School on Digital Radio Communications for Research and Training in Developing Countries The Abdus Salam International Centre for Theoretical Physics ICTP Trieste (Italy) 9 - 28 February 2004

Antenna theory basics

Prof. Dr. R. Struzak Former Vice-Chairman, Radio Regulations Board, ITU r.struzak@ieee.org

Note: These are preliminary notes, intended only for distribution among the participants. Beware of misprints!

Purpose

- The purpose of the lecture is to refresh basic concepts related to the antenna physics that are needed to understand better the operation and design of microwave digital radio links
 - Note: Due to time limitations, we will focus here only on these aspects that are critical for microwave LAN/ WAN applications.

Main topics for discussion

- Antenna concept & Reciprocity Theorem
- Point-antenna, Isotropic antenna
- Antenna impedance, radiation pattern, & gain
- E.I.R.P. and Power Transfer
- Examples

Intended & Unintended Antennas

• Intended antennas

- Radiocommunication antennas
- Measuring antennas, EM sensors, probes
- EM applicators (Industrial, Medical)
- Unintended antennas
 - Any conductor/ installation carrying electrical current that vary in time (e.g. electrical installation of vehicles) or any slot/ opening in the device/ cable screen
 - Any conducting structure/ installation irradiated by EM waves
 - Stationary (e.g. antenna masts or power line wires)
 - Time-varying (e.g. windmill or helicopter propellers)
 - Transient (e.g. aeroplanes, missiles)

Antenna function

- Transformation of a guided EM wave in transmission line into a freely propagating EM wave in space (or vice versa)
 - From time-function in 1-D geometrical space into time-function in 3-D space (3-D geometrical space, polarization)
- The specific form of the radiated wave is defined by the antenna structure and its closest environment

Transition

- If there is an inhomogeneity (obstacle) a reflected wave, standing wave, & higher field modes appear
- Transition With pure standing wave the region energy is stored and oscillates from entirely electric to entirely magnetic and back
 - Model: a resonator
 - Q = (energy stored) / (energy lost) per cycle, as in LC resonant LC circuits

Kraus p.2

Dipole over plane

3 functions

- Antenna
 - Must be of a size comparable with the wavelength to be an efficient radiator
- Transmission line
 - Must be homogenous as much as possible to avoid power reflections, otherwise use matching devices
- Resonator
 - For broadband applications resonances must be attenuated

Antenna impedance

- jX - Energy stored in H, and E near-field components; must be compensated by matching devices

 ← Energy radiated = transformed into heat in space (E & H, far-field components); must be matched to the transmission line

← Energy lost = transformed into heat in the antenna structure and nearby; must be minimized

R_R

R_I

Maxwell's Equations

- EM field interacting with the matter
 - 2 coupled vectors E and H (6 numbers!), varying with time and space and satisfying the boundary conditions
- Reciprocity Theorem
 - Antenna characteristics do not depend on the direction of energy flow. The impedance & radiation pattern are the same when the antenna radiates signal and when it receives it (re-radiates).
 - Note: This theorem is valid only for linear passive antennas (i.e. antennas that do not contain nonlinear and unilateral elements, e.g. amplifiers)

EM Field of Current Element

I: current (monochromatic) [A]; *dz*: antenna element (short) [m]

Short dipole antenna: summary

- $E_{\theta} \& H_{\theta}$ are maximal in the equatorial plane, zero along the antenna axis
- $E_{\rm r}$ is maximal along the antenna axis dz, zero in the equatorial plane
- All show axial symmetry
- All are proportional to the current moment Idz
- Have 3 components that decrease with the distance-to-wavelength ratio as
 - $(r/\lambda)^{-2}$ & $(r/\lambda)^{-3}$: near-field, or induction field. The energy oscillates from entirely electric to entirely magnetic and back, twice per cycle. Modeled as a resonant LC circuit or resonator;
 - $(r/\lambda)^{-1}$: far-field or radiation field
 - These 3 component are all equal at $(r/\lambda) = 1/(2\pi)$

Field components

β

Field impedance

Far-Field, Near-Field

- Near-field region:
 - Angular distribution of energy depends on distance from the antenna;
 - Reactive field components dominate (L, C)
- Far-field region:
 - Angular distribution of energy is independent on distance;
 - Radiating field component dominates (R)
 - The resultant EM field can locally be treated as uniform (TEM)

Poynting vector

- The time-rate of EM energy flow per unit area in free space is the *Poynting vector*.
- It is the cross-product (vector product, right-hand screw direction) of the electric field vector (E) and the magnetic field vector (H): $P = E \times H$.
- For the elementary dipole $E_{\theta} \perp H_{\theta}$ and only $E_{\theta} x H_{\theta}$ carry energy into space with the speed of light.

