

SUMMARY

The January 2004 TeleAnalytics WIMAX report was not tempted to follow unconstrained DSL-eliminator visions rampant at the time. Instead, the report saw the WIMAX FBWA role as relevant to the rural areas and suburbia of the developed world, as a gap-filler technology for major DSL deployments, and as a "persuader" to some developed world non-competitive DSL offerings. A major part of the F-WIMAX opportunity was positioned in Tier 2-3 markets, where the broadband is taking off, but where the spatial teledensity of the demand is weak and the fixed network is often in need of serious investment. The 2004 report further identified that major vendors had the option to OEM F-WIMAX gear, focusing instead on the time when mobile IP was to become a mainstream vision. Events proved that nothing much needed to change in the statements made in early 2004, and the timing of this follow-up report simply reflects the fact that today Mobile WIMAX is knocking at the door, and WiBro is walking towards the living room.

Today's German or US \$15-20 a month DSL, the even cheaper Japanese rates, and the massive-IPTV related fixed broadband investments, only mildly shrink the developed world FBWA sanctuaries. On the other hand, these same developments make any competition against urban fixed broadband across the board an even less realistic idea than it was two years ago. Nomadic-Mobile WIMAX applications though are already a reality, and the technology shares the inherent simplicity and transparency of a ground-up All IP network with WiBro and FLASH-OFDM.

Evidently, the technology is hardly the only broadband wireless option, and the existing technological diversity is helped by the diverse opinions concerning what the performance-operational 3G++ envelope should be after all. Clearly, these opinions largely reflect different competitive environments, and since the environments are not about to converge to any kind of homogeneity, multiple wireless broadband options will coexist in the marketplace for the remainder of the decade.

As analyzed in the report, HSPDA addresses the 3G downlink throughput issue, and in addition to the operators already deploying the technology, quite a number of others are publicly committed to do the same in 2006. Furthermore, HSUPA promises to address the 3G uplink bottleneck, eventually making the 3G Evolution capable of supporting both high-speed Internet access, and advanced use-to-user services. The Taiwanese, on the other hand, chose another route and their multi-year i3BG project (Integration Beyond 3G) already resulted in Taiwanese cities being blanketed by metro Wi-Fi. Flarion is now Qualcomm, and it is potentially putting another mobile IP option on the table, which can possibly flourish even without a revival of IEEE802.20. WiBro today is the only IEEE802.11e realization that entered the deployment phase, proving that all this technology development could not conceivably target only Korean consumption. Finally, IP Wireless is continuing on its rather lonely TD-CDMA path and the troubles of its New Zealand operator (Woosh) are due to a combination of reasons analyzed in the report.

All of the wireless broadband options are evolving, and many of the performance predictions are either the result of simulations, estimates, or of usage scenarios that may not always be relevant to the realities of the developed world operator. Furthermore, the business models put forward are sometimes echoes of the fixed and mobile broadband-saturated Korea. At other times, these scenarios seem to bypass the issue that the integrated operator most often has to live with increasingly ferocious VoIP attacks against the fixed voice revenue while having to sustain the anything but inconsequential IPTV CAPEX.

Although the report concentrates on the Nomadic/Portable/Mobile WIMAX and WiBro, it starts with the FBWA developments. Furthermore, the technology and the induced business options are examined not in a journalistic vacuum, but in correlation to the main competing technologies and within the current Telecoms framework as defined by the VoIP reality. The VoIP popularity is looked at in the context of both the Fixed and Mobile WIMAX variants, and the early mobile-voice focused WiBro deals in South America are discussed. The extensive forecasts for Fixed/Nomadic and Portable/Mobile WIMAX, along with those specific to WiBro, are detailed on page 10 of this brochure.

The detailed regional analysis included in the report is due to the fact that WIMAX's medium term fortunes will be largely defined not by the countless free-space spectral efficiency debates, but by how successful CEPT and other similar organizations prove in protecting the European consumer from the "mobile IP tropical disease". Of course, some explanation may soon have to be offered about how an Egyptian consumer with GDP just 1/22 of the WE one can possibly soon be the one to enjoy mobile IP, but of course winning time is sometimes the only realistic objective in sight.

Alvarion and Fixed BWA Trends

The 1994 established Alvarion is the oldest and biggest traditional FBWA player. While the FBWA discussion in the report is evidently more comprehensive, the summary picture of Alvarion's financials shown above is quite illustrative of the overall FBWA happenings.

.....

The introduction though of N-P WIMAX and WiBro is just about to change this traditional FBWA picture, since the 2006 Korean WIBro spending may equal what FBWA grossed in 2005 and furthermore, contractual engagements by Telecom Italia and Bell Canada-Rogers can get the N-P-M WIMAX/WiBro engine start running for good.

The point was made in the report's original release in March, that the N-P-M WIMAX uptake in developed countries is bringing to a rapid end the days that BWA was associated with Tier 2-3 markets. The May 2006 released Alvarion 2005-sales data show that the point of inflection has been reached, even without the help by the more than \$800 million Korean and Canadian WIMAX 2006 spending or the scheduled for 2007 introduction Alvarion 4Motion M-WIMAX product line.

Nomadic, Portable Mobile WIMAX - WiBro as 3G++ ALL IP Options

The Vulnerable Fixed BB Offerings

Oceania's FBWA history dates back to early 1997-98 Alvarion (then BreezeCOM) installations. In New Zealand, Walker Communications (now Woosh Wireless) is one of the oldest FBWA hands, and after years of deploying or trialing all major BWA technologies, it finally settled on IP Wireless gear.

In Australia, Unwired acquired the bulk of its 3.5 GHz spectrum in 2000, but it launched only in August 2004 after the necessary financing had been secured. The Australian fixed broadband market is dominated by Telstra, and its DSL infrastructure quality and pricing resulted in one of the less competitive DSL offerings of the developed world.

The August-2004 Unwired Sydney launch proved successful, and although the company's mid 2005 BB market share was just over 1%, the company is already past the mid point towards its originally planned breakeven point of 70,000 subscribers (see figure). An August 2005 Intel investment helped, and currently Unwired is expanding in Melbourne.

The blind association of Fixed WIMAX with only Tier 2-3 markets, represents an over simplification and instead the particularities of the competitive environment have to be looked upon. FBWA can be seen as capable of giving urban wireline a run for its money, wherever wireline did not try to be competitive enough. As analyzed in the report though, the circumstances for New Sydneys or New Aucklands selectively only exist in the rest of the developed world, and competitive ILEC responses are currently underway in both Australia and New Zealand, while the Irish IPEC response did not stop the big Irish FBWA success story.

The Rural Areas Of The Developed World

By 2003, the rapid built out of urban wireline BB infrastructure allowed for increased attention to be paid to the developed-world rural areas, and the report discusses the major initiatives of both governments and operators.

The figure at the top of the page shows the situation for a few of the countries for which data are provided. The cooperative Netherlands geography allowed for almost universal DSL coverage to be achieved by 2005. Other European geographies are hardly as DSL-friendly, and in Norway 25% of the population lives in population clusters of less than 500 inhabitants each, while 23% live in even smaller population centers (less than 200 inhabitants).

Therefore the shrinkage of the areas that are not serviced by wireline progresses at radically different rates in the developed countries examined in the report, providing for different sizetime windows for FBWA and Fixed WIMAX. This analysis, which of course factors in the underlying population counts, is among others at the basis of the detailed Fixed WIMAX forecasts provided.

It has to be pointed out that a significant part of these "white areas" can not be serviced by terrestrial means, and satellite provisioned broadband is often the only available or meaningful option. Finally, there is a significant borderline segment, where FBWA can do the job, but not at pricing levels anywhere close to the ones prevailing in the urban centers.

Nomadic, Portable Mobile WIMAX - WiBro as 3G++ ALL IP Options

The Relevant Permanence Of The Developed-World FBWA Sanctuaries.

