
DAZUKO: AN OPEN SOURCE SOLUTION OGNESS

11111VIRUS BULLETIN CONFERENCE SEPTEMBER 2003VIRUS BULLETIN CONFERENCE SEPTEMBER 2003VIRUS BULLETIN CONFERENCE SEPTEMBER 2003VIRUS BULLETIN CONFERENCE SEPTEMBER 2003VIRUS BULLETIN CONFERENCE SEPTEMBER 2003

DAZUKO: AN OPEN SOLUTIONDAZUKO: AN OPEN SOLUTIONDAZUKO: AN OPEN SOLUTIONDAZUKO: AN OPEN SOLUTIONDAZUKO: AN OPEN SOLUTION
TO FACILITTO FACILITTO FACILITTO FACILITTO FACILITAAAAATE ‘ON-ACCESS’TE ‘ON-ACCESS’TE ‘ON-ACCESS’TE ‘ON-ACCESS’TE ‘ON-ACCESS’

SCANNINGSCANNINGSCANNINGSCANNINGSCANNING
John Ogness

H+BEDV Datentechnik GmbH, Lindauer Str. 21,
D-88069 Tettnang, Germany

Tel +49 7542 5000 • Fax +49 7542 5210 • Email
jogness@antivir.de

ABSTRACTABSTRACTABSTRACTABSTRACTABSTRACT

One of the most fundamental forms of virus protection is at
the file access level. By scanning files as they are opened or
executed, malicious code can be blocked before having an
opportunity to cause damage. However, with the constant
evolution and availability of various operating systems,
there is a continual redundant effort by anti-virus
organizations to implement file access monitoring. This
results in variable performance and a lack of support for
certain platforms. This paper presents an open source
project, Dazuko, which provides a standard interface for
handling file access control. The project aims at developing
the Dazuko module to work with many different operating
systems while maintaining a common interface. By
providing the anti-virus community with an open file access
control standard, a broad range of supported systems with
reliable performance can be established.

1. INTRODUCTION1. INTRODUCTION1. INTRODUCTION1. INTRODUCTION1. INTRODUCTION

In the ongoing fight against malicious code, on-access
technology has become a powerful ally. With the ability to
detect malicious code before the operating system has an
opportunity to utilize it, users and their systems remain
protected behind a real-time shield.

However, implementing on-access technology involves a
close relationship with the operating system. An on-access
scanner must have the ability to intercept low-level file
access events before the operating system itself begins to
work with the file. This intimate relationship may involve
interfacing directly with the operating system or possibly
modifying it, allowing a virus scanner to effectively carry
out its work.

With the many varying flavours of operating systems
available, the task of implementing an on-access interface
becomes enormous. These varying systems not only take
advantage of completely different architectures [1], but they
also have different licensing procedures. Dealing with the
many companies, interfaces, and platforms becomes a major

issue. However, regardless of the difficulty, these steps must
be taken in order to offer users what they need: a safe and
virus-free computing environment.

Unfortunately all the various anti-virus organizations must
independently develop the on-access capability themselves.
This enormous effort is reproduced over and over again.
Each organization must establish relationships and develop,
debug, and test modules, which must flawlessly operate so
as not to jeopardize the entire system.

These varying modules from varying organizations also
often do not work alongside one another – which is
understandable since they were developed independently.
This means that a user is often unable to install multiple
on-access anti-virus packages at the same time. Rather than
anti-virus organizations offering users options for security,
the user is forced to choose between packages that
completely differ from one another in capability and
reliability, and cannot coexist.

What is needed is a standard anti-virus interface available
from the operating system itself. With such a standard
implemented across all major operating systems, anti-virus
organizations could more easily provide effective software
while focusing on virus detection, rather than interfacing
with an operating system. The user would no longer be
burdened with choosing a package based on support, but
rather on anti-virus capability and features.

