
TCP - Transmission Control Protocol (TCP Slow Start)
Client Node Internet Server Node

Client Network Server
Client App Client

Socket
Network Server

Socket
Server App

EventHelix.com/EventStudio 1.0

17-Mar-02 13:02 (Page 1)

Copyright (c) 2002 EventHelix.com Inc. All Rights Reserved.

LEG: About TCP Slow Start 

TCP is an end to end protocol which operates over the heterogeneous Internet. TCP has no advance knowledge of the
network characteristics, thus it has to adjust its behavior according to the current state of the network. TCP has built in
support for congestion control. Congestion control ensures that TCP does not pump data at a rate higher than what the

network can handle.

In this sequence diagram we will analyse "Slow start", an important part of the congestion control mechanisms built right
into TCP. As the name suggests, "Slow Start" starts slowly, increasing its window size as it gains confidence about the

networks throughput.

create Server Application creates a Socket

Closed The Socket is created in Closed state
seq_num = 100 Server sets the initial sequence number to 100

Passive_Open Server application has initiated a passive open. In this mode,
the socket does not attempt to establish a TCP connection. The
socket listens for TCP connection request from clients

Listen Socket transitions to the Listen state

create Client Application creates Socket

Closed The socket is created in the Closed state
seq_num = 0 Initial sequence number is set to 0

Active_Open Application wishes to communicate with a destination server
using a TCP connection. The application opens a socket for the
connection in active mode. In this mode, a TCP connection will
be attempted with the server.

Typically, the client will use a well known port number to
communicate with the remote Server. For example, HTTP uses
port 80.
LEG: Client initiates TCP connection 

Client initiated three way handshake to establish a TCP connection

SYN
src = Client_Port, dst =

Server_Port, seq_num = _0

Client sets the SYN bit in the TCP header to request a TCP
connection. The sequence number field is set to 0. Since the
SYN bit is set, this sequence number is used as the initial
sequence number

SYN Sent Socket transitions to the SYN Sent state

SYN
src = Client_Port, dst =

Server_Port, seq_num = _0

SYN TCP segment is received by the server

SYN_ACK
src = Server_Port, dst =
Client_Port, seq_num =

_100, ack_num = _1, window
= _65535

Server sets the SYN and the ACK bits in the TCP header.
Server sends its initial sequence number as 100. Server also
sets its window to 65535 bytes. i.e. Server has buffer space for
65535 bytes of data. Also note that the ack sequence numer is
set to 1. This signifies that the server expects a next byte
sequence number of 1

SYN Received Now the server transitions to the SYN Received state

SYN_ACK
src = Server_Port, dst =
Client_Port, seq_num =

_100, ack_num = _1, window
= _65535

Client receives the SYN_ACK TCP segment

ACK
src = Client_Port, dst =
Server_Port, ack_num =
_101, window = _5000

Client now acknowledges the first segment, thus completing
the three way handshake. The receive window is set to 5000.
Ack sequence number is set to 101, this means that the next
expected sequence number is 101.

Established At this point, the client assumes that the TCP connection has
been established



TCP - Transmission Control Protocol (TCP Slow Start)
Client Node Internet Server Node

Client Network Server
Client App Client

Socket
Network Server

Socket
Server App

EventHelix.com/EventStudio 1.0

17-Mar-02 13:02 (Page 2)

ACK
src = Client_Port, dst =
Server_Port, ack_num =
_101, window = _5000

Server receives the TCP ACK segment

Established Now the server too moves to the Established state

LEG: TCP Slow Start 

A TCP connection starts in the "Slow Start" state. In this state, TCP adjusts its transmission rate based on the rate at which
the acknowledgements are received from the other end.

