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Measurements of the trapped particle sideband instability
compared to the macroparticle model

D. A. Hartmanna) and C. F. Driscoll
Physics Department, University of California at San Diego, La Jolla, California 92093

~Received 22 January 2001; accepted 20 April 2001!

The upper and lower sidebands are measured on a traveling wave tube where a cold electron beam
is trapped by a large amplitude wave. The two strongly coupled sidebands form a normal mode that
is characterized by the sideband growth rates, wave number shifts, amplitude ratio, and phase
relationship. The measured values agree only qualitatively with the macroparticle model of Kruer,
Dawson, and Sudan@Phys. Rev. Lett.23, 838~1969!#. Also, the macroparticle model prediction for
a nonlinear product wave does not agree with the experiment. Quantitative agreement is found
between the experiment and computer simulations that follow the electron orbits, suggesting that the
trapped particle model is too simple for quantitative predictions. ©2001 American Institute of
Physics. @DOI: 10.1063/1.1379341#
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I. INTRODUCTION

It is well known, both experimentally and theoreticall
that the nonlinear motion of electrons trapped in the field
a large amplitude plasma wave causes waves at nearby l
and higher frequencies to become unstable. These wave
called sidebands. Sideband growth was first observed
Wharton, Malmberg, and O’Neil1 when launching a large
amplitude wave in a Maxwellian plasma, and later verified
similar experiments.2–8 Sideband growth has also been o
served after saturation of a weak cold beam–plas
instability,9–15 in free electron lasers~FELs!16–18and in high
power traveling wave tubes~TWTs!.19 The interaction of the
beam with electrostatic waves on the TWT is similar to t
interaction of a weak cold beam with electrostatic waves i
plasma, since the main role of the plasma is to support
waves as a linear dielectric. In FELs, the growth of paras
sideband waves is one of the main mechanisms that limit
performance of the amplifier, since these waves beco
large enough to detrap the electrons, preventing further g
Numerous authors have also investigated the sideband i
bility in computer simulations.20–25 The mechanisms an
properties of the sideband growth are therefore of contin
interest.

Two different mechanisms have been identified that c
tribute to sideband growth. If the large amplitude wave d
cays within few trapping oscillations~e.g., when launched in
a Maxwellian plasma! then a fraction of the initially trapped
electrons becomes untrapped. This can lead to a ti
averaged electron velocity distribution function that is u
stable to the growth of waves at nearby frequencies.7,9 If,
however, the large amplitude wave undergoes several t
ping oscillations without significant damping~e.g., after
saturation of a weak cold beam–plasma instability! then a
nonlinear trapped electron distribution can arise that is

a!Present address: Max-Planck Institute for Plasma Physics, 85478 Garc
Germany.
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stable to the growth of waves at nearby frequencies. T
situation is the focus of this study.

A fruitful simplification of the highly nonlinear trapped
particle distribution is the macroparticle model~MPM! by
Kruer, Dawson, and Sudan:26 They consider the trappe
electrons only, and approximate them as a macroparticle
harmonic well. That is, the large amplitude wave with fr
quencyvT and phase velocityvT has trapped a single mac
roparticle, which ‘‘bounces’’~oscillates! at frequencyvB in
the trapping wave. Self-consistently coupling the oscillatio
of the macroparticle to small sidebands gives a dispers
relation that has unstable solutions for both upper (u) and
lower (l ) sidebands. The condition for instability is

vu2ku
r vT'2vB , ~1!

v l2kl
rvT'vB . ~2!

Here,vu andv l are the sideband frequencies, andku
r andkl

r

are the real parts of the sideband wave numbers.
Physically, Eqs.~1! and ~2! state that the sidebands a

unstable if their frequencies, when Doppler shifted into t
frame of the trapped macroparticle, equal the bounce
quency. In this dispersion relation, also referred to as s
band resonance condition, the upper and lower sideband
coupled together to form a normal mode. Obviously, t
macroparticle approximation is crude27,28 and other authors
have since improved on it by including untrapped particle29

and by investigating its range of applicability.28 However,
the MPM is intriguing in its simplicity and physical insigh
and thus warrants detailed comparison with experiment. T
is the purpose of this article.

Morales27 found a particularly promising trapped ele
tron state to which the MPM could be applied. He conside
a dc electric field along the propagation direction of an el
tron beam interacting with a damped, electrostatic wa
Computer simulations showed cases where the beam is
tially trapped in the potential well of the wave. After a fe
trapping oscillations, an asymptotic state of constant w

ng,
7 © 2001 American Institute of Physics

P license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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amplitude was reached, where the energy gain of the trap
electrons in the dc electric field balanced the energy los
the damped wave. The highly nonlinear state was also c
acterized by a lower phase velocity of the trapping wa
compared to the beamless case. Morales suggested tha
phase-space structure of the trapped electrons is sufficie
localized to approximate it as a macroparticle of some eff
tive charge, so the MPM should predict the properties
sideband wave growth.