The 2005 fixed network landscape was characterized by multibillion (per operator) IPTV-related deployments, which in many markets already resulted in \$35-45 per month 24 Mbits/sec DSL. This is approximately the range of pricing that most F-WIMAX business cases assumed, but of course for data rates of the 1Mbtis/sec variety. Perceptions of the minimum Triple Play bandwidth required vary, but even at the lowest end (5 Mbits/sec sustained) a Fixed WIMAX sector can support less than 8 concurrent households, and a four sector BS can support no more than forty.

Things are more realistic for F-WIMAX, when the TV stream is assumed to be delivered by satellite, leaving F-WIMAX in a "fixed line return role". Given that IPTV is currently a developed world undertaking, even in this role FWIMAX has to confront its usual nemesis, namely ADSL, which in general will provide for better cost per Kbits/sec delivered. On the other hand, IPTV related upgrades are mostly targeting 40-60% population coverage by 2008-2010, and therefore the natural FBWA sanctuaries (low density areas) are not about to be threatened any time soon.

Instead, the current IPTV deployments clear the atmosphere of 1990s-era FBWA revanchisms, and the report focuses on the obviously significant WIMAX-WiBro market that exists in the developed world, namely the nomadic-portablemobile one.

The Korean Dimension Of WiBro

The Korean-developed WiBro is currently the only existing member of the IEEE802.16e family that can lay claim to commercial availability, with about 18 months lead-time against the timeline established by the WIMAX Forum. Its marketing is being carried out time and again on the basis of forecasts and concepts totally specific to Korea, whose fixed and mobile broadband situation is anything but typical.

Therefore among others, the report interprets the more than nine million projected (by 2010) WiBro subs (figure at top) vis-à-vis the KT stagnated growth and the heavy regulatory burdens it faces on the FMC and IPTV fronts. Extrapolating these expectations outside Korea is possibly not a particularly rewarding path, given the wide range of competitive environments that WiBro and Mobile WIMAX are expected to serve.

The report looks at the issue in a realistic way and on the basis of the 3G precedents, where mass vendor and operator market research did not prevent the beyond reason inflation of the subscriber's expectations.

Nomadic, Portable Mobile WIMAX - WiBro as 3G++ ALL IP Options

The Throughput – Latency Debates

The HSPDA-HSUPA and Mobile WIMAX camps are not polarized, and vendors whose preferences would lie with either, would not be able to ignore the WiBro reality as well. Therefore, while realism is evident, the broadsides on the technological merits of the opposing solutions are already commonplace.

A large part of the debate revolves around throughput and latency claims-estimates, and the fact that WiBro doubles the 3G uplink throughput is possibly considered more esoteric. Furthermore, the fact that latency (figure at the bottom of page) and not raw throughput is most often the constraining factor in anything but Internet downloads, it is seldom illuminated to the degree reasonable for mobile networks rapidly coming under the IP/SIP/IMS umbrella.

Many of these estimates are the result of different assumptions or definitions; most have their origin in simulations or theoretical calculations, and very few have the benefit of any properly witnessed field measurements behind them. This situation, although definitely not the operator's dreamland, is realistically unavoidable, and the risks inherent in committing billions of dollars hardly unknown in the Industry, both wireline and wireless.

The report bypasses opportunities for both cheerleading and Cassandra roles, and simply positions everything for what it is: fact, estimate, claim or a best-case scenario.

ROUND TRIP TIME (msec)

Metro Wi-Fi

TeleAnalytics released the first ever metro Wi-Fi publication (November 2004). The current surge of interest in this massively broadband wireless option is a wellunderstood and properly positioned reality.

The metro Wi-Fi challenge is positioned both against the 3G Evolution, and also against the WIMAX-WiBro options. The capabilities of the technology to put huge amounts of bandwidth at the street level, but also its poor height service ceiling, and very limited buildings penetration performance, are put into perspective on the basis of both analytical and field results.

Furthermore, the point is established that metro Wi-Fi has no independent (without Cellular assistance) mobile voice proposition to make. Exhaustive results are included with respect to what it costs to Wi-Fi whatever is worth Wi-Fing

in NA (and around the world), what population and household counts can be addressed, and what is likely to happen and when. Finally, since Cloud in the UK and the US MSOs are already proving the prediction that the mayor is not the mobile operator's biggest worry, the report looks into the merits of metro Wi-Fi in the hands of new entrants. Special attention is paid to the US MSOs, since this type of operator can potentially address known weaknesses in the metro Wi-Fi business model. Furthermore, the MSO can also bring a dense and deterministic (wireline) backbone to the table, at pricing/performance points that can not be touched by a mobile-only operator and are challenging for an integrated one as well.

The Mobile WIMAX - WiBro Timeline

The WIMAX Forum timeline-watchers often created a feeling of collective guilt, for what is after all a Herculean effort which has not been delayed by more than one or two quarters (an Industry record), while at the same time dealing with the well known idiosyncrasies of the IEEE proceedings. A simplified view of the current plans and perceptions is shown in the figure below, and there is no doubt that the WIMAX Forum's plans are aggressive. Furthermore, the WIMAX case is not helped when individuals acting as reps of the Forum lay down a timeline, just to be informed by public statements of their CEO that no mobile full roaming and handover can be expected before 2010.

As the report analyzes, the perceptions of small and medium FBWA size players is not what will define things, and instead the color of developments to come is defined by the 18 plus month WiBro lead time, and by the plans and commitment of the majors. Alcatel for one already announced mid-2006 commercial Mobile WIMAX BS availability.

WiBro –WIMAX

The WiBro-WIMAX relationship was not the easiest one around, and the early 2004 Korean comments were that WIMAX was then just a FBWA technology, and therefore not in par with the mobile WiBro. Rather polite potshots were exchanged for most of 2004, and some kind of deal was reached only in November of the same year, reportedly only after the US administration undertook a "persuasion" campaign.

While it never made sense to develop a whole new mobile technology for a country of less than 50 million people, a widely held belief existed that the Koreans planned to do just that. Such expectations were shattered, when in late summer 2005 Samsung's chairman made clear statements that he did not see 3G-4G under the "Intel inside" logo, and that Korea was ready to lead the world (with WiBro) to the domains beyond 3G.

The report analyzes the implications of the unusual situation developed. The IEEE802.11e bulk (WIMAX) is not planning commercial launches until the end of 2007, while the WiBro strand will become operational in a few months time in Korea, and it is also currently running high profile trials around the world. While both facts and arguments made in the report are too lengthy to mention here, it should be clear, that the Samsung actions are not the actions of a company scared by the 3G-Evolution competition, since instead of looking for allies it is ready to take on the road alone.

The Regional Outlook

The 3G evolution (HSPDA) is already deploying (Cingular), but WiBro besides Korea and a couple of rather firm deals in South America, also managed to engage major carriers to WiBro trials. Some of them (Telecom Italia) had previously announced firm HSPDA 2006 deployment intentions and therefore the map at the bottom should be redrawn at least quarterly. Furthermore, WiBro may get the firm commitment of a non-Korean major operator before the summer is over, and then the game changes altogether. For the time being though, WiBro publicly enjoys a fairly peaceful existence, with all the 3G Evolution potshots aiming against mobile WIMAX. The report analyzes in detail the evolving HSPDA-WiBro landscape, with a focus on the characteristics of the operators that are inclined to adopt either. The report's forecasts are also segmented along Mobile-WIMAX/ WiBro lines, just in case of the harmonization implied by the figure at the top of the page, takes somewhat longer than anticipated.

The Mobile Infrastructure Market

The figure above represents the mid-2005 estimates of a major mobile networks infrastructure vendor. Both Qualcomm's acquisition of Flarion and the WiBro step out from Korea, were probable at the time, but not done deals as they are today.

As the report analyzes, the competitive environment is rapidly changing and practically none of the majors are placing their bets on only one side. On the other hand, not all of the vendors feel equally comfortably on both sides of the mobile IP table, and the redistribution of the pie is unavoidable. Although the mobile infrastructure market macroeconomics are not directly within the scope of the report, the overall situation is briefly addressed. The point is made that depending on the 2006-07 decisions of few major operators, linear evolution scenarios may be seriously upset.