2. AN OPEN SOLUTION2. AN OPEN SOLUTION2. AN OPEN SOLUTION2. AN OPEN SOLUTION2. AN OPEN SOLUTION

Dazuko, pronounced ‘dah-tsu-ko’, is the name of an open
source project [2], which began as an effort to address the
current discontinuity and frustration facing on-access
scanner developers and users. Although not capable of
doing any type of virus scanning itself, Dazuko provides a
simple interface for other third party applications (virus
scanners) to control file access. It can be viewed as an
operating system ‘plug-in’ that provides an interface for an
on-access anti-virus mechanism. By supporting many
different operating systems, a common and familiar
interface is available to developers on multiple platforms.

Dazuko is available under a BSD license [3], meaning that
organizations are free to use and modify the source code as
long as they include the original copyright and licence
conditions. Changes to the code are not required to be
recommitted to the project and integrating Dazuko into
existing software does not put additional restrictions or
requirements on that software.

The licence is flexible enough that both closed and open
source organizations can safely integrate Dazuko into their
code base. The openness of the project and its immediate
value to organizations helps to promote a positive and
cooperative development environment.

DAZUKO: AN OPEN SOURCE SOLUTION OGNESS

22222 VIRUS BULLETIN CONFERENCE SEPTEMBER 2003VIRUS BULLETIN CONFERENCE SEPTEMBER 2003VIRUS BULLETIN CONFERENCE SEPTEMBER 2003VIRUS BULLETIN CONFERENCE SEPTEMBER 2003VIRUS BULLETIN CONFERENCE SEPTEMBER 2003

2.1 Concept2.1 Concept2.1 Concept2.1 Concept2.1 Concept

Dazuko works directly with the operating system kernel to
intercept file-accessing system calls. In order for an
application to utilize Dazuko, it must first register itself. By
registering, the application communicates to Dazuko that it
is prepared to execute file access control. (It is important to
mention that the registered application runs in userspace and
not as a kernel process.)

Once a file access event occurs (such as the user opening a
file), Dazuko intercepts this event and notifies registered
applications. Information about the event such as file name,
type of access, various access flags, etc., is provided. Using
this information, the registered application must then decide
if the file access is to be granted or denied. For the case of
anti-virus software, the application will scan the file
associated with the access event and allow access if the file
is virus-free.

While the registered application is determining whether the
access should be allowed, Dazuko patiently waits for a
response. Depending on the decision of the registered
application, Dazuko will have the operating system either
continue to process the file access normally or return an
error, thus preventing the file access from ever occurring.
Since Dazuko integrates into the operating system, its
existence is completely transparent to running user
applications. When file access is denied, the user application
receives error codes from the operating system itself, and
not from any extra module. This is important because it
allows existing software to run reliably without the need for
special adaptations.

In order to support multi-threaded operating systems,
Dazuko is capable of working with multiple registered
processes (or threads) from the same application. These
processes can work together to share the work of file access
control. When a file access event occurs, Dazuko looks for

the first available registered process of the group and
assigns the file access event to that process. Multiple
processes signify that they are working together by
registering under the same group name. This concept can be
seen in Figure 1. The result is a multi-process on-access
scanner that takes advantage of multi-processing operating
systems, reducing the noticeable effect of additionally
scanning files as they are accessed.

Three AntiVir scanner processes register under the same
group name, thus sharing the responsibility of file access
control. Dazuko assigns a file access event to the first
available process in the group.

Dazuko also supports cascading, which is a feature allowing
different applications to run together at the same time. This
is similar in concept to the multi-process support mentioned
previously, except that file access control is queued rather
than shared. The applications distinguish themselves from
one another by registering under different group names.
With each file access event, one registered process from
each group is given a chance to determine if an access
should be allowed or not. If any one of the processes
determines that access should be denied, then the access is
denied. However, regardless of which process denies access
first, all registered groups are given an opportunity to
investigate the file access event for themselves. Figure 2
shows an example of two different applications utilizing
Dazuko simultaneously.

Figure 2. Queuing the work.

Two different applications (each with three processes) are
running simultaneously with Dazuko. The AntiVir processes
have registered using a particular group name and the avast!
processes have registered using a different group name.
Dazuko assigns a file access event to the first available
process in the AntiVir group and then the same file access
event to the first available process in the avast! group.

