacific

- AARnet, Australia
- CERNet, China
- Internet Initiative Japan
- NTTv6, Japan
- WIDE, Japan

North America

Abilene (Internet 2)

EU

- GéANT
- All NRENs connected to Géant
- Opentransit (FTLD)
- 6Net
- Euro6ix

Building the Internet v6

- Large backbones (Géant, Abilene, NTTv6, WIDE...) are already interconnected
- Géant
 - NRENs in the EU
 - Connections with Abilene and Esnet (USA) and with CANARIE (Canada)
 - TEIN : connection to Asia (Korea, Japan, ...)
 - EUMEDIS: connection of mediterranean countries
 - ALICE: connection with South America
- Commercial ISPs
 - Opentransit
 - Sprint
 - Tiscali
 - Skanova ...

IPv6 Traffic Exchanges

- Most of the IXes offer IPv6 connectivity today
- 6TAP is a joint project of Canarie and Esnet:
 - Router located in StarTap (Chicago, IL)
- NSPIXP-6, IPv6-based Internet Exchange in Tokyo
- Amsterdam Internet Exchange (AMS-IX)
- SFINX, LINX ...
- More information : http://www.v6nap.net/

Deploying an IPv6 service: From G6bone to Renater IPv6 Network (6R3)...

Agenda

- Academics' story with IPv6
- Toward a Production IPv6 service
 - Native support
 - Addressing
 - Naming
 - Routing
 - International connections
 - Connecting the Regionals
- Experimental IPv6 multicast service

At the beginning was ... the G6

- « French » group experimenting IPv6 since 1995
- Academics and industrial partners sharing experience
- Became the G6 association (1901) in 01/2000
- All the activities are managed within the association
- It is not required to be a member to attend the meetings!

G6 charter :

- Experiment with the IPv6 protocol :
 - RNRT/RNTL
 - IST / Eureka ...
 - G6
 - Renater / Aristote
- Share experience with others
 - Web sites
 - « IPv6: théorie et pratique », O'Reilly ed. (3rd edition –March 2002)
 - Tutorials, conferences ...
- **—** ...
- Info : http://www.g6.asso.fr/

G6bone

- The first IPv6 network in France (1996)
- One of the 3 first IPv6 nodes starting the 6bone
 - UNI-C, DK
 - WIDE, JP
 - G6, FR
- Tunneled network (v6inv4)
- Hierarchical addressing from the beginning
 - Two-level topology: Regional Interconnects (RIs) + IPv6 sites
- Static routing + RIPng ...

G6bone

6Bone

Then came Renater ...

- IPv6 Pilot over Renater-2 (P6R2)
 - May 2000
 - A native IPv6 network
 - dedicated ATM VPN
 - Deploy the production addressing plan
 - July 1999 : first sTLA allocation
 - Same two-level topology as in G6bone
 - Academic sites
 - production addressing scheme
 - Industrial sites involved in research projects
 - 6bone addressing scheme
- Gain experience with a pre-production service

Renater's IPv6 Pilot topology

The Pilot experience

- Experience Using the protocol
 - Equipment
 - Cisco partnership
 - Addresses
 - Deploying a consistent scheme (/35) for the core and the sites
 - Routing
 - ISIS and BGP4+
- IPv6 resources allocation
 - Procedures and management
- IPv6 DNS
 - Deployment of the DNS service
 - Reverse zones delegation to RIs and end-users sites
- Management
 - IPv6 NOC within Renater-2 NOC
 - Management and monitoring tools
 - Set of looking glasses at the RIs

Academics' story with IPv6

Summary

- Understand the technology
- Deploy the network
- Manage the whole thing
 - Technical resources
 - Human resources
 - Financial resources

Towards a native IPv6 network

- G6bone was an overlay tunneled network
 - v6 traffic encapsulated in v4 packets
- « independent » from Renater's underlying infrastructure
- P6R2, IPv6 pilot was a VPN of ATM PVCs
- Goals
 - Have a production IPv6 network
 - In the core
 - Allow Regional and Metro Nets to deploy IPv6

Additional goals

As production addresses became available And sTLA expanded from /35 to /32

- Renumber the IPv6 pilot using a new addressing scheme
 - much simpler to be aligned on nibble boundaries!
- Keep a two-level hierarchy
 - A core backbone of Regional Interconnects (RI)
 - User sites connect to one or more RIs

Additional goals (2)

- Transition period
 - Offer IPv6 connectivity via the new/native infrastructure
 - Keep the old infrastructure in place
 - Move step by step : no D day
- Gather non academic organizations in the G6bone addressing plan (3FFE:0300::/24)
 - Allow them to gain experience with IPv6 until commercial ISPs are ready
 - Have full IPv6 connectivity to the evolving Internet v6
- Connect the pilot to the Sfinx (Renater's IX)
 - Peer with ISPs and non academic organisms
- Provide IPv6 connectivity to
 - National projects (RNRT/RNTL)
 - European projects (IST, Esprit)

– ...

Toward a Production IPv6 service

And now Renater-3 ...