We generate and investigate these asymptotic trap
particle states in both experiments and computer simulati
For our experiments we use a traveling wave tube~TWT!
where a monoenergetic electron beam is trapped b
launched large amplitude wave, with a dc electric field a
plied along the axis of the experiment. By suitably choos
the launch level of the trapping wave, we can obtain state
spatially constant amplitude. We find that the measured f
tion of trapped electrons agrees with the prediction of
MPM, while the measured wave number shift of the lar
amplitude wave is smaller than predicted.

We investigate this trapped particle state by additiona
launching small amplitude lower and upper sideband wav
The sidebands are linear in that their spatial evolution
pends only on the ratio of their amplitudes and their ph
relationship. Thus, they cause only linear perturbations in
motion of the trapped electrons.

The sidebands are observed to grow for frequencies
approximately fulfill Eqs.~1! and~2!, where the bounce fre
quency is calculated from the trapping wave amplitude. T
sidebands are strongly coupled through the trapped elect
if the sidebands and the trapping wave have approxima
the same phase velocity. This coupling makes the sideba
appear to be a single normal mode. The measured side
growth rates, the changes to their wave numbers, and
amplitude ratio and phase relationship of the sideband
mal modes agree only qualitatively with the predictions
the MPM. Better quantitative agreement is found betwe
the experiment and computer simulations that more preci
follow the orbits of the beam electrons. Therefore we co
clude that the discrepancy between the measured prope
of the sideband modes and the predictions of the MPM
caused by the model’s simplification of the phase-space
bits of the trapped electrons. In addition, we find that
properties of a growing ‘‘difference’’ wave observed at t
frequency of the sideband frequency separation are not p
erly predicted by the MPM.

The remainder of this article is organized as follows.
Sec. II we briefly describe the experimental setup and
operation. In Sec. III we recall the theory of the TWT, rela
the properties of the macroparticle to measurable quanti
formulate the sideband dispersion relation for the TWT, a
describe the properties of the sideband normal mode s
tion. In Sec. IV we present our experiments and compu
simulations for a case with spatially constant trapping wa
amplitude. In Sec. V the sideband properties are compa
with the predictions of the MPM. In Sec. VI we summari
our results.
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II. EXPERIMENT

Figure 1 shows a schematic of the traveling wave tub30

which has been described in detail elsewhere.14,31–33 The
TWT consists of three main elements: an electron gun
helical slow wave structure with axially movable antenn
and an electron velocity analyzer. The electron gun creat
beam with adjustable axial velocities and currents; this be
propagates along the axis of the helix, in a fieldBz

5420 G. Waves launched with a transmitter antenna at
gun end of the helix travel along the helix and continuou
interact with the electron beam. The wave evolution is m
sured with a movable receiver antenna, and the final be
velocity distribution is measured with the velocity analyz
at the end of the interaction region.

The helix is about 2.7 m long, and composed
beryllium–copper wire glued to four exterior supporting al
mina rods which are contained within a glass vacuum tu
Launched electromagnetic waves travel along the wire at
speed of light; their phase velocitiesvph along thez axis are
smaller by approximately the tangent of the pitch angle, g
ing vph'43106 m/s. At both ends of the helix, resistive te
minations reduce the reflections of the waves. The volt
standing wave ratio is about 1.26, due to residual end refl
tions and irregularities of the helix. Fortunately, th
backward-traveling waves are far from resonance with
electrons, so their effect on the wave–beam instabilities
be neglected. The helix assembly and vacuum tube are
tained within a lengthwise-slotted cylindrical waveguide.
the cylinder but outside the glass tube, four axially mova
capacitative antennas can excite or detect helix modes in
frequency range from 5 to 95 MHz. Only the helix modes a
launched, since empty waveguide modes cannot propa
below 3.0 GHz.

The measured dispersion of the helix~without a beam! is
shown in Fig. 2. The helix modes have electric field comp
nents along the axis of the helix; and their radial struct
has been discussed by Dimonte and Malmberg.14 Helix
waves with frequencies of 10–90 MHz will interact res
nantly with beam particles with axial velocities of 5.6– 3
3106 m/s.

We have also measured the damping rateskn
0i for these

linear waves on the beamless helix. We find that they
only slightly damped: At 60 MHz the damping is about 9 d

FIG. 1. Schematic of the traveling wave tube.
P license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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over the length of the helix, givingkn
0i /kn

0r'0.005. Both
wave numberkn

0r and damping ratekn
0i depend only weakly

on position: dkn
0r(z)/kn

0r'60.5% and dkn
0i(z)/kn

0i'
630%.

When an electron beam propagates with velocityvb

down the helix, it destabilizes those helix modes which ha
vph'vb . This helix is much longer than commercially ava
able TWTs, allowing us to observe about 20e-folding
lengths of linear wave growth. This allows measurements
the evolution of launched waves well into the nonlinear
gime.