2.2 Interface2.2 Interface2.2 Interface2.2 Interface2.2 Interface

The Dazuko interface is quite simple. It has functions to
register, set parameters, request an access event, return anFigure 1. Sharing the work.

DAZUKO: AN OPEN SOURCE SOLUTION OGNESS

33333VIRUS BULLETIN CONFERENCE SEPTEMBER 2003VIRUS BULLETIN CONFERENCE SEPTEMBER 2003VIRUS BULLETIN CONFERENCE SEPTEMBER 2003VIRUS BULLETIN CONFERENCE SEPTEMBER 2003VIRUS BULLETIN CONFERENCE SEPTEMBER 2003

access event, and unregister. Regardless of which operating
system (or language) an application is written in, the
Dazuko interface remains the same. This allows easy
cross-platform development from third party developers.
Figure 3 shows a surprisingly simple example of an
on-access scanner implemented in C. Details about the
interface as well as example programs are available from
the Dazuko project website [2].

Figure 3. A simple on-access scanner.

Note: do_scan_file() is implemented elsewhere.

2.3 Layers2.3 Layers2.3 Layers2.3 Layers2.3 Layers

In order to keep the Dazuko file access control ‘plug-in’
cross-platform, three different layers have been developed.
The first layer is the platform-dependent layer. Here a set of
functions are implemented in a platform-specific manner.
This is the layer that does all the real ‘work’ of interacting
with the operating system. It is also the layer which must be
completely re-written for each supported operating system.

The second layer is the functionality layer. This layer
implements the ‘brains’ of Dazuko, utilizing the platform-
dependent layer’s interface to do get the work done. All
decision making and handling is done in this layer. The
only changes to the functionality layer represent bug fixes
or new features.

The third layer is the visible layer. Here the public interface
for Dazuko is made available to applications. This layer’s
only responsibility is to provide a front-end through which
the functionality layer can exchange information with the
application. Changing this layer is done only if absolutely
necessary since it could lead to incompatibility with existing
applications that rely on Dazuko.

All three layers and how they communicate with each other
can be seen in Figure 4.

In order to easily maintain portability with a constant
interface, Dazuko is composed of three layers.

There are three main advantages to having Dazuko
implemented in these three layers. First, by keeping the
functionality layer free of platform-dependent code, feature
implementation and debugging is made easier. This allows
the ‘pure’ functionality to be clearly seen and enhanced.
Modifications made to this layer provide improvements
uniformly across all platforms.

Another advantage is the concrete interface defined for the
platform-dependent layer. Porting Dazuko to other
platforms becomes a fairly straightforward process of
implementing many basic platform-specific functions.
Building Dazuko on another platform simply involves
swapping out platform-dependent layers.

The third main advantage is the abstraction provided by the
layering model, which allows the visible layer to maintain a
constant application interface across platforms. This is
especially important for organizations to effortlessly develop
cross-platform on-access applications. The interface always
remains the same, with the most difficult tasks of on-access
implementation (licensing, kernel interfaces, special relations
and skills) already completed by the Dazuko project.

3. RESUL3. RESUL3. RESUL3. RESUL3. RESULTSTSTSTSTS

Since its release in February of 2002 [4], Dazuko has
already achieved a considerable amount of recognition

Figure 4. Layers in Dazuko.

DAZUKO: AN OPEN SOURCE SOLUTION OGNESS

44444 VIRUS BULLETIN CONFERENCE SEPTEMBER 2003VIRUS BULLETIN CONFERENCE SEPTEMBER 2003VIRUS BULLETIN CONFERENCE SEPTEMBER 2003VIRUS BULLETIN CONFERENCE SEPTEMBER 2003VIRUS BULLETIN CONFERENCE SEPTEMBER 2003

[5][6][7][8][9][10]. Many organizations have begun to
investigate Dazuko’s capabilities and realize that the
project should be taken seriously and has a great deal to
offer [11][12].