- Why a production-like IPv6 service ?
- ATM removed ...
 - Move all network services on a unique topology
 - Do we want to forget about IPv6, IPv4 multicast … ?
- Need of IPv6 transport
 - Research projects using IPv6
 - Sites with native IPv6 network
 - →install a native IPv6 core
 - →run both versions of IP the same way
- Manage the IPv6 service with the same operational quality as for IPv4

Renater 3: Native support

- 2.5 Gbits/s backbone
- 30 Regional Interconnects (RI)
- Native IPv6 support on all RIs
 - Dual stack backbone → IPv4 and IPv6
- Global IP Service
 - IPv4 unicast and multicast
 - IPv6 unicast
 - IPv6 and IPv4 carried without any distinction
- Experimental IPv6 multicast network
- Goal : achieve an equal level of
 - Performance
 - Availability
 - Management
 - Support

Renater IPv6 addressing scheme

IPv6 service in Renater-3

- Based on experience gained with the IPv6
 Pilot deployment
- Principles for 6R3
 - /35 expands to /32 (2001:0660::/32)
 - Two-level hierarchy : core + access
 - Core are /40 allocated (easier to manage)
 - Each PoP identified with a Reg-ID
 - Sites are /48 (as recommended)
 - Identified with a NLA-ID

Addressing scheme

- What do we need to number?
 - Regional Interconnects: /40
 - Reg-IDs allocation
 - Sites (labs, campuses ...): /48
 - NLA-IDs allocation
 - 16 bits are reserved for the site topology
 - Interconnection networks
 - RI sites
 - Renater other IPv6 networks
 - Operational
 - Projects

Addressing scheme (2)

sTLA = 2001:0660::/32

Addressing scheme (3)

- Hierarchical addressing
- Renater: 2001:0660::/32 from RIR
- Regional RIs: /40 (reg-ID)
- Sites: /48 from /40 of RIs
 - NLA-IDs allocation
 - /48s aggregation to a single /40 for all sites connected to the same PoP
 - 16 bits are reserved for the site topology ("subnets")

Example

- Renater's sTLA: 2001:0660::/32
- RI Rennes : 2001:0660:7300::/40
- RI's local network : 2001:0660:7300::/48
- Sites connected to the RI
 - 2001:0660:7301::/48
 - 2001:0660:7302::/48
 - **–** (...)

Retour

Multihomed domains

- In IPv4, create lots of entries in default free routing tables
- In IPv6, interface will have several IPv6 addresses
 - Problem of source address selection is still under study

Naming

Direct DNS

- Same domain name for IPv6 and IPv4
- Ex : site.fr for IPv4 and IPv6
- Just add an IPv6 entry for IPv6 addresses

Reverse DNS

- 0.6.6.0.1.0.0.2.ip6.int from the beginning
 0.6.6.0.1.0.0.2.ip6.arpa under deployment
- Reverse zone's delegation of /48 allocated to the sites

Routing & routing policy

- IGP: ISIS + iBGP
- EGP: e-BGP4+
- Route Reflectors
 - At each NRI
- In the backbone
 - /48 of sites aggregated in /40
- International advertisements
 - Announce Renater /32 sTLA
 - Accept /32 (or shorter) or /35 from ISPs
- Prefixes not allowed are filtered out
- Client sites connections
 - Their own choice: static, BGP4+
 - Not allowed to advertise more specific prefixes than /48s

Transition

- Renater's Backbone is native IPv6
- Some sites too
- BUT most of regional networks are not IPv6 capable yet ...
- => Install an equipment in each RN to connect IPv6
- Between regional router and sites:
 - VLANS
 - Tunnels
 - ATM PVC

Scenario 1: Peering router is IPv6 capable

Scenario 2: Peering router is IPv4 only

Equipment

- Core routers are Cisco C124xx
 - POS + GEth interfaces …
- Edge routers are
 - Mainly Cisco's (C7xxx, C36xx, C65xx, …)
 - But also Juniper's M5, M10 ...
 - 6WIND 6200
 - **—** ...

Before to have IPv6 every where ...

Steps

- V6fy the network
- V6fy the OS
- V6fy the applications
- Communication between both worlds
 - Client/Server Mode
 - Full Internet Connectivity

V6fy the OS

FreeBSD:

– 4.x : included

- 3.x: «INRIA», KAME

NetBSD:

– -current : included

1.4.2; «INRIA», KAME

Linux:

- 2.2 : included

Apple

– MacOS X : included

Microsoft:

 Windows 2000 (IPv6 Technology Preview)

Windows XP (included)

9x : Trumpet stack

Helwett Packard

Compaq

Solaris 8: included

AIX 4.3: included

Cisco IOS 12.2T

Juniper: JunOS

6WIND: 60S

See http://playground.sun.com/ipng/

Steps

- V6fy the network
- V6fy the OS
- V6fy the applications
- Communication between both worlds
 - Client/Server Mode
 - Full Internet Connectivity

RFC 1933 (April 1996)

- Used to v6fy applications
- Recompile applications to use IPv6 API
- Stay compatible with IPv4 applications
- Configuration of a dual stack
 - use of IPv4 mapped addresses
- Generate IPv6 traffic when possible

IPv6 API

```
15,16d14
< extern const struct in6 addr in6addr any;
<
22c20
< struct sockaddr in6 sin;
> struct sockaddr in sin;
26,30c24,25
< #ifdef SIN6 LEN</pre>
< sin.sin6 len = sizeof(sin);
< #endif
< sin.sin6 family = AF INET6;
< sin.sin6 addr = in6addr any;
> sin.sin family = AF INET;
> sin.sin addr.s addr = INADDR ANY;
36,37c31,32
< sin.sin6 port = sp->s port;
< if ((sock = socket(sin.sin6 family, SOCK STREAM, 0)) < 0) {</pre>
> sin.sin port = sp->s port;
> if ((sock = socket(sin.sin family, SOCK STREAM, 0)) < 0)</pre>
```


IPv6 API

- Few changes in the socket calls
 - Structures
 - Names
- More changes in DNS calls

The source code MUST be available

Applications

- MUAs, MTAs,
- Web browsers & servers,
- FTP, SSH, Telnet
- Videoconferencing tools, streaming, ...
- Editors, Games, ...
- Management and monitoring tools
- **...**
- ⇒ we started a list of non compliant applications!