The electron beam is obtained from a Pierce-type e
tron gun mounted at the front end of the helix. The indirec
heated dispenser cathode is biased at potentialVc , giving a
beam with energy 1/2mvb

25eVc . The Pierce electrode is bi
ased at a slightly more negative potential to obtain an es
tially monoenergetic electron beam with constant radial d
sity. Once every 60th of a second, an 80ms beam is obtained
by pulsing the anode from a retarding voltage to an acce
ating voltageVa which is less negative thanVc . The voltage
differenceVa2Vc regulates the beam current. The beam
pulsed so that ions created from the residual background
~P'1026 Torr! do not accumulate and neutralize the bea
Typical beam currents areI b&50mA, and typical cathode
voltages areVc'250 V. A static voltageVdc applied to the
helix gives a uniform electric fieldEdc which tends to accel-
erate the beam electrons.

At the end of the helix, the time-averaged axial veloc
distribution of the electron beam is measured with a reta
ing field velocity analyzer. The rf part of the velocity distr
bution function cannot be measured, because the elect
loose their phase relationship with the waves in the d
region between the end of the helix and the analyzer.

The TWT noise level is sufficiently low that waves ca
be launched well above the noise and still be much sma
than saturation. The full wave form is repeatedly launch
with an arbitrary wave form generator at the gun end of
helix (z50). We measure the spatial evolution of the wav
by detecting and recording the temporal wave form at po
tions spaced 5 mm apart inz; then the amplitudes and phas

FIG. 2. Beamless helix dispersion relationvn(kn
0r), with phase velocityvn

ph

and group velocityvn
gr .
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of the trapping wave and the sidebands are obtained by F
rier transformation of the temporal wave forms. The acc
racy of the measured amplitudes is about 2 dB, and the
curacy of the phases is aboutp/5.

The full electric fieldE(z,t) is composed of waves a
frequenciesvn , so the full spatial evolution can be writte
as

E~z,t !5(
n

uEn~z!uexp$2 i f̃n~z,t !% ~3!

with

uEn~z!u5uEn~0!uexpH E
0

z

dz8kn
i ~z8!J , ~4!

f̃n~z![fn~z,t !2vnt, ~5!

fn~z!5E
0

z

dz8 kn
r ~z8!1fn~0!, ~6!

[E
0

z

dz8 kn
r0~z8!1fn~0!1dfn~z!, ~7!

dfn~z![E
0

z

dz8 dkn
r ~z8!. ~8!

We obtain the ‘‘local’’ growth ratekn
i (z) by fitting a straight

line to the spatial evolution of the logarithm of the magn
tude uEn(z)u of the wave electric field amplitude in som
region aroundz. The interaction of the waves with th
trapped electrons and with each other causes deviation
their wave numbers from the beamless casekn

0r . We obtain
the ‘‘local’’ wave numberkn

r (z) by fitting a straight line to
the phasefn(z) in some region aroundz. The wave number
shift is then given bydkn(z)[kn

r (z)2kn
r0(z). In both cases,

the fit region is typically 0.25 m long, which corresponds
2–5 wavelengths.

The launched electric field spectrum atz50 typically
consists of a large amplitude trapping waveET(0) at fre-
quency f T[vT /2p555.4 MHz, and two small~upper and
lower! sidebands with symmetric frequenciesv (u,l )5vT

6dvsb and amplitudesE(u,l )(0). Launch phases,f(0), and
launch electric field amplitudes,E(0), can bearbitrarily cho-
sen. Here, (T,u,l ) and ~n! are alternate notations for th
individual modes; andf and v may both be used for any
particular frequency.

III. THEORY

A. Traveling wave tube

The linear and nonlinear theory of the interaction of
electron beam with waves on a slow wave structure is w
known.14,31–33 The coupling of the beam to the waves
often given by a one-dimensional transmission line equat
which can be cast in the form of Poisson’s equation:

ikn~z!e0eh~vn ,kn~z!!En~z!5rn~z!, ~9!

eh~vn ,kn!5~kn
022kn

2!/e0vkn
0kn

2RnAb . ~10!
P license or copyright, see http://ojps.aip.org/pop/popcr.jsp



s,
th

. 2
d–
o
o

hi
al

d
ou
he
c
-

a

e
a
d
s

e
er

e,

ex
ur

to
al
d
nd
he

i

tu
e

he
tic

the

by

n

hift
ld.

to
ped
rray

ap-
urb
is
th.

that
s.
u-

y

are

ere
pli-
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Here, eh(vn ,kn(z)) is the ‘‘helix dielectric;’’ Rn is the
beam–wave interaction impedance30 at frequencyvn , which
ranges between 500 and 1800V for our TWT; Ab is the
beam cross-sectional area; andrn(z) is the Fourier compo-
nent of the axial beam charge density at frequencyvn . Set-
ting eh(vn ,kn)50 yields the dispersion of the helix wave
i.e., kn

0(vn). These are the waves that are supported by
helix in absence of an electron beam. As shown in Fig
they have a dispersion similar to electrostatic Goul
Trivelpiece waves in a warm plasma of finite extent. The
retical predictions of the wave number and the strength
the coupling of the beam to the helix modes agree wit
61% and 610%, respectively with the experiment
measurements.31,32

The velocity of the beam electrons,v(z,t), is given by
Newton’s equation:

dv
dt

52
e

m
~E~z,t !1Esc~z,t !1Edc!. ~11!