Support for both Linux and FreeBSD kernels has already
been implemented. This was first made possible after the
development of the three-layer abstraction model. With the
layer implementation complete, Dazuko can quickly move
forward to begin supporting other operating systems.

Dazuko has received contributions from various people in
the open source world. In fact, the release of version 1.1.2 of
Dazuko was based entirely on outside contributions,
including optimizations, devfs support, and patches for Red
Hat Linux functionality [13]. Tapping into the global
community has added extra development skills and
experience, demonstrating one of the advantages of the
Dazuko project’s openness.

The visible layer is not only available in C, but has been
ported to Java as well [14]. This has expanded the developer
audience for Dazuko-based applications and extended
the cross-platform capabilities of Dazuko to the application
level.

Dazuko has succeeded in bringing various anti-virus
organizations together by providing them with a common
basis for their software. Although this cooperation does not
reveal any formal alliances, it does unite organizations to
producing a single, robust interface for anti-virus protection.
By contributing to its development (either through usage or
through code), these organizations are helping to promote a
better, more secure, and more reliable foundation.

In a recent Virus Bulletin test of GNU/Linux scanners [15],
Matt Ham mentioned that on-access scanning was a feature
that was lacking in many products. Those organizations that
were based on Dazuko provided uniform installation and
capability (with respect to core on-access technology). The
encouraging words throughout the article clearly portray a
need for a standard solution and suggests Dazuko as one
such possibility.

4. FUTURE GOALS4. FUTURE GOALS4. FUTURE GOALS4. FUTURE GOALS4. FUTURE GOALS

Although Dazuko has already proved its usefulness on
several server platforms, it must continue to expand. One of
the main upcoming tasks of the Dazuko project is to begin
porting to mainstream desktop operating systems. These
include the various versions of Microsoft Windows and
MacOS.

However, before moving into mainstream desktop
environments, Dazuko must first offer better documentation
and installation tools. The combined expertise of various
organizations may provide information that will make it
easier for users to install and use Dazuko with their

applications. This will be a collaborative effort since it is the
desire of every party that Dazuko is easy to use.

After porting to mainstream desktop operating systems,
Dazuko will be presented with an opportunity to greatly
expand its number of users. This will indeed put Dazuko’s
abilities to the test, as many thousands of users will become
dependent on Dazuko for their anti-virus protection. It is
important that these steps are taken carefully and in a secure
and stable direction.

It is also important that Dazuko expands its partners,
portability, and availability. Such examples include working
with various operating distributions, such as Red Hat [16]
and FreeBSD [17], to provide pre-packaged Dazuko
software. Existing distribution packages, such as those from
SuSE [18] and Debian [19] must be kept current with the
latest software and documentation. The Dazuko project
should also form relationships with security projects, such
as RSBAC for Linux [20], which have a great deal of
experience developing secure kernel systems. Dazuko can
also build other alliances, such as the VTrace [21] or FAM
[22] projects, which have implemented very similar
functionality to Dazuko except with alternate objectives.
These various code bases could be integrated, representing a
powerful collaborative alliance of development experiences.

In an effort to become a standard for third party file access
control, the Dazuko project must acknowledge existing
standards. It is vital that Dazuko, in becoming a standard,
remain compliant with existing file access control protocols
and interfaces. The OPENXDSM Open Group Standard is
one such example [23]. Although it is clear that some of
these standards support more functionality than is necessary
(or desired), Dazuko has a responsibility to acknowledge
these standards and move in a direction of compliance.

Finally, Dazuko needs an improved security model for
determining trusted applications for registration. The
version available at the time of this writing relies on root
(administrator) privileges of the registering application.
These applications are then automatically trusted. A more
robust method must be developed, which allows true
application authentication during registration. Through
cooperation with partners, this difficult task can be resolved
by incorporating the experience of many organizations.

