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Measurements of the trapped particle sideband instability
compared to the macroparticle model
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The upper and lower sidebands are measured on a traveling wave tube where a cold electron beam
is trapped by a large amplitude wave. The two strongly coupled sidebands form a normal mode that
is characterized by the sideband growth rates, wave number shifts, amplitude ratio, and phase
relationship. The measured values agree only qualitatively with the macroparticle model of Kruer,
Dawson, and SuddiPhys. Rev. Lett23, 838(1969]. Also, the macroparticle model prediction for

a nonlinear product wave does not agree with the experiment. Quantitative agreement is found
between the experiment and computer simulations that follow the electron orbits, suggesting that the
trapped particle model is too simple for quantitative predictions.2@1 American Institute of
Physics. [DOI: 10.1063/1.1379341

I. INTRODUCTION stable to the growth of waves at nearby frequencies. This
situation is the focus of this study.
It is well known, both experimentally and theoretically, A fruitful simplification of the highly nonlinear trapped-

that the nonlinear motion of electrons trapped in the field ofparticle distribution is the macroparticle mod@liPM) by

a large amplitude plasma wave causes waves at nearby lowkruer, Dawson, and Sud&f: They consider the trapped
and higher frequencies to become unstable. These waves akectrons only, and approximate them as a macroparticle in a
called sidebands. Sideband growth was first observed blgarmonic well. That is, the large amplitude wave with fre-
Wharton, Malmberg, and O’'Néilwhen launching a large quencye; and phase velocity; has trapped a single mac-
amplitude wave in a Maxwellian plasma, and later verified inroparticle, which “bounces’(oscillates at frequencywg in
similar experiment$- Sideband growth has also been ob- the trapping wave. Self-consistently coupling the oscillations
served after saturation of a weak cold beam—plasm&f the macroparticle to small sidebands gives a dispersion
instability>~1%in free electron laser§ELs)*®~*and in high  relation that has unstable solutions for both uppey &nd
power traveling wave tube@WTs).!° The interaction of the lower (I) sidebands. The condition for instability is

beam with electrostatic waves on the TWT is similar to the
interaction of a weak cold beam with electrostatic waves in a
plasma, since the main role of the plasma is to support the
waves as a linear dielectric. In FELs, the growth of parasitic
sideband waves is one of t.h_e main mechanisms that limit thﬁere,wu andw, are the sideband frequencies, afdandk!
performance of the amplifier, since these waves becomgre the real parts of the sideband wave numbers.

large enough to detrap the electrons, preventing further gain. Physically, Eqs(1) and (2) state that the sidebands are

N_gme_rous authors h_ave al_so irgvzesstigated the sierand NStgnstable if their frequencies, when Doppler shifted into the
bility in computer simulation$’"** The mechanisms and fame of the trapped macroparticle, equal the bounce fre-
properties of the sideband growth are therefore of continueg ,ency. In this dispersion relation, also referred to as side-

interest. _ o band resonance condition, the upper and lower sidebands are
Two different mechanisms have been identified that CONgoupled together to form a normal mode. Obviously, the

tribute to sideband growth. If the large amplitude wave de'macroparticle approximation is cridé® and other authors
cays within few trapping oscillation®.g., when launched in  have since improved on it by including untrapped partfdes

a Maxwellian plasmathen a fraction of the initially trapped anq by investigating its range of applicabilf§However,
electrons becomes untrapped. This can lead to a tim&he MPM is intriguing in its simplicity and physical insight,
averaged electron velocity distribution function that is un-and thus warrants detailed comparison with experiment. This
stable to the growth of waves at nearby frequentfe, s the purpose of this article.

however, the Iarge amplitude wave undergoes several trap— Mora|e§7 found a particu|ar|y promising trapped elec-
ping oscillations without significant dampinge.g., after  tron state to which the MPM could be applied. He considered
saturation of a weak cold beam—plasma instabilttyen a  a dc electric field along the propagation direction of an elec-
nonlinear trapped electron distribution can arise that is untron beam interacting with a damped, electrostatic wave.
Computer simulations showed cases where the beam is par-

3present address: Max-Planck Institute for Plasma Physics, 85478 Garchinfjally _trapped_ in _the potential well Qf the wave. After a few
Germany. trapping oscillations, an asymptotic state of constant wave

wu_kLUTN_ﬁ)B, (1)

o — kv~ wg. 2

1070-664X/2001/8(7)/3457/10/$18.00 3457 © 2001 American Institute of Physics

Downloaded 03 Jul 2001 to 132.239.69.90. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/pop/popcr.jsp