Power Flow

- In free space and at large distances, the radiated energy streams from the antenna in radial lines, i.e. the Poynting vector has only the radial component in spherical coordinates.
- A source that radiates uniformly in all directions is an *isotropic source (radiator, antenna)*.
 For such a source the radial component of the Poynting vector is independent of θ and φ.

Linear Antennas

• Summation of all vector components E (or H) produced by each antenna element

$$\vec{E} = \vec{E}_1 + \vec{E}_2 + \vec{E}_3 + \dots$$

$$\vec{H} = \vec{H}_1 + \vec{H}_2 + \vec{H}_3 + \dots$$

- In the far-field region, the vector components are parallel to each other
- Method of moments

Simulated experiment

- <u>http://www.amanogawa.com</u>
 - Linear dipole antenna java applet change the dipole length

Planar (printed) antennas

• Slot & complementary antennas

Reflector antenna

- Intended reflector antenna allows maintaining radio link in non-LOS conditions (avoiding propagation obstacles)
- Unintended antenna create interference

Reflector-type antennas

• Reflector concentrates energy radiated

Kraus p.324

The Green Bank Telescope

The largest (140m), fully steerable telescope in the world (Green Bank W. Virginia). Its 8000 ton surface points to targets with arcsecond precision. (1998)

[Sky & Telescope, Feb. 1997 p.28]

The Arecibo Radio Telescope

The world's largest (1000foot) single "dish".

[Sky & Telescope Feb 1997 p. 29]

Simple reflector antennas

Reflection & Image Theory

- Antenna above perfectly conducting plane surface
- Tangential electrical field component = 0
 - vertical components: the same direction
 - horizontal components: opposite directions
- The field (above the ground) is the same as if the ground is replaced by the antenna image

Elliptical polarization: change of the rotation sense!

Lens-type antennas

- Retardation of the wave in dielectric lens
 - Natural dielectric
 - Artificial dielectric
- Acceleration of the wave in the metalplate waveguidetype lens

Aperture-antenna

Power absorbed: P [watt]

• Note: The max effective aperture of linear $\lambda/2$ wavelength dipole antenna is $\lambda^2/8$

Horn antennas

Laboratory!

Point Source

- For many purposes, it is sufficient to know the direction (angle) variation of the power radiated by antenna at large distances.
- For that purpose, any practical antenna, regardless of its size and complexity, can be represented as a point-source.
- The actual field near the antenna is then disregarded.

Point Source 2

- The EM field at large distances from an antenna can be treated as originated at a point source fictitious volume-less emitter.
- The EM field in a homogenous unlimited medium at large distances from an antenna can be approximated by an uniform plane TEM wave

Anisotropic sources

- Every antenna has directional properties (radiates more energy in some directions than in others).
- Idealized example of directional antenna: the radiated energy is concentrated in the yellow region (cone).
- The power flux density gains: it is increased by (roughly) the inverse ratio of the yellow area and the total surface of the isotropic sphere.

Antenna gain

Antenna Gain = $(P/P_o)_{S=S0}$

Antenna Gains G_i, G_d, G_r

- G_i "Isotropic Power Gain" theoretical concept, the reference antenna is isotropic
- G_d the reference antenna is a half-wave dipole

Antenna Gain: Comments

- Unless otherwise specified, the gain refers to the direction of maximum radiation.
- Gain is a dimension-less factor related to power and usually expressed in decibels

Power vs. fieldstrength

$$P_r = \frac{E^2}{Z_0} \rightarrow E = \sqrt{P_r Z_0}$$
$$E = \sqrt{E_\theta^2 + E_\varphi^2}$$
$$Z_0 = 377 \text{ ohms}$$
for plane wave
in free space