Here,Esc(z,t) is the ‘‘space-charge’’ electric field, generate
by the beam electrons. In a plasma this field is shielded
in a traveling wave tube it typically is small compared to t
wave electric fieldE. Edc is the externally applied dc electri
field. Equations~9! and ~11!, together with the beam conti
nuity equation

ivnrn5
]

]z
~vrn!, ~12!

completely describe the spatial evolution of the wave–be
interaction.

To follow the evolution into the nonlinear regime, w
solve Eqs.~9!–~12! numerically by modeling the beam as
collection of charged disks. In these simulations we inclu
the space-charge and higher order terms. The method
solution are described elsewhere.25,31,32

B. Trapped macroparticle state

Within the macroparticle model, the asymptotic trapp
electron state is characterized by the following paramet
the effective charge of the macroparticle,sI b / f T ; its center-
of-mass velocityvT ; its phase relative to the trapping wav
DQ; and its bounce frequencyvB in the superposition of
trapping wave potential and applied dc potential. In the
periment, we can obtain all these parameters from meas
quantities once a steady state has been reached.

Following Morales, we divide the beam electrons in
the fractions that is trapped in the trapping wave potenti
and the fraction 12s that is not trapped. The untrappe
electrons can be neglected for the evolution of the sideba
because the applied dc electric field quickly accelerates t
to velocities higher than the highest wave phase velocity
the TWT.

Conservation of trapped electron and wave momen
in the asymptotic steady state gives the effective charg
the macroparticle as27,32

sI b

f T
5

1

f T
kT

0i
ET

`2

kT
0r2RTEdc

. ~13!
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Here, ET
` is the asymptotic steady state amplitude of t

trapping wave electric field. In steady state the asympto
wave number of the trapping wave,kT

` , is given by

kT
`5kT

0r1kT
0iAS ET

`

Edc
D 2

2s2. ~14!

From energy balance in the asymptotic state, we require
center-of-mass velocity of the macroparticle,vT , to equal
the asymptotic phase velocity of the trapping wave given

vT
`5vT /kT

` , ~15!

Due to the applied dc electric field, the equilibrium positio
of the macroparticle is shifted by

DC5arcsinS Edc

ET
` D ~16!

compared to the trapping wave potential minimum; the s
is in the direction opposite to the externally applied fie
The bounce frequency of the macroparticle is given by

vB
dc[F12S Edc

ET
` D 2G1/4AeET

`kT
`

m
. ~17!

C. Macroparticle model

We apply the analysis of Kruer, Dawson, and Sudan
the spatial evolution of sidebands for the asymptotic trap
particle state. To this end, we model the electrons as an a
of harmonically bound~with bounce frequencyvB! macro-
particles of chargesI b / f T that move with velocityvT

` . Ini-
tially, the macroparticles are at rest in the frame of the tr
ping wave. Sideband waves of small amplitude can dist
the macroparticles from their equilibrium position, and th
changed charge distribution can in turn cause wave grow
A self-consistent description leads to a set of equations
couple the electric field amplitudes of different frequencie

This set of equations is truncated by limiting the co
pling to lower and upper sidebands at frequenciesv l5vT

2dvsb andvu5vT1dvsb. The dispersion relation for this
model is then given by

svp
2

~kvT2v!22vB
2 F v/kvT

eh~v,k!
1

~v22vT!/~k22kT!vT

eh~v22vT ,k22kT
`! G51,

~18!

where vp
25I be/AbvTe0m is the beam plasma frequenc

squared. For some values ofdvsb, one finds growing roots
of this dispersion relation, i.e.,k[kr2 ik i with ki.0 at the
frequenciesv5vT6dvsb. We call these roots ‘‘sideband
normal modes.’’ The growth rates of both sidebands
identical (ku

i 5kl
i), and their wave numbers (ku

r , kl
r! are re-

lated by

ku
r 1kl

r52kT
` . ~19!

In addition, the sideband normal modes predict that th
exists a particular relationship between the complex am
tudes of the upper and the lower sidebands, given by
P license or copyright, see http://ojps.aip.org/pop/popcr.jsp



th

nd
th

tu
th

y

in
y

ie
ra
s
a

e
.

c

in
ol
el
ju
s
ta
i

vo

e
be
ll

in

re
be
ti

the
pli-
are
ave
lues
he
thin

e-
her-

ion
he
e
ed

o

3461Phys. Plasmas, Vol. 8, No. 7, July 2001 Measurements of the trapped particle sideband . . .
Eu*

El
5FkvT

vp

eh~ku ,v!

vp
2 ~~v2kuvT!22vB

2 !21G[aeiu.