Spectrum - Logistics - Costs

The point was made in the 2004 TeleAnalytics WIMAX report that spectrum was one of the key challenges. Many of the UNS scenarios put forward for urban-areas F- WIMAX deployments are progressively more unrealistic, given the Wi-Fi caused pollution of the 2,4GHz band. Things are getting bad in the 5GHz band as well and two of the 5GHz pollution mechanisms are simple and are mentioned here: MIMOs are extending themselves in the 5GHz band (Airgo), and also the band is widely used for backhaul links of dual band mesh networks.

Nomadic, Portable Mobile WIMAX - WiBro as 3G++ ALL IP Options In the mobile WIMAX case, UNS is simply irrelevant and the report analyzes the bands that are currently available, and what can be expected in the future. The picture is at a minimum non optimal, and the European habit of tying bands to specific technologies is questionable both in terms of operators' and consumer interests.

Finally, the fact that one company (SPRINT-Nextel) practically monopolizes the US MMDS spectrum does not necessarily help and evidently WIMAX/WiBro needs a major US deployment as a basis of its worldwide ambitions. The discussed FCC MMDS-ITFS rulings consolidate the MMDS-ITFS-MDS band usage, but they hardly provide a recipe for an alternative nation wide MMDS spectrum owner to emerge in the short term.

This WIMAX spectral polyphony, which down the road is bound to create roaming problems (even GSM has its share), is also affecting propagation characteristics and building penetrability. In turn, this variability is reflected in the number of cells required, and cell counts mixed with throughput and latency arguments are not rarely used "to prove or disprove" whatever may be required in a particular case.

Again the report sees no reason to cheerlead any of the often "on demand" proofs, and instead realistically and carefully analyzes what is fact, what is a shaky argument, and finally what all this means.

Pure IP Versus All IP

All IP is the term often used in association with the IMS-3GPP developments. On the other hand, Pure IP (as introduced by Flarion) is widely used to describe ground-up mobile IP technologies, WIMAX and WiBro included.

As the report analyzes, this Pure IP basis does not exhaust itself to the architectural simplicity implied by the stack in the figure on the right. Instead, it affects the balance of power in both a bread and butter way, but

more significantly in the medium term. On the bread and butter side of things, the Wibro claimed latency of 50 msec, and a minimum uplink data rate of 128 Kbits/sec address well understood 3G limitations, and among others makes commercial (or ITU) grade full-duplex mobile VoIP a reality. On the medium term IP-propositions that M-WIMAX /WiBro bring to the table, the report analyzes the huge innovations capability of the IETF ecosystem, and the MIMO option as an architectural cornerstone rather than an afterthought. Finally, down the 2007-08 road lie the non-chartered territories of IEEE802.16 based mesh networks; these mesh options carry the promise of addressing metro Wi-Fi limitations of relevance both to the mayor and to the major mobile carrier, or the MSO.

The High Stakes of 2.3 and 2.6 GHz

Many, including a number of regulators, consider the widely available 3.5 GHz band as non-optimal for M-WIMAX/WiBro. As the report analyzes, opinions of this nature beyond propagation considerations always reflect implicit or explicit definitions of mobility and specific usage-scenario assumptions. The fact though remains that for the major mobile operator, M-WIMAX/WiBro is mostly connected with frequencies below 3GHz and therefore a high stakes poker is underway around the world. The technology-neutrality poker is not about to stop M-WIMAX, whose time has come, but it will define the volume of things for the: remainder of the decade.

The report therefore analyzes in detail the 2.3/2.6 GHz developments and intentions, starting with the geographical mapping of the US ITFS-OFS-MMDS frequencies-ownership (figure below), and the new FCC bandplan. Furthermore, the multidimensional European happenings are looked at not only in terms of the CEPT proceedings, but on the basis of the regulatory practices and intentions, on a country-by-country basis. Similar in detail is the analysis of APAC markets, some of them so tight that any move in the "sweet" M-WIMAX bands is prone to lead to a serious redistribution of the pie.

Inukshuk: "The Stone Man That Shows The Way"

In Inuktitut, the language spoken by the indigenous people of the Canadian North, "Inukshuk" means "The Stone Man That Shows The Way" and it refers to the road-marking stone structures built by the Inuit. "Inukshuk" is also the name of a Canadian FBWA operator which, after being established in 2001, shared the troubles of its parent companies until September 2005 when a very unusual partnership took control of its shares and its spectrum rights.

Bell Canada, the Eastern Canadian ILEC, along with Rogers, the Ontario MSO and major mobile operator, found themselves controlling the company and surprisingly enough, passed on fighting the case in court. Instead, they decided to pool their 2.3, 2.5 and 3.5 GHz spectrum holdings and to pour CAN \$200 million into building a N-P-WIMAX network over three years. In early April 2006, just six months after the deal was struck, the joint venture was operational in the top twenty Canadian urban areas. The venture's apparent key objective is the invasion of Western Canada's Telecom markets, where both partners have a presence mainly through their mobile arms.

The case, non-withstanding its recent nature, is analyzed in the report, and is by far the biggest WIMAX initiative ever undertaken. Furthermore, it became operational at least six months before the likely commercial WiBro launch in Korea and the implications of course are much more significant than Canadians beating the Koreans to an N-P-M IP start line:

Nomadic, Portable Mobile WIMAX - WiBro as 3G++ ALL IP Options

- The project is no \$3-4 million FBWA job in a Tier 2-3 market, but a major undertaking in a country with a tradition of high wireline broadband uptake.
- The attack against the Western Canadian ILEC and its leading MSO is completely based on the utilization of the mobile assets of the two partners (cellular sites).
- No lengthy soul searching trials took place, and instead the network was up and running in the top twenty Canadian cities in just six months.
- Rogers had placed an order for a HSPDA deployment a few weeks before the Inukshuk launch,
- Neither Bell nor Rogers have ever been accused of business adventurism.

Space does not permit a further look at the implications, but what happened may provide some food for thought to European mobile operators, so eager to blacklist mobile IP, when many of them have to open fronts against wireline broadband and its Wi-Fi wireless extensions.

The WIMAX-claimed 150 trials-deployments are carefully analyzed in the report, since they represent a good assortment of Tier 2-3 firecrackers, companies which, in six months, have released more press releases than the number of their employees, a seriously aggressive Chilean Telmex, Bells-Rogers in Canada, and everything in between. Collectively though, the today's most successful FBWA story is found in Ireland, where as many as 11 (six active) operators managed to build an almost 15% broadband market share, in a country well known for its bad copper and years of little DSL investment.

Table Of Contents

1. E	xecutive Summary	18
1.1.		
1.2.	Quantitative Points	
2. F	rom FBWA to F-WIMAX And Then To Mobile IP	39
2.1.		
2.1.	1. The Originally Three BWA Domains	
2	.1.1.1. The Original BWA Geographical-Spectrum Segmentation	
2	.1.1.2. LMDS	41
2	.1.1.3. MMDS	44
2	.1.1.4. UNS	47
2.1.	2. The Pre-2004 FBWA	49
2.2.	The Intel Entry	50
2.3.		
2.3.	1. The Early Days	
2	.3.1.1. IEEE802.16	
2	.3.1.2. ΙΕΕΕ802.16α, ΙΕΕΕ802.16d, ΙΕΕΕ802.16-2004	53
2.3.	2. The Market Forces Influence On the IEEE802.16 Evolution	54
2	.3.2.1. The 3G Troubles And The Pure IP Challenge	54
	.3.2.2. The WIMAX Forum	
	.3.2.3. TTA & WiBro	
	3. The Silicon Supported Standards	
2	.3.3.1. IEEE802.16-2004	
2.4.	F-WIMAX Performance	60
	1. The Range – Data Rate Envelope	
2.4.	2. F-WIMAX Competitiveness Against Fixed Broadband	64
2.5.	WIMAX Networks	65
	Network Coverage	
2.5.	2. Network Cost & Performance And The Passage To N-P	66
2.6.	The F-WIMAX Markets	68
2.6.	1. Today's Tier 2-3 Markets	68
2.6.	2. The Developed-World FBWA markets	70
2	.6.2.1. The Rural Markets Of North America	70
	.6.2.2. The Rural Markets Of South America	
	.6.2.3. The Rural Markets Of Western Europe	
2	.6.2.4. The Rural Markets Of The Developed APAC	
2.7.	Fixed WIMAX Profiles & Certification	77
2.8.	The F-WIMAX Outlook	78