3458 Phys. Plasmas, Vol. 8, No. 7, July 2001 D. A. Hartmann and C. F. Driscoll

amplitude was reached, where the energy gain of the trappe Electron Gun Slow Wave Structure Velocity
. e Analyzer
electrons in the dc electric field balanced the energy loss of
the damped wave. The highly nonlinear state was also char Pierce o .
acterized by a lower phase velocity of the trapping wave ©lc{rode AT o
compared to the beamless case. Morales suggested that tIcath(y i. cgﬁgmr ggﬁlécmr
phase-space structure of the trapped electrons is sufficientl _Y — ¥
localized to approximate it as a macroparticle of some effec- :@ e-beam N z
tive charge, so the MPM should predict the properties of T— . i
sideband wave growth. —l-\ H B, Y I
We generate and investigate these asymptotic trapped S movable l :L
particle states in both experiments and computer simulations y, y v receiver v
For our experiments we use a traveling wave t4b&/T) ¢ a antents © de " d
where a monoenergetic electron beam is trapped by a FIG. 1. Schematic of the traveling wave tube.
launched large amplitude wave, with a dc electric field ap-
plied along the axis of the experiment. By suitably choosing
the launch level of the trapping wave, we can obtain states df. EXPERIMENT

spatially constant amplitude. We find that the measured frac- Figure 1 shows a schematic of the traveling wave fifbe
tion of trapped electrons agrees with the prediction of th%vhich has been described in detail elsewH&rd—33 The '

MPM, while the measured wave number shift of the larger\y1 consists of three main elements: an electron gun, a
amplitude wave is smaller than predicted. helical slow wave structure with axially movable antennas,
We investigate this trapped particle state by additionallyang an electron velocity analyzer. The electron gun creates a
launching small amplitude lower and upper sideband waves,eam with adjustable axial velocities and currents; this beam
The sidebands are linear in that their spatial evolution depropagates along the axis of the helix, in a fieh}
pends only on the ratio of their amplitudes and their phase=420 G. Waves launched with a transmitter antenna at the
relationship. Thus, they cause only linear perturbations in thgun end of the helix travel along the helix and continuously
motion of the trapped electrons. interact with the electron beam. The wave evolution is mea-
The sidebands are observed to grow for frequencies thaured with a movable receiver antenna, and the final beam
approximately fulfill Eqs(1) and(2), where the bounce fre- velocity distribution is measured with the velocity analyzer
quency is calculated from the trapping wave amplitude. Theat the end of the interaction region.
sidebands are strongly coupled through the trapped electrons The helix is about 2.7 m long, and composed of
if the sidebands and the trapping wave have approximatelferyllium—copper wire glued to four exterior supporting alu-
the same phase velocity. This coupling makes the sidebandgina rods which are contained within a glass vacuum tube.
appear to be a single normal mode. The measured sidebak@unched electromagnetic waves travel along the wire at the
growth rates, the changes to their wave numbers, and thégPeed of light; their phase velocities" along thez axis are -
amplitude ratio and phase relationship of the sideband noSMmaller by approximately the tangent of the pitch angle, giv-
mal modes agree only qualitatively with the predictions ofind v”'~4x10°m/s. At both ends of the helix, resistive ter-
the MPM. Better quantitative agreement is found betweedllinations reduce the reflections of the waves. The voltage
the experiment and computer simulations that more precisel§i2nding wave ratio is about 1.26, due to residual end reflec-
follow the orbits of the beam electrons. Therefore we con-'°"® and irregularities of the helix. Fortunately, the

clude that the discrepancy between the measured properti%?Ckward'travel'ng waves are far from resonance with the

of the sideband modes and the predictions of the MPM ar ectrons, so their effept on the wave—beam instabilities can
caused by the model’s simplification of the phase-space or?—)e neglected. The helix assembly and vacuum tube are con-

. o : tained within a lengthwise-slotted cylindrical waveguide. In
bits of _the trapped glectrqns. In addition, we find that thethe cylinder but outside the glass tube, four axially movable
properties of a growing “difference” wave observed at the

) ) capacitative antennas can excite or detect helix modes in the
frequency of the sideband frequency separation are not pro‘?r'equency range from 5 to 95 MHz. Only the helix modes are

erly predicted. by the MPM- o . launched, since empty waveguide modes cannot propagate
The remainder of this article is organized as follows. Inyyq10w 3.0 GHz.

Sec. Il we briefly describe the experimental setup and its  The measured dispersion of the hefliithout a bearnis
operation. In Sec. Ill we recall the theory of the TWT, relateshown in Fig. 2. The helix modes have electric field compo-
the properties of the macroparticle to measurable quantitieients along the axis of the helix; and their radial structure
formulate the sideband dispersion relation for the TWT, anthas been discussed by Dimonte and MalmBérgielix
describe the properties of the sideband normal mode solyvaves with frequencies of 10-90 MHz will interact reso-
tion. In Sec. IV we present our experiments and computenantly with beam particles with axial velocities of 5.6—3.4
simulations for a case with spatially constant trapping wavex 10f m/s.