~20!

Here,a(z) is the ‘‘sideband amplitude ratio’’ andu(z) is the
sideband phase difference, which will be related to
‘‘modulational phase’’32 Q defined in the following.~Note
that Q is also called the ‘‘invariant phase’’ by Tsunoda a
Malmberg.!25 In Sec. IV we compare the measured grow
rates and wave numbers of the sidebands, their ampli
ratio, and phase relationship with the predictions of
model.

The modulational phaseQ of the two sidebands is easil
measured and has physical relevance: IfQ50, the superpo-
sition of the three waves is an amplitude modulated trapp
wave; whereas ifQ5p, the superposition is a frequenc
modulated trapping wave. Using Eq.~7! we define the modu-
lational phase as

Q~z![2fT~z!2f l~z!2fu~z! ~21!

5E
0

z

dz8@~2kT
r ~z8!2kl

r~z8!2ku
r ~z8!!#12fT~0!

2f l~0!2fu~0!. ~22!

Note thatQ(z) is time independent, because the frequenc
of the upper and lower sidebands are symmetric to the t
ping wave frequencyvT . If the upper and lower sideband
form a sideband normal mode, then their wave numbers
related to one another through Eq.~19!, and their phases ar
related through Eq.~20!. In this case the integrand of Eq
~22! vanishes. With the small correction due to the shiftDC
of the equilibrium position of the macroparticle in the d
electric field from Eq.~16!, we obtain

Q~z!5u~z!12DC~z!. ~23!

IV. EXPERIMENTAL OBSERVATIONS

A. Trapped electron state

We trap the monoenergetic electron beam by launch
the trapping wave at about the saturation level of the c
beam instability. The electron beam velocity approximat
equals the phase velocity of the trapping wave, and we ad
the beam current and the applied dc field to obtain ca
where the residual trapping oscillations are small, so a s
of spatially constant wave number shift and amplitude
obtained.

The solid line in Fig. 3 shows the measured spatial e
lution of the trapping wave amplitude. Afterz'1.5 m, the
amplitude is constant~within about 10%! and the wave num-
ber shift ~not shown! is approximately constant. Therefor
we assume that an asymptotic trapped particle state has
reached; for comparison with theory we take the spatia
averaged values ofET

`5200 V/m and kT
`2kT

0r51.1 m21.
The dotted line in Fig. 2 shows the damping of the trapp
wave if no beam is present, withkT

0i520.44 m21.
The dashed line in Fig. 3 shows the evolution as p

dicted from the computer simulation. The agreement
tween experiment and simulation is good, since the spa
Downloaded 03 Jul 2001 to 132.239.69.90. Redistribution subject to AI
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dependence of wave numbers and damping rates on
beamless helix are taken into account. The residual am
tude modulations near the end of the interaction region
predominantly caused by the spatial dependence of w
number and damping rate. Typically the steady-state va
of the electric field amplitude agree within 15% and t
steady-state values of the wave number shifts agree wi
60.2 m21.

In the following, measurements of the growing sid
bands are shown for this trapped particle state unless ot
wise noted. The parameters of this case are:f T555.4 MHz,
I b550m A, vT543106 m/s, Edc540.4 V/m.

Figure 4~a! shows the computed phase space distribut
of the electrons at the end of the interaction region. T
electron phase,dfe , is plotted relative to the phase of th
trapping wave. The electron distribution consists of a trapp

FIG. 3. Spatial evolution of the trapping wave in the experiment~solid! and
in computer simulation~dashed!. Wave evolution without a beam is als
shown~dotted!.

FIG. 4. ~a! Phase-space plot of the simulation electrons atz52.3. ~b! Time-
averaged velocity distribution from experiment~solid! and simulation
~dashed!.
P license or copyright, see http://ojps.aip.org/pop/popcr.jsp



in

d
os
n
th
. I

ia
n
e

a
n
el

ti
all
a

dia
eld
ea
th
d
-

t o
-

d
t
ut
d
ed

ave
ta-
er

de
with

nal

nd
nge
ase
the

of
ide-

ven
e

ase
e-
wth

be
ase

n
s of
her-
ger
-
olu-

ch

and

ing
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portion and a runaway portion. The separatrix of the trapp
wave potential alone is shown as a dashed line; and the
fective separatrix of the trapping wave plus the applied
potential is shown as a solid line with a shaded interior. M
of the electrons that have not become runaways are confi
within the effective separatrix. The open diamond shows
location of the ‘‘center of mass’’ of the trapped electrons
agrees well with the prediction~3! based on Eqs.~15! and
~16! of the macroparticle model.