Steps

- V6fy the network
- V6fy the OS
- V6fy the applications
- Communication between both worlds
 - Client/Server Mode
 - Full Internet Connectivity

Coexistence / Integration Mechanisms

Transition/Integration (agenda)

- Dual stack IPv4-IPv6
- Tunneling mechanisms
- Translation mechanisms

- Deployment strategies
- Vocabulary is important
 - Transition, migration …
 - Deployment, coexistence and integration!

Coexistence / Integration Mechanisms

Dual stack IPv4/IPv6

Dual stack

- IPv4 and IPv6 running together
- 2 scenarios:
 - Existing network
 - New network

Drawbacks

- Dual stack configured for IPv4 and IPv6
- Doesn't solve the lack of IPv4 addresses
- Routers need to be configured for both versions of IP
- => 2 sets of routing tables

RFC 1933 obsoleted with RFC 2893

IPv4 Mapped addresses

IPv6-only applications can use IPv4 transport

80	16	32
00	FFFF	IPv4

IPv4 Mapped Addresses

3ffe:305:1002::1->3ffe:305:1002::2

IPv4 Mapped Addresses (continued)

128.1.2.3 ->128.1.2.4

Coexistence / Integration Mechanisms

Tunneling

Tunnelling facility

- Configured tunnels
 - widely deployed in the 6bone
 - used to connect two sites
 - require manual configuration

- Automatic tunnelling
 - 6to4
 - Tunnel Broker
 - ISATAP

IPv6 in IPv4 configured tunnel

- Put IPv6 packet in IPv4 payload
- IPv4 protocol 41 means data = IPv6 packet
- Underlying infrastructure becomes transparent
- Makes it possible to connect to IPv6 network over an IPv4 link

- Need to specify tunnel end points
- Can give addresses on IPv6 logical link

6bone

Create a virtual topology over the IPv4 network with configured tunnels

IPv4 Compatible Addresses

96	32
00	IPv4

- Used at the beginning for transition with IPv4
- Allows encapsulation of IPv6 packet into IPv4 packets
- Dynamic tunneling

IPv4 Compatible Addresses

IPv4 Compatible Addresses

- Like IPv4 addresses with 96 bits to 0
 - Used when only a few IPv6 hosts were on the Internet
 - Don't learn how to manage an IPv6 network
- Need more sophisticated networks
 - E.g the 6bone mainly use static tunnels between routers

NOT USED ANYMORE

6to4 (RFC 3056 PS)

- Another way to build a tunneled infrastructure
- Simple configuration (no need to configure static tunnels)
- Use a special address plan

- Prefix: 2002::/16

6to4

6to4

6to4: Interaction with the 6bone

- If one node has a 6to4 address and the other one has both a 6to4 and global IPv6 addresses
 - Select 6to4 address
- If both have 6to4 and global IPv6 addresses
 - Global IPv6 should be selected

6to4: Interaction with the 6bone

6to4: Interaction with the Internet v6

- Relays are just routers with one interface on the native IPv6 network and one on the 6to4 network.
- If the relay can be announced through an interior gateway protocol:
 - Doesn't change anything
- More complex, when an exterior protocol is used.

6to4: Interaction with the Internet v6 (2)

Tunnel Brokers

- Simplify/Allow the construction of IPv4 tunnels.
- Use of a web page

🔒 🍪 Internet

CSELT IPv6 Tunnel Broker

Tunnel Info

Main Menu

Tunnel Info			
Server IPv4 Address	163.162.170.132		
Server IPv6 Address	3ffe:1001:0001:b000::167		
Server IPv6 Link Local Addr	fe80::a3a2:aa84		
Client IPv4 Address	193.52.74.87		
Client IPv6 Address	3ffe:1001:0001:b000::166		
Client IPv6 Link Local Addr	fe80::c134:4a57		
Expire Date	Tue May 2 15:14:06 2000		

The following table contains links to the scripts that will help you in configuring your host.

Downlo	ad Section
Activation Script	Deactivation Script
FreeBSD-Inria Act Script	FreeBSD-Inria Deact Script

Coexistence / Integration Mechanisms

Translation Mechanisms

Interoperability tools: Translators

- IP level
 - SIIT (Stateless IP/ICMP Translation)
 - NAT-PT (Network Address Translation-Protocol Translation)
 - BIS (Bump In the Stack)
- TCP level
 - TCP-relays
 - SOCKS
- Application level
 - Bump in the API
 - proxies

Mechanisms for coexistence

Different approaches

Application Level Gateways

- May be used for a large majority of common applications:
 - E-mail (POP3, IMAP, SMTP)
 - Web (proxies)
 - Printer (spoolers)
 - DNS: relay (may change the RR type)
- Reduce IPv4 traffic inside a domain

Application Level Gateways

For example : an old printer without an IPv6 stack

BIS: Bump In The Stack (RFC 2767 informational)

- v6fy application without recompilation
- Equivalent to protocol translator in each host
- Same problems as NAT (if the application sends addresses in data)
- Used in Trumpet IPv6 Stack

RFC 2765 PS: Stateless IP/ICMP Translation (SIIT)

- Suppress the v4 stack
- Translate the v6 header into a v4 header on some point of the network
 - Routing can direct packet to those translation points.
- Translate ICMP from both worlds
- No State in translators (≠ NAT)

SIIT

V6 header contains:

IPv4 mapped addresses

80	16	32
00	FFFF	IPv4

IPv4 translated addresses

64	16	16	32
00	FFFF	0000	IPv4

FFFF doesn't modify TCP/UDP checksum

SIIT

Have a IPv4-translated address assigned from a pool

SIIT

Have a IPv4-translated address assigned from a pool

NAT-PT (RFC 2766 PS)

- Translate addresses and headers
- A pool of routable addresses is assigned to the translator
- Out coming session translation is easy
- Incoming translation must intercept DNS queries

NAT-PT: v6 to v4

Prefix is routed to the NAT box

May change port numbers to allow more translations

NAT-PT: v4 to v6

Coexistence / Integration Mechanisms

DSTM

Dual Stack Transition Mechanism (DSTM)

What is it for ?