amplitude. In Sec. V the sideband properties are compared We have also measured the damping r&idor these
with the predictions of the MPM. In Sec. VI we summarize linear waves on the beamless helix. We find that they are
our results. only slightly damped: At 60 MHz the damping is about 9 dB

discriminator
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Velocity [106m/s] of the trapping wave and the sidebands are obtained by Fou-
4 6 rier transformation of the temporal wave forms. The accu-
100% ? T racy of the measured amplitudes is about 2 dB, and the ac-
= Ve \ yPh curacy of the phases is abonit5.
- 80 n R 7] The full electric fieldE(z,t) is composed of waves at
E. B frequenciesw,, so the full spatial evolution can be written
6or E as
C‘\:I or -
40F k > o~
> : E(z,)= 2, |Eq(2)|exp(—idn(z,0)} ®
3 20} Tl A "
- with
o 2 n n | " " N " L s " | " "
0 50 100 150 z i
Wavenumber kY [m™'] En2)l=| En(0)|exp( fo az kn(z’)] ' @
FIG. 2. Beamless helix dispersion relation(k%"), with phase velocity P" - = _
and group velocity . $n(2)=¢n(2,0) = ot ®
z
n(2)= deZ’ Kn(2')+ ¢4(0), (6)
over the length of the helix, givingC'/k3"~0.005. Both ,
wave numbek? and damping rat&® depend only weakly Ej dz' K2(z')+ ¢n(0) + 8bn(2), (7
on position: 6k (z)/kY~+0.5% and &k>(2)/kS~ 0
+30%. ,
When an electron beam propagates with velocity 5¢n(Z)EJ dz’ skp(z'). (8
0

down the helix, it destabilizes those helix modes which have

vP~vy,. This helix is much longer than commercially avail- we obtain the “local” growth raték! (z) by fitting a straight
able TWTs, allowing us to observe about Z6folding jine to the spatial evolution of the logarithm of the magni-
lengths of linear wave growth. This allows measurements ofyde |E.(2)| of the wave electric field amplitude in some
the evolution of launched waves well into the nonlinear re-region aroundz. The interaction of the waves with the
gime. trapped electrons and with each other causes deviations in
The electron beam is obtained from a Pierce-type electheir wave numbers from the beamless ck®e We obtain
tron gun mounted at the front end of the helix. The indirectlythe “|ocal” wave numberk!(z) by fitting a straight line to
heated dispenser cathode is biased at pote¥iialgiving a  the phasep,,(z) in some region around. The wave number
beam with energy 1f@v3=eV,. The Pierce electrode is bi- ghitt is then given bysk,(z)=k'(z) —k'°(2). In both cases,
ased at a slightly more negative potential to obtain an essefne fit region is typically 0.25 m long, which corresponds to
tially monoenergetic electron beam with constant radial denz_5 avelengths.
sity. Once every 60th of a second, an@9beam is obtained The launched electric field spectrum &0 typically
by pulsing the anode from a retarding voltage to an accelefeonsists of a large amplitude trapping wake(0) at fre-
ating voltageV, which is less negative thavi, . The voltage  quency f;=w;/27=55.4 MHz, and two smallupper and
differenceV,—V, regulates the beam current. The beam isjower) sidebands with symmetric frequencies, ;= wr
pulsed so that ions created from the residual background gas 54 and amplitude€ , ,(0). Launch phasesp(0), and
(P~10"°Torr) do not accumulate and neutralize the beamjaunch electric field amplitude&(0), can bearbitrarily cho-
Typical beam currents arg,=50uA, and typical cathode sen. Here, T,u,l) and (n) are alternate notations for the

voltages are/.~—50V. A static voltageV, applied to the  jndividual modes; and and @ may both be used for any
helix gives a uniform electric fieléq, which tends to accel- particular frequency.

erate the beam electrons.

At the end of the helix, the time-averaged axial velocity
distribution of the electron beam is measured with a retard-
ing field velocity analyzer. The rf part of the velocity distri- Iil. THEORY
bution function cannot be measured, because the electromg Traveling wave tube
loose their phase relationship with the waves in the drift
region between the end of the helix and the analyzer.

The TWT noise level is sufficiently low that waves can

The linear and nonlinear theory of the interaction of an
electron beam with waves on a slow wave structure is well