TCP Slow start is implemented using two variables, viz cwnd (Congestion Window)and ssthresh (Slow Start Threshold).
cwnd is a self imposed transmit window restriction at the sender end. cwnd will increase as TCP gains more confidence on

the networks ability to handle traffic. ssthresh is the threshold for determining the point at which TCP exits slow start. If
cwnd increases beyond ssthresh, the TCP session in that direction is considered to be out of slow start phase

cwnd = 512 (1 segment) Client maintains a congestion window (cwnd). Initially the
window is set to lower of the maximum TCP segment size and
receiver's allowed window size. In most cases the segment size
is smaller than receiver window, thus cwnd is set to the
maximum TCP segment size (512 in this example)

Note here that cwnd implements a transmitter end flow control.
The receiver advertised window implements a receiver
enforced flow control.

ssthresh = 65535 TCP connections start with ssthresh set to 64K. This variable
will be used to determine the point at which TCP exits slow
start

Slow Start Client end TCP connection moves to slow start state
cwnd = 512 (1 segment) By the same logic, the server also sets cwnd to 512

ssthresh = 65535

Slow Start Server end TCP connection moves to slow start state

Data
size = _5120

Client application sends 5120 bytes of data to the socket

Roundtrip #1 of data transmission

TCP_Segment
seq_num = _1, len = _512

The first TCP segment is sent with a sequence number of 1.
This is the sequence number for the first byte in the segment.

TCP_Segment
seq_num = _1, len = _512

ACK
ack_num = _513

Server acknowledges the data segments with the next expected
sequence number as 513

TCP typically sends an acknowledgement every two received
segments but in this case it times out for another segment and
decides to acknowledge the only segment received.

ACK
ack_num = _513

Client receives the acknowledgement for the first TCP data
segment

cwnd = 1024 (2
segments)

As the TCP session is in slow start, receipt of an
acknowledgement increments the congestion window by one 1
segment.

Roundtrip #2 of data transmission

TCP_Segment
seq_num = _513, len = _512

Since the congestion window has increased to 2, TCP can now
send two segments without waiting for an ack

TCP_Segment
seq_num = _1025, len = _512

TCP_Segment
seq_num = _513, len = _512

TCP_Segment
seq_num = _1025, len = _512

ACK
ack_num = _1537

Receiver generates a TCP ACK on receiving the two segments



TCP - Transmission Control Protocol (TCP Slow Start)
Client Node Internet Server Node

Client Network Server
Client App Client

Socket
Network Server

Socket
Server App

EventHelix.com/EventStudio 1.0

17-Mar-02 13:02 (Page 3)

ACK
ack_num = _1537

cwnd = 1536 (3
segments)

Receipt for ack again moves the congestion window

Roundtrip #3 of data transmission

TCP_Segment
seq_num = _1537, len = _512

Now three segments can be sent without waiting for an ack

TCP_Segment
seq_num = _2049, len = _512

TCP_Segment
seq_num = _2561, len = _512

TCP_Segment
seq_num = _1537, len = _512

Network delivers the three segments to the destination server

TCP_Segment
seq_num = _2049, len = _512

ACK
ack_num = _2561

TCP acknowledges receipt of two segments

TCP_Segment
seq_num = _2561, len = _512

ACK
ack_num = _3073

TCP times for another segment and acknowledges the only
pending segment

ACK
ack_num = _2561

The TCP acknowlegements again increment cwnd. This time
two acks are received, so cwnd will get incremented by 2

cwnd = 2048 (4
segments)

ACK
ack_num = _3073

cwnd = 2560 (5
segments)

TCP_Segment
seq_num = _3073, len = _512

Since cwnd has reached 5 segments, TCP is allowed to send 5
segments without waiting for the ack

Roundtrip #4 of data transmission

TCP_Segment
seq_num = _3585, len = _512

TCP_Segment
seq_num = _4097, len = _512

TCP_Segment
seq_num = _4609, len = _512

TCP_Segment
seq_num = _5121, len = _512

TCP_Segment
seq_num = _3073, len = _512

The 5 segments are received by the destination server

TCP_Segment
seq_num = _3585, len = _512

ACK
ack_num = _4097

TCP Ack is sent after first two segments

TCP_Segment
seq_num = _4097, len = _512

TCP_Segment
seq_num = _4609, len = _512

ACK
ack_num = _5121

Ack for next two segments

TCP_Segment
seq_num = _5121, len = _512



TCP - Transmission Control Protocol (TCP Slow Start)
Client Node Internet Server Node