 Gain in the field intensity may also be considered - it is equal to the square root of the power gain.
• Equivalent Isotropically Radiated Power (in a given direction):

$$e.i.r.p. = PG_i$$

• The product of the power supplied to the antenna and the antenna gain (relative to an isotropic antenna) in a given direction

Antenna gain and effective area

- Measure of the effective absorption area presented by an antenna to an incident plane wave.
- Depends on the antenna gain and wavelength

$$A_e = \eta \frac{\lambda^2}{4\pi} G(\theta, \varphi) \quad [\text{m}^2]$$

Aperture efficiency: $\eta_a = A_e / A$ A: physical area of antenna's aperture, square meters

Power Transfer in Free Space

 $P_{R} = PFD \cdot A_{e}$ $= \left(\frac{G_T P_T}{\Delta \pi r^2}\right) \left(\frac{\lambda^2 G_R}{\Delta \pi}\right) \qquad \begin{array}{c} \text{receiving antenna} \\ P_T: \text{ power delivered to the transmitting antenna} \end{array}$ $= P_T G_T G_R \left(\frac{\lambda}{4\pi r}\right)^2$

- λ : wavelength [m]
- P_R : power available at the receiving antenna
- G_{R} : gain of the transmitting antenna in the direction of the receiving antenna
- G_T : gain of the receiving antenna in the direction of the transmitting antenna
- Matched polarizations ۲

Gain, Directivity, Radiation Efficiency

- The radiation intensity, directivity and gain are measures of the ability of an antenna to concentrate power in a particular direction.
- Directivity relates to the power radiated by antenna (P_0)
- Gain relates to the power delivered to antenna (P_T)

$$G(\mathcal{G}, \varphi) = \eta D(\mathcal{G}, \varphi)$$
$$\eta = \frac{P_T}{P_0}$$

 η: radiation efficiency (0.5 - 0.75)

Directivity Pattern

- The variation of the field intensity of an antenna as an angular function with respect to the axis.
- Usually represented graphically for the far-field conditions.
- May be considered for a specified polarization and/or plane (horizontal, vertical).
- Depends on the polarization and the reference plane for which it is defined/measured
- Synonym: Radiation pattern.

Antenna patterns

- Usually represented in 2 reference planes φ =const. and θ =const.
- E & PDF relate to the equivalent uniform plane wave
- Note: Peak value = $\sqrt{2}$ x Effective value for sinusoidal quantities

Elements of Radiation Pattern

- Gain
- Beam width
- Nulls (positions)
- Side-lobe levels (envelope)
- Front-to-back ratio

Beam width

- Beamwidth of an antenna pattern: the angle between the half-power points of the main lobe.
- Defined separately for the horizontal plane and for the vertical plane.
- Usually expressed in degrees.

Typical Gain and Beamwidth

Type of antenna	G_i [dB]	BeamW.
Isotropic	0	360°x360°
Half-wave Dipole	2	360°x120°
Helix (10 turn)	14	35 ⁰ x35 ⁰
Small dish	16	30 ⁰ x30 ⁰
Large dish	45	$1^{0}x1^{0}$

Antenna Mask (Example 1)

Typical relative directivity- mask of receiving antenna (Yagi ant., TV dcm waves)

[CCIR doc. 11/645, 17-Oct 1989)

Antenna Mask (Example 2)

Reference pattern for co-polar and cross-polar components for satellite transmitting antennas in Regions 1 and 3 (Broadcasting ~12 GHz)

Linear Polarization

• In a linearly polarized plane wave the direction of the E (or H) vector is constant.

Elliptical Polarization

- The superposition of two plane-wave components results in an elliptically polarized wave
- The polarization ellipse is defined by its axial ratio N/M (ellipticity), tilt angle ψ and sense of rotation

Polarization states

Comments on Polarization

- At any moment in a chosen reference point in space, there is actually a single electric vector E (and associated magnetic vector H).
- This is the result of superposition (addition) of the instantaneous fields E (and H) produced by all radiation sources active at the moment.
- The separation of fields by their wavelength, polarization, or direction is the result of 'filtration'.