14,31-33 H H
be launched well above the noise and still be much smallef V- The coupling of the beam to the waves is

than saturation. The full wave form is repeatedly IauncheoOften given by a one-dimensional transmission line equation,

with an arbitrary wave form generator at the gun end of theWhICh can be cast in the form of Poisson’s equation:

helix (z=0). We measure the spatial evolution of the waves ik, (z)eye"(w,,kn(2))En(2)=pn(2), 9)
by detecting and recording the temporal wave form at posi- . 02 12 o2
tions spaced 5 mm apart i then the amplitudes and phases € (@n.Kn) = (kp"—kp)/ €0k kiR A . (10)
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Here, €"(w,,ka(2)) is the “helix dielectric;” R, is the Here, ET is the asymptotic steady state amplitude of the
beam—wave interaction impedaritat frequencyw,, which  trapping wave electric field. In steady state the asymptotic
ranges between 500 and 180D for our TWT; A, is the  wave number of the trapping wavie; , is given by

beam cross-sectional area; amgz) is the Fourier compo-
nent of the axial beam charge density at frequeagy Set-

ting €"(wp,,k,) =0 vyields the dispersion of the helix waves,
i.e., k%(w,). These are the waves that are supported by the
helix in absence of an electron beam. As shown in Fig. 2From energy balance in the asymptotic state, we require the
they have a dispersion similar to electrostatic Gould—center-of-mass velocity of the macroparticie;, to equal
Trivelpiece waves in a warm plasma of finite extent. Theo-the asymptotic phase velocity of the trapping wave given by
retical predictions of the wave number and the strength of o o

the coupling of the beam to the helix modes agree within vr=or/k, (15

+1% and +10%, respectively with the experimental pye to the applied dc electric field, the equilibrium position

32 S )
measurement?- o of the macroparticle is shifted by
The velocity of the beam electrons(z,t), is given by

Ky =Ko+ KO (E—dTC) -2 (14

Newton’s equation: [ Egc
AW =arcsin — (16)
do__e E E E 11 o
Gi= m(E@DTEdz ) +Eq). (11

compared to the trapping wave potential minimum; the shift

Here,Esc(Z,t) is the “Space_charge” electric field, generated is in the direction opposite to the externally applled field.
by the beam electrons. In a plasma this field is shielded outl he bounce frequency of the macroparticle is given by

in a traveling wave tube it typically is small compared to the o114 -

wave electric fielce. Eyis the externally applied dc electric de_|q_ (E_dC) \ /eE?FCkT 17)
ET m

C. Macroparticle model

field. Equationg9) and(11), together with the beam conti- “B=
nuity equation

J
i =— , 12 .
@nPn az(vp“) (12 We apply the analysis of Kruer, Dawson, and Sudan to

completely describe the spatial evolution of the wave—beanf1€ SPatial evolution of sidebands for the asymptotic trapped
interaction. particle state. To this end, we model the electrons as an array

To follow the evolution into the nonlinear regime, we of harmonically boundwith bounce frequency»g) macro-

solve Eqs(9)—(12) numerically by modeling the beam as a particles of chargerl_b/fT that move \_/vith velocityw . Ini-
collection of charged disks. In these simulations we includdi@!ly; the macroparticles are at rest in the frame of the trap-

the space-charge and higher order terms. The methods B9 Wave. Sideband waves of small amplitude can disturb
solution are described elsewh&rél32 the macroparticles from their equilibrium position, and this

changed charge distribution can in turn cause wave growth.
) A self-consistent description leads to a set of equations that
B. Trapped macroparticle state couple the electric field amplitudes of different frequencies.
Within the macroparticle model, the asymptotic trapped ~ This set of equations is truncated by limiting the cou-
electron state is characterized by the following parametersdling to lower and upper sidebands at frequencigs wr

the effective charge of the macroparticiel,, /1 ; its center-  — dwgp andw,= wr+ dwg,. The dispersion relation for this
of-mass velocitw 1 ; its phase relative to the trapping wave, model is then given by
A@®; and its bounce frequencyg in the superposition of >
. ; ; ; ow wlkv (0—2w7)/(K—2k1)v
trapping wave potential and applied dc potential. In the ex- p T T T

periment, we can obtain all these parameters from measurdlivr— 0)?— w3z | € (w,k) =~ e(w—2wr,k—2k7) | ™
guantities once a steady state has been reached. (18
Following Morales, we divide the beam electrons into
the fractiono that is trapped in the trapping wave potential,
and the fraction * o that is not trappe_d. The unt_rapped of this dispersion relation, i.ek=k"—ik' with k>0 at the
electrons can be neglected for the evolution of the sideband e s
because the applied dc electric field quickly accelerates thenl{equenmeSw— 1> dwg,. We call these roots “sideband
normal modes.” The growth rates of both sidebands are

to velocities higher than the highest wave phase velocity 'qdentical 4<iu=k:), and their wave number, k) are re-

where w§=lbe/Avaeom is the beam plasma frequency
squared. For some values 8b,, one finds growing roots

the TWT. lated by
Conservation of trapped electron and wave momentum

in the asymptotic steady state gives the effective charge of |r 4 | r—op= (19

the macroparticle 6% LT
ol 1 £*2 In addition, the sideband normal modes predict that there
b~ Oi%_ (13) exists a particular relationship between the complex ampli-
fr o fr T k7 *RrEqc tudes of the upper and the lower sidebands, given by
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E* k h(k , _ 300 T T T T
Su _ ﬂe(—uzw)((w—kuvT)z—wz)—l — il — experiment fp = 55.4
E @p wp 'E ---- simulation
20 3
(20) & 200 7
Here,a(2) is the “sideband amplitude ratio” ané(z) is the Z -

sideband phase difference, which will be related to the
“modulational phase’®? ® defined in the following(Note )
that @ is also called the “invariant phase” by Tsunoda and 100 beamless helix ™~ -
Malmberg)?® In Sec. IV we compare the measured growth S
rates and wave numbers of the sidebands, their amplitude : -t : :