Client Network Server
Client App Client

Socket
Network Server

Socket
Server App

EventHelix.com/EventStudio 1.0

17-Mar-02 13:02 (Page 4)

ACK
ack_num = _5633

Ack for last segment

ACK
ack_num = _4097

Three acknowledgements will be received for the 5 TCP
segments. Now the cwnd has almost started increasing
geometrically for every round trip between the client and the
server.

cwnd = 3072 (6
segments)

ACK
ack_num = _5121

cwnd = 3584 (7
segments)

ACK
ack_num = _5633

cwnd = 4096 (8
segments)

Roundtrip #5 of data transmission

TCP_Segment This time 8 TCP segments are sent

TCP_Segment

TCP_Segment

TCP_Segment

TCP_Segment

TCP_Segment

TCP_Segment

TCP_Segment

TCP_Segment

TCP_Segment

ACK Ack for first two segments

TCP_Segment

TCP_Segment

ACK Ack for next two segments

TCP_Segment

TCP_Segment

ACK Ack for next two segments

TCP_Segment

TCP_Segment

ACK Ack for next two segments

ACK Now four acks will be received, thus moving cwnd even more
quickly

cwnd = 4608 (9
segments)

ACK

cwnd = 5120 (10
segments)

ACK

cwnd = 5630 (11
segments)

ACK

cwnd = 6144 (12
segments)



TCP - Transmission Control Protocol (TCP Slow Start)
Client Node Internet Server Node

Client Network Server
Client App Client

Socket
Network Server

Socket
Server App

EventHelix.com/EventStudio 1.0

17-Mar-02 13:02 (Page 5)

Within a few more roundtrip interactions cwnd will exceed ssthresh. At this point the session will be considered out of
slow start. Note that the TCP connection from the client side is out of slow start but the server end is still in slow start as it

has not sent any data to the client.

Exiting slow start signifies that the TCP connection has reached an equilibrium state where the congestion window closely
matches the networks capacity. From this point on, the congestion window will not move geometrically. cwnd will move

linearly once the connection is out of slow start.

Congestion
Avoidance

Once slow start ends, the session enters congestion avoidance
state. This will be discussed in a subsequent article.
LEG: Client initiates TCP connection close 

Client initiates TCP connection close

Close Client application wishes to release the TCP connection

FIN Client sends a TCP segment with the FIN bit set in the TCP
header

FIN Wait 1 Client changes state to FIN Wait 1 state

FIN Server receives the FIN

ACK Server responds back with ACK to acknowledge the FIN

Close Wait Server changes state to Close Wait. In this state the server waits
for the server application to close the connection

ACK Client receives the ACK

FIN Wait 2 Client changes state to FIN Wait 2. In this state, the TCP
connection from the client to server is closed. Client now waits
close of TCP connection from the server end

Close Server application closes the TCP connection

FIN FIN is sent out to the client to close the connection

Last Ack Server changes state to Last Ack. In this state the last
acknowledgement from the client will be received

FIN Client receives FIN

ACK Client sends ACK

Close_Timer Client starts a timer to handle scenarios where the last ack has
been lost and server resends FIN

Time Wait Client waits in Time Wait state to handle a FIN retry

ACK Server receives the ACK

Closed Server moves the connection to closed state

delete

Close_Timer Close timer has expired. Thus the client end connection can be
closed too.

Closed

delete


	EventStudio 1.0
	TCP Slow Start
	About TCP Slow Start
	Client initiates TCP connection
	TCP Slow Start
	Client initiates TCP connection close