- DSTM allows hosts in IPv6-only networks to communicate with hosts in the IPv4-only Internet.
- DSTM allows IPv4-only applications to run (without modification) over IPv6-only networks.

DSTM: Principles

- Assumes IPv4 and IPv6 stacks are available on host.
- IPv4 stack is configured dynamically only when one or more applications need it
 - A temporary IPv4 address is assigned to the host
 - Needs an address allocation protocol.
- All IPv4 traffic coming from the host is tunneled towards the DSTM gateway (IPv4 over IPv6).
 - Needs an IPv4/IPv6 encapsulate/decapsulate gateway
 - Gateway maintains an @v6 ↔@v4 mapping table
 - Reverse route towards DSTM host MUST pass through the gateway

DSTM: How it works (v6 • v4)

- In A, the v4 address of C is used by the application, which sends v4 packet to the kernel
- The interface asks DSTM Server for a v4 source address
- **Output DSTM** server returns:

- A temporary IPv4 address for A
- IPv6 address of DSTM gateway

DSTM: How it works (v6 • v4)

- 4 A creates the IPv4 packet $(A_4 \rightarrow C_4)$
- A tunnels the v4 packet to B using IPv6 ($A_6 \rightarrow B_6$)
- B decapsulates the v4 packet and sends it to C₄

Scenario 2: v4 to v6

- O asks for the IPv4 address of « A »
- Query fails, DSTM server tells A to configure its IPv4 stack
- BA configures its IPv4 stack

Scenario 2: v4 to v6

- A registers to the DNS and tells to server
- Mapping table at gateway is configured
- 6B sends IPv4 address of A to C
- Communication can take place

DSTM: Address Allocation

- Manual
 - host lifetime (no DSTM server)
- Dynamic
 - use DHCPv6
 - DHCPv6 may not be ready soon!
 - use RPC
 - Easier, RPCv6 is ready
 - Works fine in v6 → v4 case.
 - Can be secure*
 - use TSP
 - Based on XML
 - · Can be secure
- Security Concerns
 - Request for IPv4 address needs authentication
 - Automatic @6 ↔@4 mapping at gw, or configured by server?

DSTM: Application

- DSTM is a useful tool when support for IPv4 addressing and routing is to be turned off inside a network.
 - No IPv4 addresses .. No address exhaustion problem
 - No IPv4 routing (only IPv6)... easier to manage
 - DSTM assures IPv4 communication with the external world.

- DSTM is to be used ONLY when no other means of communication is possible.
 - ALGs may be a better solution for several services
 - ALGs reduce the need of IPv4 addresses.

DSTM: Application

222

DSTM: Deployment

- DSTM may be deployed in several phases:
 - If IPv4 address space is not a problem, static tunnels may be set up from DSTM nodes to the DSTM gateway. No dynamic allocation.
 - If address space is a problem, a dynamic address allocation mechanism may be set up (TSP, RPC, DHCPv6).
 - If address space is a big problem, address allocation may also involve port numbers.

Application: The VPN scenario

- Giving IPv4 addresses to visitors can become expensive:
 - Visited Network offers IPv6 connectivity only
- Home network offers connection to the v4 world via DSTM
 - to Corporate Intranet
 - to Global Internet

DSTM vs. NAT-PT

- NAT-PT has the same problems as classic NAT:
 - Translation is sometimes complex (e.g. FTP)
 - NAT box may need to be configured for every new application.
 - NAT-PT supposes v6fied applications
 - This is not the case!
 - In DSTM, applications can send IPv4 packets to the kernel.

DSTM: Implementations

- BSD « INRIA »
 - DSTM gateway
 - DSTM server (RPC)
 - Client: manual conf, dynamic conf
- BSD Kame:
 - Gateway/Server on the same host
 - Based on RPC (dynamic conf)
 - Compatible with Linux implementation

DSTM: Implementations

Linux :

- Dynamic configuration using RPC
- 4over6 interface
- Same capabilities as BSD version

Windows:

- Prototype from isoft (Korea)
- 4over6 interface for windows client
- Uses DHCPv6
- Server runs over Linux
- Needs external TEP

http://www.ipv6.rennes.enst-bretagne.fr/dstm/

Deployment/migration strategies

Deployment strategies

- Technical factors
 - IPv6 availability (connectivity)
 - Native IPv6 applications/services availability
 - Avoid blocking situations (chicken and egg problem)
- Psychological factors
 - skills to configure IPv6
 - risk to modify something that works
- Deploy only one version of IP (either v4 or v6) on a given area of the network
 - To manage both routing plans

Case study: phase 0 IPv4 site

Case study: phase 1 hybrid stack servers & routers

Case study: phase 2 hybrid stack clients

Case study: phase 3 Connection to the Internet v6

Case study: phase 4 IPv6 only hosts

Case study: phase 5 IPv6 only hosts to IPv4 server

Case study: Phase 6 No IPv6 ISP available - IPv6 site

Case study: phase 7 IPv6 site / IPv6 Internet

Equipment Configuration

Equipment Configuration

- CISCO
- JUNIPER
- 6WIND
- FreeBSD
- Debian
- Microsoft (Windows XP)
- Zebra

CISCO

Enable IPv6 on an interface

```
interface xxxxx
ipv6 enable
```

Configure an address

```
interface xxxxx
  ipv6 address X:X:X:X::X/<0-128> (general address)
  ipv6 address X:X:X:X::X (link-local address)
  ipv6 address autoconfig (auto-configuration)
```