) . . . - 0.0 0.5 1.0 1.5 2.0 2.5
ratio, and phase relationship with the predictions of the
model. z [m]

The modulational phg@ of the two sidebands is easily FIG. 3. Spatial evolution of the trapping wave in the experimsotid) and
n_]?asured and has phyS|c_:aI relevan_C@H:o' the superpo-_ in c.om.puter simulatior(dashegl Wave evolution without a beam is also
sition of the three waves is an amplitude modulated trappin@hown (dotted.
wave; whereas if® =, the superposition is a frequency
modulated trapping wave. Using E@) we define the modu-
lational phase as dependence of wave numbers and damping rates on the
beamless helix are taken into account. The residual ampli-

0(2)=2¢+(2)— $(2)— pu(2) (21 tude modulations near the end of the interaction region are
z predominantly caused by the spatial dependence of wave
=f dz'[(2k7(z") —k{(z') —ky(2'))]+2¢1(0) number and damping rate. Typically the steady-state values
0 of the electric field amplitude agree within 15% and the
— $1(0)— ¢, (0). (22) steady—siate values of the wave number shifts agree within
*+0.2m -

Note that® (z) is time independent, because the frequencies | the following, measurements of the growing side-

of the upper and lower sidebands are symmetric to the trafsands are shown for this trapped particle state unless other-

ping wave frequencyor . If the upper and lower sidebands yise noted. The parameters of this case &e:55.4 MHz,
form a sideband normal mode, then their wave numbers ale —50u A, vr=4x10° m/s, Eg.=40.4 V/m.

related to one another through E9), and their phases are Figure 4a) shows the computed phase space distribution
related t.hrough Eq(20). In this case the integrand Of EQ. of the electrons at the end of the interaction region. The
(22) vanishes. With the small correction due to the shift electron phasedd,, is plotted relative to the phase of the

of the equilibrium position of the macroparticle in the dc (4ning wave. The electron distribution consists of a trapped
electric field from Eq.(16), we obtain

We trap the monoenergetic electron beam by launching
the trapping wave at about the saturation level of the cold
beam instability. The electron beam velocity approximately
equals the phase velocity of the trapping wave, and we adjust

O(2)=0(z)+2AV¥(2). (23 . . _ . . _
(a) ) 2 i
IV. EXPERIMENTAL OBSERVATIONS . . i
A. Trapped electron state el e ‘ . :
0 r : "3 B

*° o4 o

v
,
’

6¢, [rad]

°

,
R B
/

1
1
|
I
s *5
separatrix’ L
I .

the beam current and the applied dc field to obtain cases - - e =
where the residual trapping oscillations are small, so a state s —'lsv VIT ‘:TMV . ‘
of spatially constant wave number shift and amplitude is — (b) Vioam ’
obtained. E

The solid line in Fig. 3 shows the measured spatial evo- ?”’ 10 W . .
lution of the trapping wave amplitude. After~1.5m, the = : simulation
amplitude is constarnitvithin about 10% and the wave num- : i experiment
ber shift (not shown is approximately constant. Therefore 2 05 | trapped
we assume that an asymptotic trapped particle state has beer *
reached; for comparison with theory we take the spatially .
averaged values oE7=200V/m andki—k¥=1.1m*. 0.0 — T .
The dotted line in Fig. 2 shows the damping of the trapping
wave if no beam is present, wittf = —0.44 m %, Electron Velocity v [10° m/s]

. The dashed line in Fig. 3 ShO\_NS the evolution as pre-FIG.4. (a) Phase-space plot of the simulation electrons=ag.3. (b) Time-
dicted from the computer simulation. The agreement beE:lveraged velocity distribution from experimerolid and simulation

tween experiment and simulation is good, since the spatighashei
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1.0

—
<
—i 6 - -
0.8 o o?b;
g R
e 0.6 . 4 - Q'@ .
b 04l v P x £:=46.0
™~ 2fF & o f;=556.4
&
0.2 5 o o £,=64.8
»* = x . .
O'%,o 0 2 4 8
O meas 6kT / ko' (meas)
FIG. 5. Comparison of the measured trapped electron fraetigp.with o, FIG. 6. Comparison of the measured wave number shift of the trapping
from Eq. (13), for three trapping wave frequencies. wave with the wave number shift calculated from Etd) of the MPM, for

three trapping wave frequencies.