3. '	The 3G Evolution & Other Wireless Broadband Options	80
3.1.	Internet Access And Person-To-Person Services	81
3.2.	Convergence, IMS, And The Service Layer	_81
3.2	2.1. Convergence	
3.2	2.2. The IMS Outlook	
3.3.	The Widely Deployed Mobile Networks	85
3.3	3.1. GPRS – EGDE	
3.3	3.2. 3G, Its Limitations And The Enchantments Timeline	90
3.4.	HSPDA & HSUPA	94
3.4	4.1. HSPDA Technology & Performance Envelope	
3.4	4.2. CDMA 1XEV-DO Performance Envelope	95
3.4	4.3. HSUPA Technology & Performance Envelope	97
3.5.	Super (LTE) 3G	98
3.5	5.1. The Wireless APAC Challenge	
3.5	5.2. The 3G LTE Timeline And Performance Expectations	
3.5	5.3. 3G LTE And The Ultimate Convergence To Mobile-IP/OFDM/MIMO	103
3.6.	The Flarion-Qualcomm FLASH-OFDM and IEEE802.20	_ 104
3.0	5.1. Flarion And The IEEE802.20 Saga	104
	5.2. The Flarion FLASH-OFDM Technology	
3.0	6.3. Trials-Deployments And Outlook	
3.7.	The IP Wireless TD-CDMA	_ 108
	7.1. IP Wireless	
	7.2. Technology And Performance	
	7.3. Deployments And Outlook	
3.8.		
	3.1. Overview And Basic metro Wi-Fi Basic Facts	
	3.2. Single And Dual Band Mesh metro Wi-Fi implementations	
	3.3. metro Wi-Fi Street Level Performance	
	3.4. metro Wi-Fi Service Ceiling And Residential Broadband 3.5. Metro Wi-Fi Versus WIMAX In the Residential Broadband Space	
	8.5. Metro Wi-Fi Versus WIMAX In the Residential Broadband Space 8.6. metro Wi-Fi Versus WIMAX As Broadband Ubiquity Solutions	
	3.7. The metro Wi-Fi Cost Model	
	3.8. The Addressable metro Wi-Fi Market	
	3.9. Wireline Provisioned Metro Wi-Fi And The MSOs	
3.9.		
3.10		
0.10		102
4 . 1	Mobile WIMAX-WiBro	135
4.1.	Technological Foundations of the IEEE802.16e Family	_ 136
4.	1.1. From IEEE802.16-2004 to IEEE802.16e	136
4.2.	Key IEEE802.16e Characteristics	_ 138

4.2.	1. The Fundamentals Of The IEEE802.11e PHY	138
4.2.	2. Duplexing: TDD and FDD	139
4.2.	3. Adaptive Modulation Coding (AMC)	140
4.2.	4. Frequency Reuse	140
4.2.	5. Security	142
4.2.	6. QoS	142
4.2.		
4.2.	3. Latency	146
4.3.	WiBro	147
4.4.	AAS -STC-MIMO	149
4.4.	1. Adaptive Antenna Systems	149
4.4.	2. Space Time Codes	150
4.4.	3. MIMO	152
4.5.	The M-WIMAX Network & Mobility Management	153
4.6.	Heterogeneous Networks Handover	155
4.7.	Comparative Technological Positioning of IEEE802.16e	156
5. T	ne M-WIMAX/WiBro Business Context And Outlook	161
5.1.	The Current F-WIMAX SPECTRUM Developments	
5.1.		
5.1.		
5.1.		
5.2.	The Traditional FBWA Case	166
5.2.		
5.	2.1.1. IPTV And Wireline Upgrades	
5.	2.1.2. The WIMAX Operators Crowding In The Urban Areas	169
5.	2.1.3. Breakthroughs And The Fragility Of New BWA Operators	170
5.	2.1.4. The ILECs Gap Filler Role	173
5.2.	2. The Tier 2-3 Markets	176
5.3.	metro Wi-Fi And WIMAX Backhaul	178
5.4.	The FBWA Business Market	182
5.5.	N-P-M WIMAX, WiBro And The Telecoms Instance	184
5.5.		
5.5.		
5.5.		
5.5.		
5.	5.4.1. Nomadicity, Portability And Mobility: The End-User Perspective	
5.	5.4.2. Personal Broadband As A Single Technology Vision And Its Limits	195
5.5.	5. Convergence, FMC And Existing Mobile Networks	197
5.5.	6. HSPDA Market Uptake And Outlook	199
5.6.	The Mobile-Only Operator	201

5.7.	The MSOs Entry in Wireless	203
5.7.1	The MSO As A Convergence Agent	203
5.7.2	2. The MSO As A WIMAX And/Or metro Wi-Fi Operator	205
6. Re	egional Overview	208
6.1.	Notes & Notation	
6.2.	North America	
6.3.	Latin America	
6.4.	APAC	
6.5.	Western Europe	
7. N	orth America	212
7.1.	Regional Overview	213
7.2.	Canada	
7.2.1		
7.2.2		
7.2.3	3. The Inukshuk-Bell-Rogers N Entry	217
7.3.	US	221
7.3.1		
7.3.2	1	
7.3.3	1	
7.3.4		
7.3.5	5. Clearwire	230
8. Ce	entral And South America	233
8.1.	Overview	234
8.2.		
8.3.	Brazil	
8.3.1	1. The Brazilian Fundamentals	
8.3.2		
8.3.3	3. The Brazilian MMDS and 5 GHZ Bands	240
8.3.4	4. The Brazilian Outlook And The WiBro Entry	240
8.4.	Chile	243
8.5.	Mexico	247
9. Ei	ırope	250
9.1.	Overview	251
9.2.	CEPT And IMT-2000	
9.3.	Austria	

9.4.	Belgium	257
9.5.	Denmark	258
9.6.	Finland	261
9.7.	France	262
9.8.	Germany	
9.9.	Italy	
9.10.	Ireland	
9.11.		
9.12.	Norway	
9.13.		
9.14.	-	
9.15.		
9.16.		
-	UK	
	7.1. Overview	
	7.2. The 5 GHz and 3.5 GHZ Bands	
9.17	7.3. The UK Regulatory Outlook	287
9.17	7.4. The UK WIMAX Players	288
	.17.4.1. BT	
	.17.4.2. Langreen	
	.17.4.3. Libera	
	.17.4.4. PCCW – UK Broadband (Now)	
	.17.4.5. PIPEX	
9.	.17.4.0. Telabria Aria Wileless SDSL	292
10. A	PAC	295
10.1.	Overview	296
	Australia	297
10.2	2.1. Overview	
	2.2. Telstra And The Wireline Broadband Market	
	2.3. The Australian WB Spectrum	
	2.4. Austar	
10.2	2.5. Personal Broadband	303
10.3.	CASE STUDY: The Australian Unwired	304
10.4.	China	309
10.5.		
10.6.		
10.7.		
	7.1. Overview	