In Fig. 4~b! we show the measured time-averaged ax
velocity distribution at the end of the interaction regio
~solid line! and compare it to a velocity histogram of th
computed phase space distribution of Fig. 4~a!. Both distri-
butions are characterized by a separation into trapped
runaway electrons. The shaded region of the experime
distribution identifies the trapped electrons, approximat
given byvT2dv,v,vT1dv wheredv5A2eET

`/mkT
`. We

obtain the trapped particle fractionsmeasfrom the measured
velocity distribution,f 0(v), by integrating the velocity dis-
tribution over the trapped electrons

smeas[E
vT

`
2dv

vT
`

1dv
f 0~v !dv. ~24!

The error made by using the separatrix of the wave poten
rather than the separatrix of the effective potential is sm

In Fig. 5 we compare the measured trapped particle fr
tion smeasto the trapped particle fractions th calculated from
Eq. ~13!, for varying wave amplitudesET at three different
frequencies. The case of Fig. 3 is shown with a closed
mond. We used the experimentally determined electric fi
ET

` , of the trapping wave amplitude spatially averaged n
the end of the interaction region. The best fit line through
origin givessmeas51.03s th . That is, the measured trappe
particle fraction,smeas, agrees closely with the MPM simu
lation.

In Fig. 6 we compare the measured wave number shif
the trapping wave,dkT

`5(kT
`2kT

0r)/kT
0i ~scaled by the damp

ing rate of the beamless helix!, with the MPM prediction
given by Eq.~14!. The case of Fig. 3 is shown with a close
diamond. We find that the measured wave number shif
about 0.6 as large as expected from the MPM. The comp
simulations also give adkT

` about half as large as predicte
by the MPM. Evidently, the spread distribution of trapp

FIG. 5. Comparison of the measured trapped electron fractionsmeaswith s th

from Eq. ~13!, for three trapping wave frequencies.
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electrons causes less wave number shift of the trapping w
than would a bunched distribution, i.e., the MPM is quali
tively but not quantitatively correct for the wave numb
shift.

B. Evolution of the sidebands

Finally, we investigate the properties of small amplitu
sideband pairs propagating on trapped particle states,
symmetric frequenciesf u,l5 f T6d f sb. We find that the side-
band evolution depends only on the launched modulatio
phaseQ and on the sideband amplitude ratioa. For example,
the evolution is independent of the individual sideba
phases if the modulational phase is kept constant. For a ra
of sideband frequencies, we find that the modulational ph
and the sideband amplitude ratio take on approximately
same constant values after an initial transition region.

Figure 7 shows a typical case of the spatial evolution
the amplitudes and phases of the trapping wave and the s
bands. Here, the sidebands are above and belowf T by d f sb

514.1 MHz, and the initial phases and amplitudes are gi
by Q(0)5p anda(0)51. The downstream evolution of th
sidebands shown in Fig. 7~after z'1.5 m! is characterized
by approximately exponential wave growth and linear ph
shifts. By fitting straight lines to the logarithm of the sid
band amplitudes, we obtain the growth rates. The gro
rates of the sidebands are approximately equal, withku

i 'kl
i

'0.80 m21. The wave number shifts of the sidebands can
obtained by straight-line fits to the measured nonlinear ph
df.

The lighter lines in Fig. 7 show the calculated evolutio
of sidebands and trapping wave by solving the equation
motion. The space-charge term was kept in this case; ot
wise the predicted wave number shift would have been lar
by approximately 0.2 m21 than the measured shift. The com
puter simulations agree reasonably with the measured ev
tion.

Figures 8~a! and 8~b! show the spatial evolution of the
modulational phaseQ and the sideband amplitude ratioa for
a wide range of initial values. The two dashed lines in ea
plot representa(0)51 andQ(0)50,p. The five solid lines
represent Q(0)5p and a(0)50.25, 0.5, 1, 2, 4. Evi-
dently, the evolution converges to modulational phase

FIG. 6. Comparison of the measured wave number shift of the trapp
wave with the wave number shift calculated from Eq.~14! of the MPM, for
three trapping wave frequencies.
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amplitude ratio values that are independent of the initial v
ues. Also, the values of growth rate and wave number s
are approximately constant in the latter part of the evo
tions, but this is not shown in Fig. 8.

For any given trapped particle state, we find a range
sideband separationsd f sb for which the modulational phas

FIG. 7. Spatial evolution of the amplitudesE and phasesf of the trapping
wave and sidebands, from measurements~dark! and simulation~thin!. The
sidebands havea51, Q52p at launch.

FIG. 8. Spatial evolution of the modulational phaseQ, and sideband ampli-
tude ratioa, for different launch values. The dark lines correspond to
case shown in Fig. 7.
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f

and sideband amplitude ratio converge to values indepen
of their launch values; over this range, a growing sideba
normal mode exists and dominates the sideband evolut
For the trapping wave of Fig. 8, withET

`5200 V/m, this
range is 11,d f sb,17 MHz. Figure 9 shows this range ve
sus the trapping wave amplitudeET

` .