portion and a runaway portion. The separatrix of the trapping . )

wave potential alone is shown as a dashed line; and the ef/ECtrons causes less wave number shift of the trapping wave
fective separatrix of the trapping wave plus the applied d&han would a bunchgd Q|str|but|on, i.e., the MPM is qualita-
potential is shown as a solid line with a shaded interior. MosfiVely but not quantitatively correct for the wave number
of the electrons that have not become runaways are confineift

within the effective separatrix. The open diamond shows the

location of the “center of mass” of the trapped electrons. It B. Evolution of the sidebands

agrees well with the predictiox) based on Eqs(15) and Finally, we investigate the properties of small amplitude

(16) of t_he macroparticle model. ) ._sideband pairs propagating on trapped particle states, with
In Fig. 4(b) we show the measured time-averaged axialgy mmetric frequencief, | = f1+ of,. We find that the side-
velocity distribution at the end of the interaction region ;.4 evolution dependYs only on the launched modulational

(solid line) and compare _it tp a_velocity_ histogram_ of_ the phase® and on the sideband amplitude ratioFor example,
computed phase space distribution of FigadBoth distri-  yhe eyolution is independent of the individual sideband
butions are characterized by a separation into trapped ang e if the modulational phase is kept constant. For a range
runaway electrons. The shaded region of the experiment@ sjgehand frequencies, we find that the modulational phase
distribution identifies the trapped electrons, approximately, 4 the sideband amplitude ratio take on approximately the
given byvr— dv<v<vt+ dv wheredv = y2eEr/mks. We  same constant values after an initial transition region.

obtain the trapped particle fractianyeasfrom the measured Figure 7 shows a typical case of the spatial evolution of
velocity distribution, fo(v), by integrating the velocity dis-  he amplitudes and phases of the trapping wave and the side-
tribution over the trapped electrons bands. Here, the sidebands are above and béjoly 6f,
Y =14.1 MHz, and the initial phases and amplitudes are given
Tmeas™ | . fo(v)do. (249 by ®(0)=m anda(0)=1. The downstream evolution of the
UT 1

sidebands shown in Fig. (after z=1.5m) is characterized
The error made by using the separatrix of the wave potentidby approximately exponential wave growth and linear phase
rather than the separatrix of the effective potential is small.shifts. By fitting straight lines to the logarithm of the side-
In Fig. 5 we compare the measured trapped particle fracband amplitudes, we obtain the growth rates. The growth
tion o e4stO the trapped particle fractiomy, calculated from  rates of the sidebands are approximately equal, Wjthk;
Eq. (13), for varying wave amplitude& at three different ~0.80 m 1. The wave number shifts of the sidebands can be
frequencies. The case of Fig. 3 is shown with a closed diaebtained by straight-line fits to the measured nonlinear phase
mond. We used the experimentally determined electric fieldge.
ET, of the trapping wave amplitude spatially averaged near  The lighter lines in Fig. 7 show the calculated evolution
the end of the interaction region. The best fit line through theof sidebands and trapping wave by solving the equations of
origin gives oea5 1.030,. That is, the measured trapped motion. The space-charge term was kept in this case; other-
particle fraction,oneas agrees closely with the MPM simu- wise the predicted wave number shift would have been larger
lation. by approximately 0.2 m' than the measured shift. The com-
In Fig. 6 we compare the measured wave number shift oputer simulations agree reasonably with the measured evolu-
the trapping wavesk; = (k7 —k%")/k%' (scaled by the damp- tion.
ing rate of the beamless heljxwith the MPM prediction Figures 8a) and &b) show the spatial evolution of the
given by Eq.(14). The case of Fig. 3 is shown with a closed modulational phas® and the sideband amplitude ratidor
diamond. We find that the measured wave number shift i& wide range of initial values. The two dashed lines in each
about 0.6 as large as expected from the MPM. The computeglot representt(0)=1 and®(0)=0,7. The five solid lines
simulations also give @&k about half as large as predicted represent ®(0)== and «(0)=0.25, 0.5, 1, 2, 4. Evi-
by the MPM. Evidently, the spread distribution of trappeddently, the evolution converges to modulational phase and
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'%‘ FIG. 9. Range of sideband frequency separatibg, for which a sideband
E normal mode is observed vs trapping wave amplitige
@ and sideband amplitude ratio converge to values independent
ﬁ‘:’ of their launch values; over this range, a growing sideband
+ normal mode exists and dominates the sideband evolution.
s‘f For the trapping wave of Fig. 8, witkY=200V/m, this
«© , , , , range is 1¥ 6f,<17 MHz. Figure 9 shows this range ver-

0.0 0.5 1.0 1.5 2.0 2.5 sus the trapping wave amplituds; .