10.7.2. KT	318
10.7.3. SK Telecom	321
10.7.4. Hanaro	321
10.8. New Zealand	322
10.8.1. Overview	
10.8.2. The Early Broadband Days	
10.8.3. The 3.5 GHz Band in New Zealand	
10.8.4. New Zealand Broadband Competition	
10.8.5. The Case of Woosh Wireless	
10.9. Singapore	
10.10. Taiwan	
10.10. Idiwali	000
11. Forecasts	332
11.1. Overview	333
11.1.1. Regional Segmentation	
11.1.2. Definitions and Segmentation	
11.1.2.1. User Roles	
11.1.2.2. Network Roles	
11.1.2.3. Device Roles	
11.1.2.4. BS (Basestation) Roles	
11.2. Pricing Evolution	
11.3. Forecasting Methodology	341
11.3.1. Analytic Preliminaries	
11.3.2. Brief Description Of The Forecasting Model & Notes On The Results	
11.4. Forecasting Results	345
11.4.1.1. Rolled Up Forecasts - Users	
11.4.1.1.1. WIMAX & Pre-WIMAX Users Worldwide [06-10]	
11.4.1.1.2. F,N-P,M-W Users Worldwide [06-10]	
11.4.1.1.3. IEEE802.16-2004 Users Worldwide [06-10]	346
11.4.1.1.4. IEEE802.16e Users Worldwide [06-10]	346
11.4.1.1.5. F,N-P,M,W Users Worldwide [06-10]	
11.4.1.1.6. WIMAX Users Worldwide Regional Breakdown [06-10]	
11.4.1.2. Rolled Up Forecasts – Terminal Devices	
11.4.1.2.1. All Devices-Regional Breakdown (Units, Mil.) [06-10]	
11.4.1.2.2. All Devices - Type Breakdown (Units, Mil.) [06-10]	
11.4.1.3. Rolled Up Forecasts – BSs [06-10]	
11.4.1.3.1. BS-ALL - Regional Breakdown (units)	
11.4.1.3.2. BS-IEEE802.16e - Regional Breakdown (units) [06-10]	
11.4.1.3.3. BS-IEEE802.16e-2004 - Regional Breakdown (units) [06-10]	
11.4.1.4. Rolled Up Forecasts – BSs-Terminals Revenue [06-10]	
11.4.1.4.1. BSs-Terminals Total Revenue Regional Breakdown [06-10]	
11.4.1.4.2. BSs-Terminals IEEE802.16-2004 Revenue Regional Breakdown [06-10] 11.4.1.4.3. BSs-Terminals IEEE802.1e Revenue Regional Breakdown [06-10]	
	301

11.4.1.5. Detailed Forecasts Users [06-10]	352
11.4.1.5.1. F-Total WIMAX Users Regional Breakdown (mil.) [06-10]	
11.4.1.5.2. N-P-Total WIMAX Users Regional Breakdown (mil.) [06-10]	
11.4.1.5.3. M-Total WIMAX Users Regional Breakdown (mil.) [06-10]	
11.4.1.5.4. W-Total WiBro Users Regional Breakdown (mil.) [06-10]	
11.4.1.5.5. NA-Total WIMAX Users Type Breakdown (mil.) [06-10]	354
11.4.1.5.6. SA-Total WIMAX Users Type Breakdown (mil.) [06-10]	
11.4.1.5.7. CEPT-Total WIMAX Users Type Breakdown (mil.) [06-10]	
11.4.1.5.8. APAC-Total WIMAX Users Type Breakdown (mil.) [06-10]	
11.4.1.5.9. RoW-Total WIMAX Users Type Breakdown (mil.) [06-10]	356
11.4.1.6. Detailed Forecasts Terminals [06-10]	356
11.4.1.6.1. Terminals: OUT-04 - Regional Breakdown (units, mil.)	
11.4.1.6.2. Terminals: IN-04 - Regional Breakdown (units, mil.)	
11.4.1.6.3. Terminals: PCMCIA-04 - Regional Breakdown (units, mil.)	
11.4.1.6.4. Terminals: OUT-E - Regional Breakdown (units, mil.)	
11.4.1.6.5. Terminals: IN-E - Regional Breakdown (units, mil.)	358
11.4.1.6.6. Terminals: PCMCIA-E - Regional Breakdown (units, mil.)	359
11.4.1.6.7. Terminals: Handset - Regional Breakdown (units, mil.)	359
11.4.1.6.8. NA Devices - Type Breakdown (units, mil.)	360
11.4.1.6.9. SA Devices - Type Breakdown (units, mil.)	360
11.4.1.6.10. CEPT Devices - Type Breakdown (units, mil.)	361
11.4.1.6.11. APAC Devices - Type Breakdown (units, mil.)	361
11.4.1.6.12. RoW DEVICES - Type Breakdown (units, mil.)	362
11.4.1.7. Detailed Forecasts BSs [06-10]	362
11.4.1.7.1. BS-ALL - Type Breakdown (units)	362
11.4.1.7.2. BS-NA - Type Breakdown (units)	363
11.4.1.7.3. BS-SA - Type Breakdown (units)	363
11.4.1.7.4. BS-CEPT - Type Breakdown (units)	364
11.4.1.7.5. BS-APAC - Type Breakdown (units)	364
11.4.1.7.6. BS-RoW - Type Breakdown (units)	365
11.4.1.8. Detailed Forecasts Terminals Revenue [06-10]	365
11.4.1.8.1. Total Terminals Revenue - Type Breakdown (mil.) [06-10]	365
11.4.1.8.2. Total Terminals Revenue - Regional Breakdown (mil.) [06-10]	366
11.4.1.8.3. IEEE820.16-04 Terminals Revenue - Regional Breakdown (mil.) [06-10]	366
11.4.1.8.4. IEEE820.16E Terminals Revenue - Regional Breakdown (mil.) [06-10]	367
11.4.1.8.5. OUT-04 -Device Type Revenue (mil.) [06-10]	367
11.4.1.8.6. IN-04-Device Type Revenue (mil.) [06-10]	368
11.4.1.8.7. PCMCIA-04 -Device Type Revenue (mil.) [06-10]	368
11.4.1.8.8. OUT-E-Device Type Revenue (mil.) [06-10]	369
11.4.1.8.9. IN-E -Device Type Revenue (mil.) [06-10]	369
11.4.1.8.10. PCMCIA-E -Device Type Revenue (mil.) [06-10]	
11.4.1.8.11. HANDSET -Device Type Revenue (mil.) [06-10]	370
11.4.1.8.12. NA Device Regional Revenue Type Breakdown (mil.) [06-10]	
11.4.1.8.13. SA Device Regional Revenue Type Breakdown (mil.) [06-10]	
11.4.1.8.14. CEPT Device Regional Revenue Type Breakdown (mil.) [06-10]	
11.4.1.8.15. APAC Device Regional Revenue Type Breakdown (mil.) [06-10]	
11.4.1.8.16. RoW Device Regional Revenue Type Breakdown (mil.) [06-10]	373

11.4.1.9. Detailed Forecasts BSs Revenue [06-1	0]373
11.4.1.9.1. BS-ALL - Basestations Revenue (mil.) [00	
11.4.1.9.2. BS-E - Basestations Revenue (mil.) [06-1	0]374
11.4.1.9.3. BS-04 - Basestations Revenue (mil.) [06-	
11.4.1.9.4. ALL: Regional BSs Revenue [06-10]	
11.4.1.9.5. NA: Regional BSs Revenue [06-10]	375
11.4.1.9.6. SA: Regional BSs Revenue [06-10]	
11.4.1.9.7. CEPT: Regional BSs Revenue [06-10]	
11.4.1.9.8. APAC: Regional BSs Revenue [06-10] _	
11.4.1.9.9. RoW: Regional BSs Revenue [06-10]	377
12. Technological Offerings	378
12.1. Overview	379
12.1.1. Silicon Developers	
12.1.1.1. Beceem	
12.1.1.2. Broadcom	
12.1.1.3. Freescale	
12.1.1.4. Fujitsu	
12.1.1.5. Intel	
12.1.1.6. picoChip	
12.1.1.7. TeleCIS Wireless	
12.1.1.8. SEQUANS Communications	
12.1.1.9. Runcom	
12.1.1.10. Sierra Monolithics	
12.1.1.11. Texas Instruments	
12.1.1.12. Wavesat	
12.1.2. Equipment Vendors	
12.1.2.1. Airspan	
12.1.2.2. Alcatel	
12.1.2.3. Alvarion	
12.1.2.4. ArrayComm	
12.1.2.5. Axxcelera	391
12.1.2.6. Aperto Networks	
12.1.2.7. Atmel	
12.1.2.8. Cisco	
12.1.2.9. Ericsson	
12.1.2.10. Hitachi, Ltd	
12.1.2.11. Huawei Technologies	
12.1.2.12. Kyocera	
12.1.2.13. MITAC	
12.1.2.14. Motorola	
12.1.2.15. Navini Networks	
12.1.2.16. NEC	
12.1.2.17. NextNet	