V. COMPARISON WITH THEORY

The experimental observations of the convergent mo
lational phases and amplitude ratios can be explained wi
the MPM as the dominance of the fastest growing sideb
normal mode. The normal modes are characterized by
ticular values of modulational phase and amplitude ra
Since in the experiment the sideband amplitudes are sm
different sideband normal modes can superpose. At lau
the various sideband normal modes are excited to diffe
extents, depending on the initial values of modulation
phase and amplitude ratio; but during the interaction regi
the fastest growing sideband normal mode eventually
comes dominant. Then only the modulational phase and s
band amplitude ratio of the dominant mode is measured

In this section, we compare the experimentally det
mined properties of this growing sideband normal mode w
the predictions of the macroparticle model and with co
puter simulations. In general, we find qualitative agreem
between the predictions of the macroparticle model and
experiment, and close quantitative agreement between
computer simulations and experiment. In particular, we fi
~1! that the macroparticle model predicts the fastest grow
sidebands at larger frequency separations than experim
tally observed;~2! that the predicted growth rates, wav
number shifts, and modulational phases are larger than th
measured;~3! that a single normal mode only becomes dom
nant if the necessary wave number changes of the sideb
are small, whereas there is no such requirement in the s
band dispersion relation; and~4! that the observed differenc
wave at frequencyd f sb exhibits no coupling to the side
bands, whereas the MPM predicts coupling.

A. Frequency separation of the fastest growing
sideband normal mode

According to the MPM, the frequencies of the faste
growing sidebands are direct indicators of the macropart

FIG. 9. Range of sideband frequency separationd f sb for which a sideband
normal mode is observed vs trapping wave amplitudeET .
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bounce frequency,25 through Eqs.~1! and ~2!. Thus, we can
infer the bounce frequency from either the upper or low
sideband frequencies and wave numbers, as

vB
sb5uvT1dvu2vTkuu'uvT2dv l2vTkl u, ~25!

where we use the measured values of the sideband w
numbers.

In Fig. 10 we compare this inferred bounce frequen
with the bounce frequencyvB

dc predicted for the measure
trapping field strength, using Eq.~17!. Experimentally we
find in a best fit

vB
sb'0.7vB

dc. ~26!

That is, the bounce frequency inferred from the sideba
frequency separations is about 0.7 times the bounce
quency calculated from the dc field and trapping wave a
plitude. This is probably caused by the finite extent of t
trapped electron distribution in phase space, as seen in F
Since the trapping potential is harmonic only near the bott
of the well, the average bounce frequency is reduced.

B. Properties of the sideband normal mode

The measured~and simulated! properties of the observe
sideband normal modes~growth rateski , wave number shifts
dkr , modulational phaseQ, and amplitude ratioa! agree
qualitatively ~but not quantitatively! with the predictions of
the MPM. The diamonds in Fig. 11 show the experimen
measurements for different sideband frequencies, the cro
show the results from computer simulation, and the cur
represent the MPM model. For the experiments and sim
tions, the growth rate and wave number shifts of the si
band normal modes are obtained by fitting straight lines
the measurements of the logarithms of the sideband am
tudes and to the measured phase shifts downstream w
the sideband normal mode has become dominant.

For the model, the wave numbersk from the sideband
dispersion relation of Eq.~18! are found numerically for
given frequencyv. Typically we find two spatially growing
solutions; however, one of them has a considerably sma

FIG. 10. Bounce frequencyvB
sb inferred from the fastest growing sideban

frequencies using Eqs.~1! and~2!, vs bounce frequencyvB
dc calculated from

Eq. ~17! usingET andEdc .
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growth rateki than the other, so we plot only the solutio
that has the largest growth rates. In the dispersion relat
we use the inferredvB

sb, and we use the measured wa
numbers and damping rates of the beamless helix near
end of the interaction region. The trapped particle fraction
calculated from the measured velocity distribution functio
according to Eq.~24!. The velocity of the trapped macropa
ticle, i.e., the trapping wave phase velocity, is calcula
from the measured wave number shift,dkT

` .

C. Dependence on helix dispersion relation

Sideband normal modes are only observed if the disp
sion of the helix in the range of the trapping wave frequen
is small. Sideband normal modes of the MPM have the pr
erty that sincevu1v l52vT , it follows that

ku
r 1kl

r52kT
` . ~27!