z [m]

i i ) i V. COMPARISON WITH THEORY
FIG. 7. Spatial evolution of the amplitud&and phases of the trapping
wave and sidebands, from measuremédtsk) and simulation(thin). The The experimental observations of the convergent modu-
sidebands haver=1,® =~ at launch. lational phases and amplitude ratios can be explained within
the MPM as the dominance of the fastest growing sideband

amplitude ratio values that are independent of the initial val70'mal mode. The normal modes are characterized by par-

ues. Also, the values of growth rate and wave number shifficular values of modulational phase and amplitude ratio.
are approximately constant in the latter part of the evoly-Since in the experiment the sideband amplitudes are small,
tions, but this is not shown in Fig. 8. different sideband normal modes can superpose. At launch,

For any given trapped particle state, we find a range ofhe various sideband normal modes are excited to different
sideband separationsf ., for which the modulational phase extents, depending on the initial values of modulational
phase and amplitude ratio; but during the interaction region,

the fastest growing sideband normal mode eventually be-

3m . . T u comes dominant. Then only the modulational phase and side-
(a) P E.=200 band amplitude ratio of the dominant mode is measured.
e 61, =14.1 In this section, we compare the experimentally deter-
CZL NP e . ] mined properties of this growing sideband normal mode with

the predictions of the macroparticle model and with com-
puter simulations. In general, we find qualitative agreement
between the predictions of the macroparticle model and the
experiment, and close quantitative agreement between the
computer simulations and experiment. In particular, we find
(1) that the macroparticle model predicts the fastest growing
i sidebands at larger frequency separations than experimen-
tally observed;(2) that the predicted growth rates, wave
number shifts, and modulational phases are larger than those
measured(3) that a single normal mode only becomes domi-

= nant if the necessary wave number changes of the sidebands
are small, whereas there is no such requirement in the side-
band dispersion relation; arid) that the observed difference
wave at frequencysfy, exhibits no coupling to the side-
bands, whereas the MPM predicts coupling.

® |rad]

1.0 1.5 2.0 2.5
7 [m] A. Frequency separation of the fastest growing
sideband normal mode

FIG. 8. Spatial evolution of the modulational pha&eand sideband ampli- . .
tude ratioa, for different launch values. The dark lines correspond to the According to the MPM, the frequencies of the fastest

case shown in Fig. 7. growing sidebands are direct indicators of the macroparticle
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FIG. 10. Bounce frequencqp inferred from the fastest growing sideband :
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Eq. (17) usingE; andEg.. _ : : .
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™~ 5 |
bounce frequenc$? through Eqs(1) and(2). Thus, we can =1
infer the bounce frequency from either the upper or lower 1 L1E 3
” =

sideband frequencies and wave numbers, as
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where we use the measured values of the sideband wave A
numbers. FIG. 11. Properties of the growing sidebands: growth retesave number

In Fia. 10 thi f db f shifts k', modulational phas@, and amplitude ratiav. Experiment(X),
n Fig. we compare is inferre ounce rec]uencycomputer simulatiori ¢ ), KDS dispersion relatiofsolid lineg. The dashed

with the bounce frequenc;o predicted for the measured vertical lines mark the sideband resonance frequencies.
trapping field strength, using Eql7). Experimentally we

find in a best fit _
growth ratek' than the other, so we plot only the solution

“’BNO 7“’ (26) that has the largest growth rates. In the dispersion relation,
That is, the bounce frequency inferred from the sidebandve use the inferred»y’, and we use the measured wave
frequency separations is about 0.7 times the bounce fréaumbers and damping rates of the beamless helix near the
quency calculated from the dc field and trapping wave amend of the interaction region. The trapped patrticle fraction is
plitude. This is probably caused by the finite extent of thecalculated from the measured velocity distribution function,
trapped electron distribution in phase space, as seen in Fig. according to Eq(24). The velocity of the trapped macropar-
Since the trapping potential is harmonic only near the bottonticle, i.e., the trapping wave phase velocity, is calculated

of the well, the average bounce frequency is reduced. from the measured wave number shifk? .
B. Properties of the sideband normal mode C. Dependence on helix dispersion relation
The measuretand simulateproperties of the observed Sideband normal modes are only observed if the disper-

