lozone Filesystem Benchmark

I0zone is a filesystem benchmark tool. The benchmankerates and measures a variety of file operations.
lozone has been ported to many machines and runs undeiopenaging systems. This document will
cover the many different types of operations that atedess well as coverage of all of the command line
options.

lozone is useful for determining a broad filesystemyaigbf a vendor’s computer platform. The
benchmark tests file /O performance for the follogvoperations.

Read, write, re-read, re-write, read backwards, read strided, fread, fwrite, random read/write,
pread/pwrite variants, aio_read, aio_write, mmap,

While computers are typically purchased with an applicationind it is also likely that over time the
application mix will change. Many vendors have enhanced dpeirating systems to perform well for
some frequently used applications. Although this acdelethe I/O for those few applications it is also
likely that the system may not perform well for othpplications that were not targeted by the operating
system. An example of this type of enhancement is: Dsg¢aldbdany operating systems have tested and
tuned the filesystem so it works well with databab¥ésile the database users are happy, the other users
may not be so happy as the entire system may be giViofjthe system resources to the database users at
the expense of all other users. As time rolls orstlséeem administrator may decide that a few more office
automation tasks could be shifted to this machine. Tk heay now shift from a random reader
application (database) to a sequential reader. The usgrdistover that the machine is very slow when
running this new application and become dissatisfied Watdecision to purchase this platform. By using
lozone to get a broad filesystem performance coveragbuyer is much more likely to see any hot or cold
spots and pick a platform and operating system that is melt balanced.

Features:
e ANSII ‘'C’ source.
* POSIX async /0.
« Mmap() file I/O.
* Normal file I/O.
e Single stream measurement.
e Multiple stream measurement.
e POSIX pthreads.
e Multi-process measurement.
« Excel importable output for graph generation.
* 1/O Latency data for plots.
e 64-bit compatible source.
e Large file compatible.
« Stonewalling in throughput tests to eliminate strageffercts.
* Processor cache size configurable.
* Selectable measurements with fsync, O_SYNC.
e Options targeted for testing over NFS.

Building 10zone

Once you have obtained the source for I0Ozone you shewkl 12 files.
e iozone.c (source code)

e libasync.c (source code)

* makefile (makefile)

« libbif.c (source code)

e lozone_msword_98.doc (documentation in Word format)

e iozone.l (documentation in nroff format)

e gnuplot.dem (sample gnuplot file)

« gnuplotps.dem (sample gnuplot file that generates postscitiptit)
* read_telemetry (sample file for read telemetry file)

« write_telemetry (sample file for write telemetryefil

e Run_rules.doc (run rules to get reasonable results)

* Changes.txt (log of changes to lozone since its beginning)

Type: make

The makefile will display a list of supported platformigkRhe one that matches your
configuration and then type: make target

That's it. You're done. There is no need to have astalhprocedures as I0zone creates all of its
files in the current working directory. Just copy loedn wherever you wish to test the filesystem
performance and then run it. Or you can use-flemmmand line option to specify a target path,
for example, a path/filename in a new filesystem.

Before you run lozone please read the run rules at the batin of this document.

Examples of running lozone:
The simplest way to get started is to try the autamatide.
lozone —a
If you wish to generate graphs then you may wishrtodn Excel mode.
lozone —Ra (Output can be ingabusing space and tab delimited)
Iozc())nre —Rab output.wks (Output file “output.wks” is a byrfarmat spreadsheet)
If you have more than 512 Mbytes of memory then you neetttease the maximum file size to
a larger value. For example if your system has 1 Gbyteeofiory then you would want to try something
ke lozone —Ra —g 2G

If you only care about read/write and do not wish tadpbe time to perform all of the tests, then
you may wish to limit the testing like:

lozone -Ra—g2G-i0-il
If you are running lozone over NFS on an NFS cliert §fa may wish to use:
lozone —Rac
This tells lozone to include the close() in the meament. This may be needed if the client is

running NFS version 3. Including the close() helps to retheelient side cache effects of NFS version 3.
If you use a file size that is larger than the amountehory in the client then the ‘c’ flag is not needed.

Definitions of the tests

Write : This test measures the performance of writing afilewWhen a new file is written not
only does the data need to be stored but also the odertfeamation for keeping track of where the data
is located on the storage media. This overhead is daketinetadata” It consists of the directory
information, the space allocation and any other degdadated with a file that is not part of the data
contained in the file. It is normal for the initiatite performance to be lower than the performance-of r
writing a file due to this overhead information.

Re-write: This test measures the performance of writindedltiiat already exists. When a file is
written that already exists the work required is lesb@asnetadata already exists. It is normal for the
rewrite performance to be higher than the performahegiting a new file.

Read This test measures the performance of reading atingxiie.

Re-Read This test measures the performance of reading théitevas recently read. It is normal
for the performance to be higher as the operating sygégrarally maintains a cache of the data for files
that were recently read. This cache can be used téysatisls and improves the performance.