CISCO (2)

Configure an IPv6 in IPv4 tunnel

```
interface tunnel x
  tunnel source interface
  tunnel destination X.X.X.X
  ipv6 address X:X:X:X::X/<0-128>
  tunnel mode ipv6ip (for direct tunneling)
  tunnel mode gre ip (for gre encapsulation)
```


CISCO (3)

Configure an IPv6 in IPv6 tunnel

```
interface tunnel x
  tunnel source interface
  tunnel destination X:X:X:X::X
  ipv6 address X:X:X:X::X/<0-128>
  tunnel mode ipv6 (for direct tunneling)
  tunnel mode gre ipv6 (for gre encapsulation)
```


CISCO (4)

Enable IPv6 routing

ipv6 unicast-routing

Configure static routes

```
ipv6 route prefix/prefixlen next_hop
Ex: ipv6 route ::/0 2001:660:10a:1001::1
```


CISCO (5)

BGP configuration

```
router bgp xxxx
neighbor X:X:X:X::X remote-as ...
neighbor X:X:X:X::X ...
address-family ipv6
neighbor X:X:X:X::X activate
neighbor X:X:X:X::X ...
exit address-family
```


CISCO (6)

ACLs

```
ipv6 prefix-list bgp-in-6net seq 5 deny ::/0
   -> Means filter ::/0 exactly
ipv6 prefix-list bgp-in-6net seq 10 deny 3FFE:300::/24 le 28
ipv6 prefix-list bgp-in-6net seq 15 deny 2001:660::/35 le 41
ipv6 prefix-list bgp-in-6net seq 20 permit 2002::/16
ipv6 prefix-list bgp-in-6net seq 25 permit 3FFE::/17 ge 24 le 24
ipv6 prefix-list bgp-in-6net seq 30 permit 3FFE:8000::/17 ge 28 le 28
   -> Means every prefix matching 3FFE:8000::/17 with length 28
ipv6 prefix-list bgp-in-6net seq 35 permit 3FFE:4000::/18 ge 32 le 32
ipv6 prefix-list bgp-in-6net seq 40 permit 2001::/16 ge 32 le 35
   -> Means every 2001::/16 derived prefix, with length between 32 and 35
```


Juniper (1)

Interface configuration

```
interfaces {
    name_of_interface {
        unit x {
            family inet {
                address X.X.X.X/prefixlength;
        }
        family iso {
            address Y.Y.Y.Y.Y.Y;
        }
        family inet6 {
            address Z:Z:Z:Z:z/prefixlength;
        }
}
```

Cannot autoconfigure the router interfaces

Juniper (2)

Router advertisements (stateless autoconf)

```
protocols {
    router-advertisement {
        interface interface-name {
            prefix IPv6_prefix::/prefix_length;
}
```

Configure tunnel (with Tunnel PIC)

Juniper (3)

Static routes

Juniper (4)

BGP configuration

```
brotocols {
   bgp {
      local-as local_AS_number;
      group EBGP_peers {
           type external;
      family inet6 {
               unicast; }
      neighbor neighbor_IPv6_address;
           peer-as distant_AS_number;
           import in-PS;
           export out-PS; }
```


Juniper (5)

Policy statements

```
policy-statement in-PS {
    term from_outside_accept {
        from {
            route-filter 2002::/16 exact;
            route-filter 3FFE::/17 prefix-length-range /24-/24;
            route-filter 3FFE:8000::/17 prefix-length-range /28-/28;
            route-filter 3FFE:4000::/18 prefix-length-range /32-/32;
            route-filter 2000::/3 prefix-length-range /16-/16;
            route-filter 2001::/16 prefix-length-range /29-/35; }
        then {
            accept; }
        then reject; }
```


6WIND

Interface Configuration

- Enter Ethernet Private Interface Context hurricane{myconfig} eth0_0 hurricane{myconfig-eth0_0}
- Set IP Address
 hurricane{myconfig-eth0_0} ipaddress 10.0.0.10/24
 hurricane{myconfig-eth0_0} ipaddress 3ffe:10::beef/48
- Advertise an IPv6 prefix hurricane{myconfig-eth0_0} prefix 3ffe:10::beef:f00d::/64

6WIND (2)

Migration configuration

- Enter Migration Context hurricane{myconfig} mig hurricane{myconfig-mig}
- Create 6in4 interface
 hurricane{myconfig-mig} 6in4 0 1.1.1.10 1.1.1.20 3ffe:1::10 3ffe:1::20
- Create 4in6 interface
 hurricane{myconfig-mig} 4in6 0 3ffe:1::10 3ffe:1::20 1.1.1.10 1.1.1.20
- Create 6to4 interface
 hurricane{myconfig-mig} 6to4 1.1.1.10

6WIND (3)

Migration configuration

Create ISATAP interface
hurricane{myconfig-mig} isatap_router 0 10.0.0.10
hurricane{myconfig-mig} isatap_prefix 0 2002:101:10a::/64

Create DSTM interfacehurricane{myconfig-mig} dstm eth0 0

6WIND (4)

Static Routing Configuration

- Enter Routing Context hurricane{myconfig} rtg hurricane{myconfig-rtg}
- Set IP Default Route hurricane{myconfig-rtg} ipv4_defaultroute 1.1.1.20 hurricane{myconfig-rtg} ipv6_defaultroute 3ffe:1::20
- Set static route hurricane{myconfig-rtg} route 30.0.0.0/24 3.3.3.30 hurricane{myconfig-rtg} route 3ffe:30::/48 3ffe:3::30

6WIND (5)