Antenna Polarization

• The polarization of an antenna in a specific direction is defined to be the polarization of the wave produced by the antenna at a great distance at this direction

Polarization Efficiency

- The power received by an antenna from a particular direction is maximal if the polarization of the incident wave and the polarization of the antenna in the wave arrival direction have:
 - the same axial ratio
 - the same sense of polarization
 - the same spatial orientation

Polarization filters/ reflectors

• At the surface of ideal conductor the tangential electrical field component = 0

Phased Arrays

- Array of N antennas in a linear or spatial configuration
- The amplitude and phase excitation of each individual antenna controlled electronically ("software-defined")
 - Diode phase shifters
 - Ferrite phase shifters
- Inertia-less beam-forming and scanning (µsec) with fixed physical structure

Beam Steering

Beamsteering using phase shifters at each radiating element

Switched-Line Phase Bit

Phase bit = delay difference

Delay line w. nonlinear dielectric

2 omnidirectional antennas

N omnidirectional antennas

• Array gain (line, uniform, identical power)

Antenna synthesis objective

- Main lobe 'looks' in the required direction
- The signal delivered to N fixed points is above the required minimal level
- The signal delivered to N fixed points is zero, or below the required maximal level

Owens Valley Radio Observatory

The Earth's atmosphere is transparent in the narrow visible-light window (4000-7000 angstroms) and the radio band between 1 mm and 10 m.

[Sky & Telescope Feb 1997 p.26]

The New Mexico Very Large Array

[Sky & Telescope Feb 1997 p. 30]

27 antennas along 3 railroad tracks provide baselines up to 35 km. Radio images are formed by correlating the signals garnered by each antenna.

Property of R. Struzak

Circular antenna arrays

Antenna Arrays: Benefits

- Possibilities to control electronically
 - Direction of maximum radiation
 - Directions (positions) of nulls
 - Beam-width
 - Directivity
 - Levels of sidelobes

using standard antennas (or antenna collections) independently of their radiation patterns

• Antenna elements can be distributed along straight lines, arcs, squares, circles, etc.

Adaptive ("Intelligent") Antennas

- Array of N antennas in a linear or spatial configuration
- Used for selection receiving signals from desired sources and suppress incident signals from undesired sources
- The amplitude and phase excitation of each individual antenna controlled electronically ("softwaredefined")
- The weight-determining algorithm uses a-priori and/ or measured information
- The weight and summing circuits can operate at the RF or at an intermediate frequency

Protocol independence

2 GHz adaptive antenna

- A set of 48 2GHz antennas
 - Source: Arraycomm

Simulated experiments

- <u>2 omnidirectional antennas</u> (equal amplitudes)
- <u>N omnidirectional antennas</u> (arranged along a line, with equal amplitudes)
- Variables (In both cases):
 - distance increment
 - phase increment

What we have learned

- Antenna: substantial element of radio link
- We have just reviewed
 - Basic concepts
 - Radio wave radiation physics
 - Elementary radiators
 - Selected issues relevant to antennas

Selected References

- Griffiths H & Smith BL (ed.): Modern antennas; Chapman & Hall, 1998
- Johnson RC: Antenna Engineering Handbook McGraw-Hill Book Co. 1993
- Kraus JD: Antennas, McGraw-Hill Book Co. 1998
- Scoughton TE: Antenna Basics Tutorial; Microwave Journal Jan. 1998, p. 186-191
- Stutzman WL, Thiele GA: *Antenna Theory and Design* JWiley &Sons, 1981
- <u>http://amanogawa.com</u>
- Software
 - <u>http://www.feko.co.za/apl_ant_pla.htm</u>
 - Li et al., "Microcomputer Tools for Communication Engineering"
 - Pozar D. "Antenna Design Using Personal Computers"
 - <u>www.gsl.net/wb6tpu /swindex.html</u> (NEC Archives)

Any questions?

Thank you for your attention

Copyright note

- Copyright © 2004 Ryszard Struzak. All rights are reserved.
- These materials and any part of them may not be published, copied to or issued from another Web server without the author's written permission.
- These materials may be used freely for individual study, research, and education in not-for-profit applications.
- If you cite these materials, please credit the author
- If you have comments or suggestions, you may send these directly to the author at <u>r.struzak@ieee.org</u>.