IPv6 Overview

AUUG-SA Adelaide 2002-10-09

Glen Turner, Network Engineer glen.turner@aarnet.edu.au Australian Academic & Research Network http://www.aarnet.edu.au/

Introduction

- Addressing
- Fields
- Transition
- Vendor support

Aims

Solve address space shortage

- Running out of addresses
- NAT doesn't scale
- Want new address heirarchies

Reduce size of global routing table

- Hardware lookup
- CPU L2 cache

Aims, con'd

Remove IPv4 cruft

- Gets in the way of hardware forwarding
- Build in
 - Privacy
 - Authentication
 - Multicast
 - Automated configuration

A lot of the IPv6 solutions have been back-ported to IPv4

Introduction Addressing Fields Transition Vendor support

Addressing

128 bits

- 64 for network
- 64 for host, this is usually the EUI of the hardware interface

No address classes

Hosts have multiple addresses, usually multiple addresses per interface

• This is the largest conceptual difference

Notation

Each 16 bits delimited with a colon

• *3FFE:3700:0021:0000:0000:11ff:feab:1234* Abbreviations

- Leading zeros of half-words can be omitted
- sequences of zero half-words can be abbreviated with ::, but only once
- *3FFE:3700:21::11ff:feab:1234*

Notation, cond

Masks are written using number of relevant bits

a host

- 3FFE:3700:21::11ff:feab:1234/48

- a network
 - 3FFE:3700:21::/48

Notation, cond

Need to make life easy for IPv4 addresses

• ::129.127.40.3

rather than

• ::817F:2803

Notation, cond

Bad news for Perl scripters

- There is no regular expression for determining an IPv6 address
- Need to parse
- Whoops
- The canonical form for an IPv6 address is complex
 - Shortest address, with decimals if IPv4
 - With mask

EUI-64 address?

IEEE's response to need for larger MAC addresses

MAC-48

- Three octets for manufacturer (OUI)
- Three octets for device

EUI-64

- Three octets for manufacturer (company_id)
- Five octets for device

EUI-64 addresses

Convering MAC-48 to EUI-64

- Insert FF-FE into centre
 - AB-CD-EF-12-34-56
 - AB-CD-EF-FF-FE-12-34-56

IPv6 uses EUI-64 addresses as the host part of the IPv6 address

- This allows autoconfiguration
- Privacy issues

Top level address allocation

-::/8 Reserved

- ::1/128 Loopback
- ::/96 IPv4
- 1000::/4 Provider independent
- 2000::/3 Aggregatable unicast
- 8000::/3 Geographical unicast
- FE80::/10 Link local
- FEC0::/10 Site local
- FF00::/8 Multicast
 - FF02::1 All hosts
 - FF02:2 All routers

Address allocation

Address assignment, where needed, is done by APNIC, RIPE and ARIN

- Rules for allocations are basically same as IPv4 rules
 - 90% usage before more address space
 - Addressing plans

Why?

• Once bitten, twice shy

Address allocation and routing

AARNet has 2001:388::/32

- It cannot advertise a smaller allocation
- Downstream sites must be given at least a /48
 - Allowing each site to have 16,000 subnets
 - The subnets are of unlimited size

Autoconfiguration

Addressing allows stateless autoconfiguration

- Router provides 64-bit prefix to host
- Host uses interface MAC address to form 64-bit suffix

Multiple routers can provide prefixes

- Hosts can multihome
- Even across multiple ISPs

Manual configuration

Occassionally want to nail down address suffix

- Privacy
- DNS server

Can configure explicitly or use DHCPv6

Autoconfiguration walkthrough

Power on

Assign each interface a link local address

- Prefix *FE80:0000:0000*
- Suffix EUI-64

Send ICMPv6 Solicitation Message to FF02::2, the All Routers multicast group

Autoconfiguration walkthrough, cond

- Listen on multicast group *FF02::1*, the All Hosts group
- For each incoming ICMPv6 Router Advertisment
 - Use prefix from RA plus the EUI-64 to form an address
 - Add that address to the receiving interface

Introduction Addressing **Fields** Transition Vendor support

Headers

IPv6

Version	Class	Flow Label			
	Payload Length	Next Header Hop Limit			
			-		
		Source Address			
s			Ø		
e e					
	Destination Address				
x 1 25			20		

IPv4

Version	IHL	Type of Service	Total Length	
Identification		Flags	Fragment Offset	
Time-to	o-live	Protocol	Header Checksum	
		Sourc	e Address	
		Destina	tion Address	
	Padding			

What's changed?