Dynamic Routing Configuration RIP

- Enter Dynamic Routing Context hurricane{myconfig-rtg} dynamic hurricane{myconfig-rtg-dynamic}
- Activate RIP Routing Process hurricane{myconfig-rtg-dynamic} router rip hurricane{myconfig-rtg-dynamic-router-rip} network 1.1.1.0/24 hurricane{myconfig-rtg-dynamic-router-rip} network 3.3.3.0/24 hurricane{myconfig-rtg-dynamic-router-rip} redistribute connected

6WIND (6)

Dynamic Routing Configuration BGP4+

- Enter Dynamic Routing Context hurricane{myconfig-rtg} dynamic hurricane{myconfig-rtg-dynamic}
- Activate BGP4+ Routing Process hurricane{myconfig-rtg-dynamic} router bgp 10 hurricane{myconfig-rtg-dynamic-router-bgp} neighbor 3ffe:1::20 remote-as 20 hurricane{myconfig-rtg-dynamic-router-bgp} neighbor 3ffe:3::30 remote-as 30 hurricane{myconfig-rtg-dynamic-router-bgp} address-family ipv6 hurricane{myconfig-rtg-dynamic-router-bgp-v6} neighbor 3ffe:1::20 activate hurricane{myconfig-rtg-dynamic-router-bgp-v6} redistribute connected

FreeBSD

Enable IPv6

```
ipv6_enable="YES" in rc.conf file
```

- Autoconfiguration is automatically done while the gateway function is off
- Enable IPv6 forwarding

```
ipv6_gateway_enable="YES" in rc.conf file
```

Add an IPv6 address on an interface

```
ifconfig interface inet6 X:X:X:X:X prefixlen 64
```


FreeBSD (2)

Configure an IPv6 in IPv4 tunnel

```
ifconfig gif1 create
ifconfig gif1 inet6 @IPv6_source @IPv6_dest prefixlen 128
gifconfig gif1 inet @IPv4_source @IPv4_dest
ifconfig gif1 up
```

Configure an IPv6 in IPv6 tunnel

```
ifconfig gif1 create
ifconfig gif1 inet6 @IPv6_source @IPv6_dest prefixlen 128
gifconfig gif1 inet6 @IPv6_source @IPv6_dest
ifconfig gif1 up
```


FreeBSD (3)

Configure a static route

Default route

```
route add -inet6 default fe80::X:X:X:Xinterface
route add -inet6 default X:X:X:X:X (if global address)

- Others
route add -inet6 X:X:X:X:: -prefixlen YY X:X:X:X:X
route add -inet6 X:X:X:X:: -prefixlen YY fe80::X:X:X:Xinterface
```

%interface notation

If link-local address, need to specify on which interface the address is available

FreeBSD (4)

RIPng: route6d daemon

route6d

-L *IPv6_prefix*, *interface* (receives only prefixes derived from *IPv6_prefix* on interface *interface*)

FreeBSD (5)

- BGB: bgpd daemon
- Better to use Zebra BGP daemon

Debian

Main URL:

http://people.debian.org/~csmall/ipv6/

- Enable IPv6
 - Put "ipv6" in "/etc/modules"
 - Edit "/etc/network/interfaces":
 iface eth0 inet6 static
 address 2001:xxxx:yyyy:zzzz::1
 netmask 64

Debian (2)

Tunnel configuration

```
- Edit "/etc/network/interfaces":
   iface tun0 inet6 v4tunnel
      endpoint A.B.C.D
   address 2001:xxxx:1:yyyy::2
      gateway 2001:xxxx:1:yyyy::1
   netmask 64
```


Debian (3)

RA configuration on a Debian router

```
– Add in "/etc/radvd.conf":
interface eth0
   AdvSendAdvert on;
   AdvLinkMTU 1472;
   prefix 2001:XXXX:YYYY:ZZZZ:/64
      AdvOnLink on;
      AdvPreferredLifetime 3600;
      AdvValidLifetime 7200;
   };
};
```


Microsoft (Windows XP)

Enable IPv6

ipv6 install in a dos window

- Auto-configuration is then performed
- Display IPv6 interfaces

```
ipv6 if
```

Display IPv6 routes

ipv6 rt

Microsoft (Windows XP) (2)

Add a static route

```
ipv6 rtu prefix ifindex[/address] [life valid[/pref]]
[preference P] [publish] [age] [spl Site Prefix Size]
```

Anonymous addresses

ipv6 gpu UseAnonymousAddresses no

« User-friendly » IPv6 configuration

netsh in a dos window

> interface ipv6

Zebra

- Cisco like commands
- BGP, RIPng, OSPF available

And once deployed...

Home usage

- Easy configuration
 - Plug and play
 - Compatible with IEEE 1394
- Some network games send IPv4 addresses:
 - NAT doesn't work
- Advanced users wish to create servers
 - Paging, Web servers, IP telephony,...
 - Remote control

Home usage

Mobile Telephony

- Not IP telephony
- Huge number of addresses
- Can use mobile IP
 - Interaction between L2 and L3 mobility not discussed here
- End-to-End connectivity: necessary condition, fulfilled by IPv6 global addressing
- Need for services regardless of IP version...
- Robust Header Compression
 - Include RTP/UDP/IPv6
 - IPv6 header is easier to compress

Mobile telephony

- Some Terminal :
 - Dual stack
- Limited number of applications
 - E-mail
 - Web/WAP browser
 - **–** ...
- Can be implemented for both stacks
- Mobile PC can also be connected

Mobile Telephony

Mobile telephony

Conclusion

- Complexity will increase in the IPv4 world
 - New applications
 - New paradigms
 - End of end-to-end (NAT)
- Toward a layer-7 network
 - More costs
 - Difficulty to introduce new applications
- Lack of address will become a reality
 - Later or sooner
 - Depends upon the network transparency
- Get rid of one of the addressing/routing plans
 - IPv4 or IPv6 ?
 - Avoid twice the amount of work for the same service ...