sideband normal modégrowth rates', wave number shifts sion of the helix in the range of the trapping wave frequency
k', modulational phas®, and amplitude ratior) agree is small. Sideband normal modes of the MPM have the prop-
qualitatively (but not quantitatively with the predictions of erty that sincew,+ w;=2w+, it follows that
the MPM. The diamonds in Fig. 11 show the experimental K+ Kl = 2K 27)
measurements for different sideband frequencies, the crosses
show the results from computer simulation, and the curves§ince the helix dispersion does not satisfy E2j7), wave
represent the MPM model. For the experiments and simulaaumber changesk, , of both sidebands are necessary for a
tions, the growth rate and wave number shifts of the sidesideband normal mode to be observed. We characterize this
band normal modes are obtained by fitting straight lines tdotal sideband shift byA k"Yk% = (2k; — k2 — kX )/ .
the measurements of the logarithms of the sideband ampli- Experimentally we only observe sideband normal modes
tudes and to the measured phase shifts downstream whefeAk°/k¥<0.03. This is illustrated in Fig. 12. For different
the sideband normal mode has become dominant. frequencies of the trapping wave and of the upper sideband,
For the model, the wave numbeksfrom the sideband the shading and the contour lines indicate the necessary wave
dispersion relation of Eq(18) are found numerically for number changeAk“7kd", for a sideband normal mode to be
given frequencyw. Typically we find two spatially growing observed. Obviously, this change depends on the wave num-
solutions; however, one of them has a considerably smalldserk’ of the trapping wave; the cases with different trapping
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FIG. 12. Contour plot of the total sideband wave number shKt°/K; z [m]

required for a sideband normal mode. The wave number shift of the trappin
wave is ski=0.9m . The dots are experimental conditions for which
growing sidebands with constant modulational phase are observed.

#1G. 13. Evolution of the amplitud&, and nonlinear phasa ¢4 of the
difference wave af =14.1 MHz. The trapped particle state is that of Fig. 7.

wave frequencies were chosen to have the same wave nurtedicts a growth rate that equals the growth rate of the side-
ber shift of the trapping wavesk;=0.9m%, in order to  bands, that isky=kj=k;, and predicts a wave number
enable plotting all cases on one graph. The dots show thog#ven byks=k7 —k;.

cases for which we observe sideband normal modes. They all From Fig. 13 we can deduce the growth rate and the
lie within the shaded region wherk®/k¥<0.03. Particu- Wave number shift of the difference wave. We find that the
larly at the lowest trapping wave frequency, we observe sidegrowth rate betweenz=1.5m and z=2.3m is kq
band normal modes only for small sideband frequency sepa=0-3M *; this is comparable to the growth rate of the lower
rations, where the necessary wave number changes of tffideband,kj~0.2m™*. The observed wave number shift,

sidebands are small. however, isskj~=0.5m%; this is not in agreement with
Apparently the weak coupling between the sidebgads the prediction of the expanded MPM model 6ky=kt
already indicated by the small growth ratés not able to  —k{—kg'~16.8m*. In addition, the evolution is indepen-

manifest itself in an emerging sideband normal mode if thedent of the phases of either the upper or the lower sideband.
helix dispersion relation would require large wave numberThus, the growth of this difference wave is probably caused
shifts. by the untrappedfast electrons and not by some parametric
_ coupling process that involves the trapped electrons.
D. Difference wave
Near the end of the interaction region, we observe. no(/l_ SUMMARY
only the three launched waves but also some small nonlinear
product waves. The strongest of these product waves is a We have characterized the asymptotic trapped-particle
“difference” wave with frequencyf = 6fg,. It is not phase states on a traveling wave tube and compared the measure-
related to the other waves, and its measured wave numbemnents to a simple macroparticle model and to computer
cannot be explained within the framework of the MPM. simulations. In the experiments, the monoenergetic electron
The spatial evolution of this difference wave is shown inbeam is trapped by a launched large amplitude wave, and a
Fig. 13, for a sideband evolution similar to that of Fig. 7. dc electric field maintains the state against damping. By suit-
Close to the transmitter, the difference wave growth is rapidably choosing the launch level of the trapping wave, we ob-
but the growth diminishes with distance. The dashed line irtain states with constant wave amplitude over the length of
Fig. 13 shows the result of a computer simulation where theéhe experiment.
difference wave was launched with an initial amplitude 40  The measured fraction of trapped electrons agrees with
dB below the initial amplitude of the sidebands. The agreethe prediction of the macroparticle model, whereas the mea-
ment between the computer simulations and the experimesured wave number shift is smaller than predicted. When
is good. small amplitude sideband waves are launched, they grow for
An obvious extension of the MPM theory is to include frequencies that approximately fulfill the sideband resonance
the difference wave in the linear system of equations thatondition. The bounce frequency of the trapped macropar-
describe the coupling between the different frequencies dficle inferred from the frequency of the fastest growing side-
the electric field. This leads to axX33 rather than a X2 bands is only about 70% of the bounce frequency calculated
matrix. Setting the determinant to zero yields a new disperfrom the wave trapping amplitude.
sion relation for the sidebands and the difference wave. For The upper and lower growing sidebands are strongly
the sidebands, the growing solution is almost identical to theoupled if the dispersion relation allows wave number
growing solution of the original dispersion relation. For the matching of the sidebands with the trapping wave. This cou-
difference wave on the other hand, this dispersion relatiopling manifested itself in the formation of a sideband normal
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