12.1.2.18. Nokia	397
12.1.2.19. Nortel-LG	398
12.1.2.20. Lucent	398
12.1.2.21. POSDATA	
12.1.2.22. Proxim Wireless	
12.1.2.23. Redline Communications	400
12.1.2.24. Siemens	
12.1.2.25. SOMA Networks	401
12.1.2.26. SR Telecom	401
12.1.2.27. Samsung	402
12.1.2.28. Stratex Networks	
12.1.2.29. Telsima	403
12.1.2.30. ZTE	403

Table of Figures

Figure 1 The LMDS-MMDS-UNS Geography Segmentation	41
Figure 2 The MDS-ITFS-MMDS-OSF Allocations	45
Figure 3 US-Broadband Availability Map (End 2003)	49
Figure 4 The US BWA-Satellite Broadband Market Share 1999-2004 (FCC)	51
Figure 5 The IEEE802.16 Family Timeline	52
Figure 6 The Mid-05 Western Europe 3G Geography	55
Figure 7 The Mid-05 UK 3G Coverage	55
Figure 8 WIMAX Forum Membership 4/01-3/06	57
Figure 9 The WIMAX Forum's Sphere Of Responsibility	58
Figure 10 IEEE802.16-2004 Framework	59
Figure 11 The "Generic" Data Rate/ Range FBWA Envelope	61
Figure 12 A FBWA Vendor's SUI Data Rate/ Range Calculations	62
Figure 13 The 5.8 GHz QWEST Measurements	63
Figure 14 Contention Ratio Versus Number Subs In A Sector	63
Figure 15 US F-BWA Pricing Structures –Versus Fixed BB	64
Figure 16 UNWIRED CAPEX Evolution	65
Figure 17 The UNWIRED Sydney Network	65
Figure 18 Alvarion's Sales And Regional Sales Mix 2002-5	69
Figure 19 The Evolution Of The Underserviced US Geographies 99-04	71
Figure 20 US Availability And Population Density	71
Figure 21 The US Broadband Urban-Rural Broadband Uptake (00-05)	72
Figure 22 The EU-17 DSL National and Rural Availability	74
Figure 23 EU-17 DSL Rural Availability Increase in 2004-2005	74
Figure 24 EU-17 Rural Underserviced Markets 2004 2005	75

Figure 25 The Western European Non-DSL Households	75
Figure 26 The Norwegian FBWA Demographics	76
Figure 27 The IMS Architecture	83
Figure 28 GPRS Throughput	87
Figure 29 UL Delay Distribution	87
Figure 30 DL Delay Distribution	87
Figure 31 UK: 3G-GPRS Coverage (June 2005)	88
Figure 32 GPRS-EDGE: Throughput-Latency Performance Envelope	89
Figure 33WCDMA And The Broadband Competition – End 2005	90
Figure 34 GPRS-EDGE-UMTS Throughput And Latency	92
Figure 35 The 3G Uplink Trade-off	92
Figure 36 UMTS 64 Kbits/sec UL Coverage	93
Figure 37 UMTS Voice Coverage	93
Figure 38 UMTS UL Goodput	93
Figure 39 UMTS UL Delay	93
Figure 40 Nortel: HSPDA Performance Envelope	95
Figure 41 The1xEV-DO DL and UL Throughput CDFs	96
Figure 42 The l xEV-DO DL UL RTT CDFs	97
Figure 43 The l xEV-DO DL UL RTT CDFs	97
Figure 44 The 3G LTE and WIMAX/WiBro Timelines	100
Figure 45 The NTT DoCoMo TestBed	101
Figure 46 3G LTE And HSPDA Delay Performance	102
Figure 47 The Flarion Flexband	106
Figure 48 The Belair Eight Backhaul Antennas and Three Radios Mesh Node	114
Figure 49 Dual Band Mesh Configurations	114
Figure 50 Averaged Metro Wi-Fi Bandwidth	117
Figure 51 A 19 Cells Canonical Sub-Mesh And Backhaul	117
Figure 52 The Munich (DE) Media Cell Deployment	118
Figure 53 The metro Wi-Fi Service Ceiling For Different Antenna Types	121
Figure 54 The metro Wi-Fi Service Ceiling Issue	121
Figure 55 Metro Wi-Fi Vertical Performance Munich: Building 1	122
Figure 56 Metro Wi-Fi Vertical Performance Munich: Building 2	122
Figure 57 Packet Loss Rate and VoWLANs MOS	123
Figure 58 Single & Dual Band metro Wi-Fi Cost Versus Cell Range	126
Figure 59 US: metro Wi-Fi Addressable Population Versus Housing Units Threshold	127
Figure 60 US: metro Wi-Fi Addressable Housing Units Versus Housing Units Threshold	127
Figure 61 US: metro Wi-Fi Addressable Area (km2) Versus Housing Units Threshold	127
Figure 62 Am MSOs metro Wi-Fi scenario	129
Figure 63 Generic SIP Based GPRS-WLAN Handover Performance	131

Figure 64 The WIMAX Forum Three Dimensional VoIP Window	132
Figure 65 Typical TDD Spectral Utilization Gain	139
Figure 66 Frequency Reuse And Cell Edge Performance	141
Figure 67 M-WIMAX Range Data Rate Envelope	143
Figure 68 M-WIMAX/WiBro	144
Figure 69 A WiBro Range-DL Data Rate Performance Simulation	148
Figure 70 AAS Principle	150
Figure 71 PRE-FFT Beamforming	150
Figure 72 Typical 2X1 STC Performance	151
Figure 73 The SR Telecom 2X1 STC WIMAX	151
Figure 74 Multiple Input Multiple Output	152
Figure 75 The M-WIMAX Network	154
Figure 76 The M-WIMAX Mobility Management Developments And Timeline	155
Figure 77 The Vodafone Calculations	157
Figure 78 The African UNS Allocations	162
Figure 79 SPRINT's 2.5 GHz Loss Measurements	166
Figure 80 The Spanish IPTV Deployment	167
Figure 81 The Broadband Data Rate Evolution	169
Figure 82 The Australian BWA Focus On The Urban Areas	170
Figure 83 Unwired's Subscribers and EBITDA Evolution	172
Figure 84 US Cable-DSL Broadband Availability Scattergram	173
Figure 85 Alberta (CA) Human Settlement Dwellings Distribution	174
Figure 86 Tier 1-2-3 Broadband Demand Teledensity And FBWA	176
Figure 87 Mesh & PMP Backhaul	179
Figure 88 The Rio Rancho Installation	179
Figure 89 Towerstream	
Figure 90 The Mobile IP – OFDM – MIMO Line	
Figure 91 The Three Personal Broadband Spaces	
Figure 92 The Mobility Cutting Planes	
Figure 93 The Downtown Toronto Inukshuk Rooftop Assets	
Figure 94 The Unavoidability Of Multi Network Wireless Broadband	
Figure 95 The SIP/IMS Convergence Space	
Figure 96The Monthly Pace OF HDPDA Launches	
Figure 97 The 2006-2007 HSPDA	
Figure 98 The Videotron VoIP Inroads	204
Figure 99 Color Coding Scheme	
Figure 100 North America: WIMAX Spectrum Cooperativeness And Potential	
Figure 101 Latin America: WIMAX Spectrum Cooperativeness And Potential	
Figure 102 APAC: WIMAX Spectrum Cooperativeness And Potential	210