Conclusion (2)

Conclusion (3)

- IPv6 deployment might be trigged by:
 - Research projects (6bone, Renater 2 pilot, ...)
 - Developing countries (lack of IPv4 address blocks)
 - IPv6 Product availability
- Smooth integration area by area:
 - interoperability between v4 and v6 areas must be maintained for <u>some</u> applications and equipment
 - different approaches to maintain interoperability
 - complexity should be decreasing with time

To go on ...

- http://playground.sun.com/pub/ipng/html/ipng-main.html
 - RFCs, IDs, implementations, ...
- http://www.ipv6.org/
- http://www.6bone.net/
- http://www.ripe.net/
 - IPv6 wg
- http://www.ipv6forum.com/
- http://www.g6.asso.fr/

Bibliography ... in French!

or

IPv6 multicast

Adressage multicast

Format d'une adresse de groupe multicast (RFC 2373)

8 bits		4 bits	4 bits	112 bits
1111	1111	flags	scope	group ID
F	F			

- 8 premiers bits positionnés à 1 → Adresses dérivées du préfixe FF00::/8
- Champ flag (4 bits):

ORPT avec

T = 0 si adresse permanente (Définies par l'IANA)

T = 1 si adresse temporaire

Bits P et R détaillés ensuite

○ Champ scope → Permet de limiter la portée de la diffusion sur un réseau

0 - Reservé 4 - Portée Admin-local

1 - Portée nœud local 5 - Portée site-local

2 - Portée lien local 8 - Portée organisation-local

3 - Portée sous-réseau local E - Portée globale

Adressage multicast

Exemples

- Group ID 101 → serveurs NTP
- FF01:0:0:0:0:0:0:101 : tous les serveurs NTP sur le même nœud que l'émetteur
- FF02:0:0:0:0:0:0:101 : tous les serveurs NTP sur le même lien que l'émetteur
- FF05:0:0:0:0:0:0:101 : tous les serveurs NTP sur le même site que l'émetteur
- FF0E:0:0:0:0:0:0:101: tous les serveurs NTP sur tout l'Internet

Adresses multicast réservées : exemples (RFC 2375)

- Adresses valables pour des portées prédéfinies
 - FF02:0:0:0:0:0:0:1: Tous les nœuds du lien
 - FF02:0:0:0:0:0:2: Tous les routeurs du lien
 - FF05:0:0:0:0:0:0:2 : Tous les routeurs sur le site
 - FF02:0:0:0:0:0:D: Tous les routeurs PIM du lien
 - **—** ...
- Adresses valables pour toutes les portées
 - FF0X:0:0:0:0:0:0:101 : Network Time Protocol (NTP)
 - FF0X:0:0:0:0:0:0:109 : MTP Multicast Transport Protocol

— ...

Adresses multicast sollicitées

- Construite à partir de l'adresse unicast
- Concaténation de
 - FF02::1:FF00:0/104
 - 24 derniers bits de l'adresse unicast
- Chaque équipement construit une adresse multicast sollicitée
- Les équipement qui connaissent l'adresse v6 d'un équipement mais ne connaissent pas l'adresse MAC peuvent utiliser l'adresse multicast sollicitée pour le joindre
 - Protocole de détection d'adresses dupliquées
 - Découverte des voisins sur le lien-local (NDP)
- Evite l'utilisation de l'adresse MAC de diffusion générale (FF-FF-FF-FF-FF-FF-FF)
- Exemple:

```
2001:0660:010a:4002:4421:21FF:FE24:87c1

FF02:0000:0000:0000:0000:0001:FF00:0000/104

FF02:0000:0000:0000:0000:0001:FF24:87c1

33-33-FF-24-87-C1
```


Allocation des adresses de groupes

- Manuelle : choix manuel de l'adresse multicast et du port
- Dynamique
 - Session Announcement Protocol, (SAP), ID
 - SDR implante ces fonctionnalités (pas possible pour une portée globale)
 - MADCAP, RFC 2730
 - Multicast Address Dynamic Client Allocation Protocol (trop compliqué)
 - GLOP, RFC 2770
 - Intérêt avec RFC 3306 ?
- Dérivation des adresses multicast à partir des adresses unicast (RFC 3306)
 - Simplification de l'allocation des adresses
 - DHCPv6?

Allocation des adresses de groupes

Dérivation des adresses multicast à partir des adresses unicast (RFC 3306) Flag : 0RPT

11111111	flag	scp	reserved	plen	Network prefix	Group ID
8 bits	4	4	8 bits	8	64 bits	32 bits

- Flag : 0RPT
 - P=0 → adresse non basée sur le préfixe unicast
 - P=1 → Adresse basée sur le préfixe unicast
 - o Si P=1 → T=1
- Reserved: 0
- Plen : nombre de bits du préfixe réseau
- Préfixe réseau avec tous les bits non significatifs à 0
- Ex: préfixe 2001:660::/32 (RENATER)

adresse FF3E:20:2001:660:0:0:1234:abcd

IPv6 networks management

Bernard.Tuy@renater.fr

Agenda

- Introduction
- IPv6 MIBs: current status
- Management platforms
- Home made tools/ GPL Software
- Management tools
 - IPv6 LAN
 - IPv6 MAN/WAN
- Examples
- Conclusion

Introduction

- Few (still) IPv6 only networks deployed
- Most are dual stack
 - LANs (campuses, companies, ...)
 - MANs (RAP, ...)
 - WANs -ISPs (Géant, NRENs, IIJ, Abilene, ...)
- Testbed / pilote net / production ...
 - => Management tools are needed
- Which applications available for managing these nets ?
 - Equipments, configurations, ...
 - IP services (servers : DNS, FTP, HTTP, ...)