5. CONCLUSION5. CONCLUSION5. CONCLUSION5. CONCLUSION5. CONCLUSION

Although Dazuko is still very young, it has already begun to
prove its value. Several anti-virus organizations have used
Dazuko for their GNU/Linux on-access scanning solutions
and Dazuko has been acknowledged from many various
sources. With its continued recognition and adoption, it is
well on its way to becoming a standard in the anti-virus
industry. By working together, the community is helping
to build a strong, standards-based foundation allowing

DAZUKO: AN OPEN SOURCE SOLUTION OGNESS

55555VIRUS BULLETIN CONFERENCE SEPTEMBER 2003VIRUS BULLETIN CONFERENCE SEPTEMBER 2003VIRUS BULLETIN CONFERENCE SEPTEMBER 2003VIRUS BULLETIN CONFERENCE SEPTEMBER 2003VIRUS BULLETIN CONFERENCE SEPTEMBER 2003

anti-virus organizations to focus on what they do best …
detecting viruses.

As Dazuko becomes an accepted standard, its installation
and use will become easier, it will become more reliable,
and it will improve in performance. This translates to better
and uniform support by anti-virus organizations on multiple
platforms, common installation procedures, and freedom for
the user to choose which anti-virus software should be
installed.

6. REFERENCES6. REFERENCES6. REFERENCES6. REFERENCES6. REFERENCES

[1] Hayes, Bill, September 2002,
http://www.securityfocus.com/infocus/1622.

[2] Dazuko Project, http://www.dazuko.org/.

[3] Dazuko Licence, http://www.dazuko.org/LICENSE.txt.

[4] Ogness, John, ‘Dazuko is free software!’,
http://savannah.nongnu.org/forum/
forum.php?forum_id=414, February 2002.

[5] Annuscheit, Rainer, ‘Standard-Interface für externen
Dateizugriff unter Linux’, IT SecCity, November
2002. http://www.itseccity.com/content/dailynews/
021118_dailynews_text.html.

[6] ‘Dateizugriffskontrolle fuer Linux’, Linux Magazin,
January 2003, p.11.

[7] ‘H+BEDV bietet Standard-Interface für externe
Dateizugriffe an’, entwickler.com, November 2002,
http://entwickler.com/itr/news/show.php3?nodeid=
82&id=8133.

[8] Lepish, Martin, ‘Avast! 4.0 pre Linux’, Virusy.sk,
May 2003, http://www.virusy.sk/clanok.ltc?ID=366.

[9] Muench, Martin, ‘Safer Tux’, Linux Enterprise,
December 2002, pp. 46–47.

[10] Schroeper, Joerg, ‘Dateizugriff kontrollieren’, Unix
Open, January 2003, p.13.

[11] ‘avast! 4 for Linux’, avast!, June 2003,
http://www.avast.com/i_idt_172.html.

[12] Clam Antivirus: User Manual, October 2002,
http://clamav.elektrapro.com/doc/clamdoc.pdf.

[13] Ogness, John, Dazuko 1.1.2 released, January 2003.
http://mail.gnu.org/archive/html/dazuko-devel/2003-
01/msg00000.html.

[14] Ogness, John, Dazuko 1.2.0 released, May 2003.
http://mail.gnu.org/archive/html/dazuko-devel/2003-
05/msg00000.html.

[15] Ham, Matt, Virus Bulletin, May 2003, pp. 18–23.

[16] Red Hat, http://www.redhat.com/.

[17] FreeBSD, http://www.freebsd.org/.

[18] km_antivir, SuSE, http://www.suse.de/us/private/
products/suse_linux/i386/packages_professional/
km_antivir.html.

[19] dazuko-source, Debian, http://packages.debian.org/
unstable/utils/dazuko-source.html.

[20] RSBAC, http://www.rsbac.org/.

[21] Lorch, Jacob and Smith, Alan, ‘The VTrace Tool:
Building a System Tracer for Windows NT and
Windows 2000’, MSDN Magazine, October 2000.

[22] IMon, http://oss.sgi.com/projects/fam/.

[23] OPENXDSM Open Group Standard,
http://openxdsm.sourceforge.net/.