Figure	103 Western Europe: WIMAX Spectrum Cooperativeness And Potential	211
Figure	104 Canadian Broadband Adoption 01-05	214
Figure	105 Canadian Telecoms Availability Metrics	214
Figure	106 Canadian Broadband Availability 2000-05	215
Figure	107 The Bell Canada Inukshuk Network Diagram	219
Figure	108 The Bell Canada Inukshuk Network Key Technical/Operational Parameters	220
Figure	109 Canadian BWA Channels	221
Figure	110 The US Broadband Evolution 2000-05	221
Figure	111 The US Broadband Evolution 2000-05	221
Figure	112 Forecasted And Actual US VoIP Uptake	222
Figure	113 The End 2004 US Broadband Black Spots Map	224
Figure	114 Distribution Of The US Local Loop Length	224
Figure	115 US Broadband Availability And Population Densities	224
Figure	116 The US Unlicensed Bands and EIPR Limits	225
Figure	117US MMDS MAP- May 2004	227
Figure	118 The SPRINT-Nextel MAP	227
Figure	119 The June 2004 MMDS- ITFS Band Plan	229
	120 Clearwire: Cumulative Distribution of Operational Areas Versus Population De	
Figure	e 121 Clearwire: Distribution Of Operational Areas As A Function Of Population Cou	int
	122 The Argentinean 3.4 Bands	
-	e 123 Brazil; Fixed and Mobile Penetrations 1998-2005	
	124 Brazil; Fixed and Mobile Subscribers 1998-2005	
-	125 Brazil Broadband Market Evolution & Market Shares	
-	126 Brazil: The Geography & Demographics	
-	2127 Brazil: Spatial Teledensity	
•	128 The Brazilian MMDS Map	
•		
U	130 Chile: Broadband Market Shares Q2-05	
-	131 Chile: Entel Wireless Subs 2001-2005	
-	132 Chile: Broadband Technologies Market Shares 2002-2005	
•	133 Chile: The Entel WIMAX Deployment Map	
•	134 The Telmex Internet Subscribers 01-05	
•	135 The March 2006 Mexican Spectrum Decisions	
•	136 The CEPT Footprint And Membership Evolution	
•	137 The Austrian 2004 WIMAX Licenses	
-	138 Austria DSL Availability 04-05	
-	139 Austria: Quarterly Broadband Market Shares 03-05	
•	140 Current Belgian 3.5 GHz Allocations and Future Scenarios	

Figure	141 The Danish Clearwire Deployment And Pricing	259
Figure	142 Danish BB Data Rates Distribution	260
Figure	143 Danish BB ILEC And Cable Retail Market Share	260
Figure	144 The Danish FTTH Built out	261
Figure	145 Finland: Broadband Uptake 01-05	262
Figure	146 Finland: BB Market Shares 2005	262
Figure	147 The French DSL Coverage	263
Figure	148 The French Broadband and IPTV Market Shares	264
Figure	149 The February 2006 French 3.5 GHz Applicants	266
Figure	150 Germany: Broadband Evolution 01-05	267
Figure	151 National and Rural German Broadband 2004-05	267
Figure	152 The Italian BB Market -2005	268
Figure	153 Italy: National and Rural Irish Broadband Availability 2004-05	268
Figure	154 National and Rural Irish Broadband 2004-05	270
Figure	155 The Irish 3.5 GHz Bandplan	271
Figure	156 Quarterly Irish Broadband Market Shares 2003-05	272
Figure	157 The Limerick (IE) Irish Broadband Coverage	273
Figure	158 Ireland: Comparative FBWA-Wireline Broadband Pricing	274
Figure	159 Netherlands: Evolution of Broadband Availability and Penetration 02-05	275
Figure	160 The Enertel POPs	275
Figure	161 Netherlands Broadband Pricing Evolution	276
Figure	162 Norway: Broadband Market Shares 01-05	276
Figure	163 Norway: Broadband Availability 04-05	276
Figure	164 The Extreme Norwegian Demographics	277
Figure	165 Comparative European 3.5 GHz Spectrum Unit Price	278
Figure	166 Non-DSL Municipalities And Populations	280
Figure	167 Castilla-La Mancha	280
Figure	168 Municipalities – Population Size	280
Figure	169 Swedish BWA: Subscribers And Market Share (2000-04)	281
Figure	170 Sweden: Regulator's 2.6 GHz Scenario	282
Figure	171 Swiss BB Wireline Residential	283
Figure	172 Swiss Wireline BB	283
Figure	173 UK: Dial-Up & Broadband Access 2002-2005	285
Figure	174 UK: Broadband Market Shares Q3-05	285
Figure	175 UK: DSL Pricing Q4-02/Q4-05	286
Figure	176 UK: The 3.5 GHz Licensees	287
Figure	177 PCCW's Medium Term Deployment Vision	291
Figure	178 The Telabria Geography And Network	293
Figure	179 UK Comparative FBWA –SDSL Pricing	294

Figure	180 The Telstra Financials 2000-04	297
Figure	181 The Telstra Broadband Retail Market Share	298
Figure	182 The Australian Broadband 2000-2005	298
Figure	183 The Telstra Infrastructure Upgrade Timeline	299
Figure	184 Evolution Of The Australian DSL Data Rates Distribution	299
Figure	185 Australia DSLed Exchanges, Population And Lines	299
Figure	186 The Australian BWA Allocations	301
Figure	187 The Urban Concentration of Australian FBWA	302
Figure	188 The Unwired Subscribers Evolution	304
Figure	189 The Context Of The Unwired Subscriber Growth	305
Figure	190 Unwired ARPU, Revenue, EBITDA Evolution	306
Figure	191 Comparative Australian BB Pricing	307
Figure	192 The Australian DL Caps	307
Figure	193 Timeline Of Chinese FBWA Related Spectrum Allocations	309
Figure	194 Chinese 3.5 Spectrum Allocations	309
Figure	195 The Major 3.5 GHz Chinese Licenses And Licensing Geography	310
Figure	196 Hong Kong Operators – January 2006	312
Figure	197 The Hong Kong 3.5 GHz Allocations	313
Figure	198 The Japanese Broadband Wireline	314
Figure	199 The Japanese Mobile Min. Cost	314
Figure	200 The Yozan Financials	315
Figure	201 The Yozan Tokyo Deployment Plan	316
Figure	202 The Yozan BSs and APs Count	316
Figure	203 The Korean WiBro Band plan	317
Figure	204 The KT-SIDI-SKT-Hanaro Projections	318
Figure	205 The "Consensus" WiBro Projections	318
Figure	206 The KT and SKT Revenue Evolution	319
Figure	207 Forecasted And Actual NETSPOT Subscribers.	319
Figure	208 The KT Deployment Stages	320
Figure	209 New Zealand: Relative Urbanization	322
Figure	210 New Zealand: The Early DSL Penetration	323
Figure	211 The Existing 3.5 GHz New Zealand Allocations	324
Figure	212 New Zealand: Recent DSL Gains	325
Figure	213 The Woosh Wireless Auckland Deployment	327
Figure	214 The Singapore Auction Results	329
Figure	215 Regional Segmentation	333
Figure	216 The N-P User Role Expansion	339
Figure	217 Terminal Devices And BSs Price Evolution	340
Figure	218 Forecasting Flowchart	344