IPv6 MIBs status (1/4)

MIBs are essential for the network management.

 SNMP-based applications are widely used but others exist too.

SNMP rely upon MIBs ...=>Need to have MIBs for IPv6.

IPv6 MIBs (2/4)

Standardization status at IETF:

- At the beginning:
 - IPv4 and IPv6 MIBs dissociated.
- Today :
 - Unified MIBs are on standardization track.

IPv6 MIBs(3/4)

- Internet drafts: Revision of the IP MIB definition in order to integrate IPv6.
 - RFC 2011: IP MIB: ID 05.txt (12/2003)
 - RFC 2012: TCP MIB: ID 05.txt(11/2003)
 - RFC 2013: UDP MIB: ID 02.txt (11/2003)
 - RFC 2096: IP forwarding MIB : ID 05.txt (08/ 2003)

IPv6 MIBs implementations

Equipment manufacturers:

- Cisco:
 - Proprietary MIBs implement early versions of IDs based on RFC 2011
 - But, no distinction between IPv4 and IPv6 traffic (=> available in S2/2004)
 - To get this info : CLI (sh int accounting ...)
- Juniper:
 - MIB based on RFC 2465 (with different counters for IPv4 and IPv6 traffic).
- 6Wind:
 - MIB based on RFC 2465 and RFC 2466

Netflow for IPv6

- Cisco
 - Ready since ...
 - Latest : IOS 12(3)7T (Feb. 2004)
 - Compliant Netflow v9
 - NFC v5 available
 - =>Not yet there for GSRs though 12.0(27)S EFT includes SNMPv6
- Other vendors?
 - Input from the audience ...

Management platforms

- Commercial ISPs use to have integrated management platforms (NRENs folks mostly use GPL or Home made tools)
- HP-OV proposes a version with IPv6 features: NNM 7.0 (sept 2003).
- Ciscoworks: IPv6 version planned for S2 2004
- Ciscoworks and Ciscoview
 - Application note on IPv6 management
- Netview (IBM) doesn't propose any IPv6 features ?
- Tivoli : no information ...
- Infovista : « no IPv6 plan at the moment »

« Top ten » ...

- HP Openview
- Cisco NetFlow v9
- Ciscoworks 2000
- IBM Netview
- Infovista, Tivoli

IPv6 ready

IPv6 not ready

How to manage an IPv6 network?

- Dual stack IPv6 networks
- IPv6 only
 - There are not the main case …
 - important to think / know IPv4 could be removed

Dual Stack IP networks

- Part of the monitoring via IPv4
 - Connectivity to the equipment
 - Tools to manage it (inventory, configurations, «counters», routing info, …)
- Remaining Part needs IPv6
 - MIBs IPv6 availability
 - NetFlow (v9)

IPv6 only networks

- Topology discovery (LAN, WAN ?)
- IPv6 SNMP agent
- SNMP over IPv6 transport

=> Need to identify the missing bits

Monitoring tools for IPv6 networks

- For a LAN:
 - Nagios
 - Argus
 - MRTG

. . .

- For a MAN/WAN:
 - AS PATH tree
 - Weather map
 - Netflow
 - Rancid
 - Looking Glass

6Net and IPv6 monitoring tools

- 6Net :
 - 3 years IST project
 - EC half-funded (12 M€uros)
 - 34 partners from EU and Korea
- 6Net wp6 : managing large scale IPv6 nets
 - Tests lot of ipv6 ready tools
 - Port many others to ipv6

6Net outcome

- 30+ monitoring tools for IPv6
 - Tested
 - Implemented
 - Documented
- URL: http://www.6net.org/ ...
 - To be publicly accessible in a few weeks

IPv6 LAN management: Nagios

- URL://www.nagios.org
- Administration of network:
 - PCs
 - Switches
 - Routers
- Administration of services:
 - http, ftp, dns...
- Evolution: new features can be added with plug-ins

Nagios

Host Status Details For All Host Groups

Host 1	Status 1	Last Check 🖰	Duration 🕈	Status Information
data-ipy8	S DOWN	08-12-2003 15:26:43	148d 21h 58m 44s	/bin/ping -n -U -c 1 193.49.159.67
sem2	₩ UP	08-12-2003 15:27:43	148d 21h 55m 22s	(Host assumed to be up)

2 Matching Host Entries Displayed

IPv6 MAN/WAN management: AS Path Tree

- Display BGP4+ « topology » from
- BGP4+ routing table.
- Generate HTML pages.

AS Path Tree

Renater The whole IPv6 BGP table

IPv6 MAN/WAN management : Looking Glass

- Get information on a router w/o direct connection
- Web Interface
- Final user don't need a login
- Allow the user to detect causes of failures w/o asking the NOC

Looking Glass

RENATER Looking Glass

BGP tables show bgp IPv6 routing_table routing_table summary neighbors	BGP with regular expression show bgp IPv6 regexp regular expression: Don't use the caracter "\$"		
C IPv6 traffic C IPv6 interface C IPv6 tunnels C IPv6 neighbors C IPv6 route	C Ping XXXX C Traceroute XXXX C show ip bgp XXXX C show ip bgp summary C show ip bgp dampening damperned-paths C show ip mroute summary C show ip mroute active C show ip mbgp summary C show ip mbgp XXXX C IPv4 address C IPv6 address C name address IPv4 C name address IPv6		
Router: Toulouse			

Conclusion

- ISPs need monitoring tools to start a new service/protocol
- For IPv6 a lot of them are already there
- BUT: stress your favourite vendor reminding him what your needs are!
- And be active in the relevant IETF WGs!