Since the helix dispersion does not satisfy Eq.~27!, wave
number changesdkl ,u of both sidebands are necessary fo
sideband normal mode to be observed. We characterize
total sideband shift byDktot/kT

0r[(2kT
`2ku

0r2kl
0r)/kT

0r .
Experimentally we only observe sideband normal mod

if Dktot/kT
0r,0.03. This is illustrated in Fig. 12. For differen

frequencies of the trapping wave and of the upper sideba
the shading and the contour lines indicate the necessary w
number change,Dktot/kT

0r , for a sideband normal mode to b
observed. Obviously, this change depends on the wave n
berkT

r of the trapping wave; the cases with different trappi

FIG. 11. Properties of the growing sidebands: growth rateski , wave number
shifts dkr , modulational phaseQ, and amplitude ratioa. Experiment~3!,
computer simulation~L!, KDS dispersion relation~solid lines!. The dashed
vertical lines mark the sideband resonance frequencies.
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wave frequencies were chosen to have the same wave n
ber shift of the trapping wave,dkT50.9 m21, in order to
enable plotting all cases on one graph. The dots show th
cases for which we observe sideband normal modes. The
lie within the shaded region whereDktot/kT

0r&0.03. Particu-
larly at the lowest trapping wave frequency, we observe s
band normal modes only for small sideband frequency se
rations, where the necessary wave number changes o
sidebands are small.

Apparently the weak coupling between the sidebands~as
already indicated by the small growth rates! is not able to
manifest itself in an emerging sideband normal mode if
helix dispersion relation would require large wave numb
shifts.

D. Difference wave

Near the end of the interaction region, we observe
only the three launched waves but also some small nonlin
product waves. The strongest of these product waves
‘‘difference’’ wave with frequencyf d5d f sb. It is not phase
related to the other waves, and its measured wave num
cannot be explained within the framework of the MPM.

The spatial evolution of this difference wave is shown
Fig. 13, for a sideband evolution similar to that of Fig.
Close to the transmitter, the difference wave growth is rap
but the growth diminishes with distance. The dashed line
Fig. 13 shows the result of a computer simulation where
difference wave was launched with an initial amplitude
dB below the initial amplitude of the sidebands. The agr
ment between the computer simulations and the experim
is good.

An obvious extension of the MPM theory is to includ
the difference wave in the linear system of equations t
describe the coupling between the different frequencies
the electric field. This leads to a 333 rather than a 232
matrix. Setting the determinant to zero yields a new disp
sion relation for the sidebands and the difference wave.
the sidebands, the growing solution is almost identical to
growing solution of the original dispersion relation. For t
difference wave on the other hand, this dispersion rela

FIG. 12. Contour plot of the total sideband wave number shiftDktot/kT
r

required for a sideband normal mode. The wave number shift of the trap
wave is dkT

`50.9 m21. The dots are experimental conditions for whic
growing sidebands with constant modulational phase are observed.
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predicts a growth rate that equals the growth rate of the s
bands, that is,kd

i 5kl
i5ku

i , and predicts a wave numbe
given bykd5kT

`2kl
r .

From Fig. 13 we can deduce the growth rate and
wave number shift of the difference wave. We find that t
growth rate betweenz51.5 m and z52.3 m is kd

i

'0.3 m21; this is comparable to the growth rate of the low
sideband,kl

i'0.2 m21. The observed wave number shif
however, isdkd

r '50.5 m21; this is not in agreement with
the prediction of the expanded MPM model ofdkd

r 5kT
`

2kl
r2kd

0r'16.8 m21. In addition, the evolution is indepen
dent of the phases of either the upper or the lower sideba
Thus, the growth of this difference wave is probably caus
by the untrapped~fast! electrons and not by some paramet
coupling process that involves the trapped electrons.

VI. SUMMARY

We have characterized the asymptotic trapped-part
states on a traveling wave tube and compared the meas
ments to a simple macroparticle model and to compu
simulations. In the experiments, the monoenergetic elec
beam is trapped by a launched large amplitude wave, an
dc electric field maintains the state against damping. By s
ably choosing the launch level of the trapping wave, we o
tain states with constant wave amplitude over the length
the experiment.

The measured fraction of trapped electrons agrees w
the prediction of the macroparticle model, whereas the m
sured wave number shift is smaller than predicted. Wh
small amplitude sideband waves are launched, they grow
frequencies that approximately fulfill the sideband resona
condition. The bounce frequency of the trapped macrop
ticle inferred from the frequency of the fastest growing sid
bands is only about 70% of the bounce frequency calcula
from the wave trapping amplitude.

The upper and lower growing sidebands are stron
coupled if the dispersion relation allows wave numb
matching of the sidebands with the trapping wave. This c
pling manifested itself in the formation of a sideband norm

g
FIG. 13. Evolution of the amplitudeEd and nonlinear phaseDfd of the
difference wave atf 514.1 MHz. The trapped particle state is that of Fig.
P license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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mode. The measured growth rates, wave number shifts,
plitude ratio, and phase relationship of the sidebands a
only qualitatively with the sideband normal mode predictio
of the MPM. Better quantitative agreement is found betwe
the experiment and computer simulations that follow the
bits of a distribution of beam electrons. Therefore we co
clude that the quantitative discrepancies between the m
sured properties of the sideband normal modes and
predictions of the MPM arise from the approximation
trapped electrons as a single macroparticle; for quantita
predictions, the field phase-space dynamics must be kep
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