Figure 219 WIMAX & Pre-WIMAX Users Worldwide [06-10]	
Figure 220 F,N-P,M-W Users Worldwide [06-10]	
Figure 221 IEEE802.16-2004 Users Worldwide [06-10]	
Figure 222 IEEE802.16e Users Worldwide [06-10]	
Figure 223 F,N-P,M,W Users Worldwide [06-10]	
. Figure 224 WIMAX Users Worldwide Regional Breakdown [06-10]	
Figure 225 All Devices-Regional Breakdown (Units, Mil.) [06-10]	
Figure 226 All Devices - Type Breakdown (Units, Mil) [06-10]	
Figure 227 BS-ALL - Regional Breakdown (units) [06-10]	
Figure 228 BS-IEEE802.16e - Regional Breakdown (units) [06-10]	
Figure 229 BS- IEEE802.16e-2004 - Regional Breakdown (units)	
Figure 230 BSs-Terminals Total Revenue Regional Breakdown [06-10]	
. Figure 231 BSs-Terminals IEEE802.16-2004 Revenue Regional Breakdown [06-10]	
Figure 232 BSs-Terminals IEEE802.1e Revenue Regional Breakdown [06-10]	
Figure 233 F-Total WIMAX Users Regional Breakdown (mil.) [06-10]	
Figure 234 N-P-Total WIMAX Users Regional Breakdown (mil.) [06-10]	
Figure 235 M-Total WIMAX Users Regional Breakdown (mil.) [06-10]	
Figure 236 W-Total WiBro Users Regional Breakdown (mil.) [06-10]	
Figure 237 NA-Total WIMAX Users Type Breakdown (mil.) [06-10]	
Figure 238 SA-Total WIMAX Users Type Breakdown (mil.) [06-10]	
Figure 239 CEPT-Total WIMAX Users Type Breakdown (mil.) [06-10]	
Figure 240 APAC-Total WIMAX Users Type Breakdown (mil.) [06-10]	
Figure 241 RoW-Total WIMAX Users Type Breakdown (mil.) [06-10]	
Figure 242 Terminals: OUT-04 - Regional Breakdown (units, mil.) [06-10]	
Figure 243 Terminals: IN-04 - Regional Breakdown (units, mil.) [06-10]	
Figure 244 Terminals: PCMCIA-04 - Regional Breakdown (units, mil.) [06-10]	
Figure 245 Terminals: OUT-E - Regional Breakdown (units, mil.) [06-10]	
Figure 246 Terminals: IN-E - Regional Breakdown (units, mil.) [06-10]	
Figure 247 Terminals: PCMCIA-E - Regional Breakdown (units, mil.) [06-10]	
Figure 248 Terminals: HANDSET - Regional Breakdown (units, mil.) [06-10]	
Figure 249 NA DEVICES - Type Breakdown (units, mil.) [06-10]	
Figure 250 SA DEVICES - Type Breakdown (units, mil.) [06-10]	
Figure 251 CEPT DEVICES - Type Breakdown (units, mil.) [06-10]	
Figure 252 APAC DEVICES - Type Breakdown (units, mil.) [06-10]	
Figure 253 RoW DEVICES - Type Breakdown (units, mil.) [06-10]	
Figure 254 BS-ALL - Type Breakdown (units) [06-10]	
Figure 255 BS-NA - Type Breakdown (units) [06-10]	
Figure 256 BS-SA - Type Breakdown (units) [06-10]	
Figure 257BS- CEPT - Type Breakdown (units) [06-10]	

Figure 258 BS-APAC - Type Breakdown (units) [06-10]
Figure 259 BS-RoW - TYPE BREAKDOWN (units) [06-10]
Figure 260 Total Terminals Revenue - Type Breakdown (mil.) [06-10]
Figure 261 Total Terminals Revenue - Regional Breakdown (mil.) [06-10]
Figure 262 IEEE820.16-04 Terminals Revenue - Regional Breakdown (mil.) [06-10]
Figure 263 IEEE820.16E Terminals Revenue - Regional Breakdown (mil.) [06-10]
Figure 264 OUT-04 -Device Type Revenue (mil.) [06-10]
Figure 265 IN-04-Device Type Revenue (mil.) [06-10]
Figure 266 PCMCIA-04 -Device Type Revenue (mil.) [06-10]
Figure 267 OUT-E-Device Type Revenue (mil.) [06-10]
Figure 268 Figure 269IN-E -Device Type Revenue (mil.) [06-10]
Figure 270 PCMCIA-E -Device Type Revenue (mil.) [06-10]
Figure 271HANDSET -Device Type Revenue (mil.) [06-10]
Figure 272 NA Device Regional Revenue Type Breakdown (mil.) [06-10]
Figure 273 SA Device Regional Revenue Type Breakdown (mil [06-10]
Figure 274 CEPT Device Regional Revenue Type Breakdown (mil.) [06-10]
Figure 275 APAC Device Regional Revenue Type Breakdown (mil.) [06-10]
Figure 276RoW Device Regional Revenue Type Breakdown (mil.) [06-10]
Figure 277 BS-ALL - Basestations Revenue (mil.) [06-10]
Figure 278 BS-E - Basestations Revenue (mil.) [06-10]
Figure 279 BS-04 - Basestations Revenue (mil.) [06-10]
Figure 280 ALL: Regional BSs Revenue [06-10]
Figure 281NA: Regional BSs Revenue [06-10]
Figure 282 SA: Regional BSs Revenue [06-10]
Figure 283CEPT: Regional BSs Revenue [06-10]
Figure 284 APAC: Regional BSs Revenue [06-10]
Figure 285 RoW: Regional BSs Revenue [06-10]
Figure 286 The WIMAX Fragmentation Space
Figure 287 WIMAX Silicon Availability And Timeline
Figure 288 Major Vendors - WIMAX Infrastructure Activities
Figure 289 Wavesat's View of the IEEE802-16.2003 And e markets
Figure 290 Airspan's Revenue & Losses (01-05)
Figure 291 Airspan's Sales Regional Breakdown (01-05)

Table of Tables

Table 1 WIMAX & Pre-WIMAX Users (mil.)	35
Table 2 F,N-P & M-W Users (mil.)	35
Table 3 Total Users (mil.)	35

Table 4 ALL DEVICES REGIONAL BREAKDOWN (mil.)	35
Table 5 ALL DEVICES TYPE BREAKDOWN (mil.)	36
Table 6 Single Sector BSs IEEEE802.16-2004	36
Table 7 Single Sector BSs IEEEE802.16e	36
Table 8 Single Sector BSs IEEEE802.16e & -IEEE802.16-2004	37
Table 9 TOTAL Equipment Revenue – Regional Breakdown (mil.)	37
Table 10 IEEE820.16-04 Equipment Revenue - Regional Breakdown (mil.)	37
Table 11 IEEE820.16E Equipment Revenue – Regional Breakdown (mil.)	38
Table 12 The Stanford University Interim (SUI) Channel Models,	61
Table 13 3G LTE: Key Design Targets/Requirements	102
Table 14 The FLASH-OFDM Performance Envelope	105
Table 15 IP Wireless Trials And Deployments	109
Table 16 The Release-1 S-OFDMA Parameters	139
Table 17 WIMAX QoS-Applications	142
Table 18 The WiBro Design Targets And Operational Parameters	147
Table 19 The 2002-3 3.5 GHz Brazilian Licensees	
Table 20 Chile: The Non Competitiveness of the Entel Offering	244
Table 21 The Original Danish FBWA Licensees	
Table 22 The French 3.5 GHz Allocations Timeline	
Table 23 Irish 3.5 GHz Licensees – Number Of Licenses- Vendors	
Table 24 Irish Broadband Market Growth Indicators	272
Table 25 The Norwegian November 2004 FBWA Winners	
Table 26 The 2006 Portuguese Recovery Of FBWA Spectrum	
Table 27 CLM Demographics	
Table 28 The Swiss BWA Allocations	
Table 29 The Now Pricing	
Table 30 The Woosh-TNZ Pricing	
.Table 31 User Roles And Dominant Usage	
Table 32 Network Roles	
Table 33 Device Roles	

REPORT ORDER FORM

Nomadic, Portable, Mobile WIMAX -WiBro as 3G++ All IP Options

Please Fill The Order Form And Fax It To 416 944 1324

First Name		Licensing Options
Surname		
Title		Single User (\$ 3,750 (USD)
Company		Corporate 5 7, 500 (USD)
Departmen	.t	
Address		
Country		On receipt of the signed order form you will be emailed
State		the "invoice template" which details all the information
City		necessary for us to issue an invoice.
ZIP		
Tel		Make checks payable to: TeleAnalytics Inc.
Fax		94 Cumberland St., Suite 807
Email		Toronto, Ontario Canada M5R 1A3
Date		or request banking info for
		payment by wire transfer.
Signatur	e	Report will be promptly delivered on receipt of funds

TeleAnalytics Inc., 94 Cumberland St., Suite 807, Toronto, Ontario, Canada M5R 1A3, Tel: 416 972 9334, Fax: 416 944 1324, URL: www.TeleAnalytics.com