All fields fixed lengths

• Options are replaced by extension headers

Header checksum gone

• Rely on Link Layer CRC

No fragmentation

- But explicity MTU discovery support
- Routers return MTU in body of a Packet Too Big ICMP

Field walkthrough

Version (4 bits)

• 6 :-)

Traffic class (8 bits)

Differentiated services class point

Flow label (20 bits)

• Unique cookie per flow

Payload length (16 bits)

Rest of packet, in octets

Field walkthough, cond

Next header (8 bits)

- Type of header immediately after IPv6 header
 - Could be a protocol like TCP or UDP
 - Could be a IPv6 extension header
- Hop limit (8 bits)
 - Renamed TTL
- Source address (128 bits)
- Destination address (128 bits)

Extension headers

- Authentication
- **Encrypted Security Payload**
- **Destinations Options**
- Hop-by-hop Options
- Routing
- Fragmentation

ICMPv6

Implemented as Extension Header (type 58)

Must be last Extension Header

ICMPv6 messages

Errors

 Destination unreachable, Packet too big, Time exceeded, Parameter problem

Information

• Echo request, reply

ICMPv6 neighbour discovery

Router advertiment

Periodic

Router solicitation

- Send a RA now
- Neighbour solicitation
 - Hello?

Neighbour advertisment

 Response to a NS or an interface MAC address change

Introduction Addressing Fields **Transition** Vendor support

Transition

IPv6 has a huge number of transition strategies

Tunnelling - 6over4

- Standard tunnel idea
- Put IPv6 packet into IPv4 packet
- Doesn't use topology well
- Very manual set up
 - And pull down, once a real network is in place
 - Multicast experience

AARNet uses 6over4 for long-haul links

Tunnelling - 6to4

- Your IPv4 address is an IPv6 address Easy to set up But
 - no DNS
 - still a tunnel, so performance sucks
 - security nightmare "accept all incoming tunnels"

Tunnel broker

Automatic establishment of tunnel and DNS

http://www.freenet6.net/

Experiences with native

Works fine over all media, including wireless

Got to watch detail of vendor claims of support

DNS

No IPv6 DNS root

 So not practical to have an IPv6-only stack

Reverse DNS is a typing challenge

So use dynamic DNS

6.a.6.3.8.b.e.f.f.f.b.5.6.0.2.0.0.1.0.0.0.0.1.8.8.3.0.1.0.0.2.ip6. arpa IN PTR gingernut.aarnet.edu.au.

gingernut.aarnet.edu.au. IN AAAA 2001:388:1000:10:206:5bff:feb8:36a6

E-mail

Save the curious and run a

- IPv6+IPv4 primary
- IPv4-only secondary

\$ORIGIN aarnet.edu.au.
aarnet.edu.au. IN MX 10 gingernut
aarnet.edu.au. IN MX 20 arrowroot
gingernut IN A ...
gingernut IN AAAA ...
arrowroot IN A ...
E-mail, cond

The curious have enabed IPv6 but have no IPv6 connectivity

- So their connections to mail exchangers which support IPv6 time out
- This is easy to debug with interactive protocols but difficult with store-andforward protocols like e-mail

Software

Most software used in the network infrastructure now supports IPv6

- BIND
- Apache
- Sendmail

Software, cond

A lot of client software supports IPv6

- Most Unix command line utilities
 - Some have special IPv6 versions. These ensure that *only* IPv6 is used.
 - ping6, traceroute6
- SSH
- Mozilla and IE

Introduction Addressing Fields Transition **Vendor support**

Linux

"IPv6" support in kernel was poor

- no autconfiguration
- no security

USAGI project is fixing this, with integration into 2.4 and 2.5 progressing

- http://www.linux-ipv6.org/
 - kernel patches
 - binaries for popular distributions

BSDs

Demonstration platform for WIDE initiative, so good support

• http://www.wide.ad.jp/

KAME project is continuing development

• http://www.kame.net/

Solaris

• In production with version 8

The new HP

Tru64 UNIX

• In production with version 5.1

HP-UX

Download for HP-UX11i

Roadmap fuzzy

IBM

AIX for pSeries (was RS/6000)

• In production with version 5L

zOS for zSeries (mainframe)

- In production with version 1.4
- No OS/390 support, go R10 1.4
- OS/400 for iSeries (was AS/400)
 - None planned

Linux

MacOS

• In production with 10.2 (Jaguar)

Microsoft

Windows desktop

- In production with XP
 - SP1 a good idea
- Additionally, developers require
 - SDK from Jan 2000 or later
 - Visual C++ 6.0 or later

Windows server

 Production support anticipated in Windows .NET Server 2003 (upgrade path from Windows 2000 Server)

Juniper

JUNOS

• In production with 5.1

IOS

- In production with 12.2(2)T IP Plus
- Backbone routers run 12.0S, so that wasn't much use
- 12.0(22)S runs IPv6, only on dCEFcapable hardware
- CatOS
 - Never

Further material

AARNet web site

- http://www.aarnet.edu.au/network/design /ipv6/
- AARNet Advanced Internet Workshop on IPv6
 - Adelaide 29-30 October
 - \$440 (AARNet members) or \$660
 - Covers costs
 - Very hands on

That's all folks