Random Read This test measures the performance of reading avth accesses being made to
random locations within the file. The performance dfystem under this type of activity can be impacted
by several factors such as: Size of operating systerafeecaumber of disks, seek latencies, and others.

Random Write: This test measures the performance of writingeaviith accesses being made to
random locations within the file. Again the performanta system under this type of activity can be
impacted by several factors such as: Size of operatibgns\sscache, number of disks, seek latencies, and
others.

Random Mix: This test measures the performance of reading andgvatfile with accesses
being made to random locations within the file. Againghdormance of a system under this type of
activity can be impacted by several factors such ae:@ioperating system’s cache, number of disks, seek
latencies, and others. This test is only availabteroughput mode. Each thread/process runs either the
read or the write test. The distribution of read/wistdone on a round robin basis. More than one
thread/process is required for proper operation.

Backwards Read This test measures the performance of reading &ditkwards. This may
seem like a strange way to read a file but in facktlee applications that do this. MSC Nastran is an
example of an application that reads its files backwakith MSC Nastran, these files are very large
(Gbytes to Thytes in size). Although many operatirgiesys have special features that enable them to
read a file forward more rapidly, there are very fgperating systems that detect and enhance the
performance of reading a file backwards.

Record Rewrite: This test measures the performance of writing arwriting a particular spot
within a file. This hot spot can have very interestinkgawiors. If the size of the spot is small enoughtto fi
in the CPU data cache then the performance is vgty ithe size of the spot is bigger than the CPU data
cache but still fits in the TLB then one gets a déferlevel of performance. If the size of the spohigér
than the CPU data cache and larger than the TLB bufitstith the operating system cache then one gets
another level of performance, and if the size of et & bigger than the operating system cache then one
gets yet another level of performance.

Strided Read This test measures the performance of reading wifthea strided access
behavior. An example would be: Read at offset zero fength of 4 Kbytes, then seek 200 Kbytes, and
then read for a length of 4 Kbytes, then seek 200 Kbyts@ion. Here the pattern is to read 4 Kbytes and
then

Seek 200 Kbytes and repeat the pattern. This again is altgpmecation behavior for applications that
have data structures contained within a file and is acapagparticular region of the data structure.
Most operating systems do not detect this behavior gleiment any techniques to enhance the
performance under this type of access behavior.

This access behavior can also sometimes produce tinigrpsrformance anomalies. An example would
be if the application’s stride causes a particular disk, $triped file system, to become the bottleneck.

Fwrite: This test measures the performance of writindeausing the library function fwrite().
This is a library routine that performs buffered wripei@ations. The buffer is within the user’s address
space. If an application were to write in very smalkgransfers then the buffered & blocked 1/0
functionality of fwrite() can enhance the performancéehefapplication by reducing the number of actual
operating system calls and increasing the size of éinsfiers when operating system calls are made.
This test is writing a new file so again the overheaith®imetadata is included in the measurement.

Frewrite: This test measures the performance of writindeausing the library function fwrite().
This is a library routine that performs buffered & bledkwrite operations. The buffer is within the user’s
address space. If an application were to write in verlissize transfers then the buffered & blocked 1/0
functionality of fwrite() can enhance the performancéehefdapplication by reducing the number of actual
operating system calls and increasing the size of éinsfiers when operating system calls are made.
This test is writing to an existing file so the performasbould be higher as there are no metadata
operations required.

Fread: This test measures the performance of reading adihg the library function fread(). This
is a library routine that performs buffered & blocked repdrations. The buffer is within the user’s
address space. If an application were to read in veayl sime transfers then the buffered & blocked 1/10
functionality of fread() can enhance the performance offipdication by reducing the number of actual
operating system calls and increasing the size of éinsfiers when operating system calls are made.

Freread: This test is the same as fread above except that itethithe file that is being read was
read in the recent past. This should result in higheopeence as the operating system is likely to have
the file data in cache.

Specialized tests:

Mmap: Many operating systems support the use of mmap() taarfilpinto a user’s address
space. Once this mapping is in place then stores t@ot#igdn in memory will result in the data being
stored going to a file. This is handy if an application essto treat files as chunks of memory. An example
would be to have an array in memory that is also beiaigtained as a file in the files system.

The semantics of mmap files is somewhat different tteamal files. If a store to the memory location is
done then no actual file I/O may occur immediately. Tibe of the msyc() with the flags MS_SYNC, and
MS_ASYNC control the coherency of the memory anditkeA call to msync() with MS_SYNC wiill
force the contents of memory to the file and waitiféo be on storage before returning to the applinatio
A call to msync() with the flag MS_ASYNC tells the ogting system to flush the memory out to storage
using an asynchronous mechanism so that the applicatioretoay into execution without waiting for the
data to be written to storage.

This test measures the performance of using the mmegahanism for performing 1/O.

Async 1/O: Another mechanism that is supported by many operatingrsy$te performing /O
is POSIX async /0. The application uses the PO&Kdard async I/O interfaces to accomplish this.
Example: aio_write(), aio_read(), aio_error(). This tesagures the performance of the POSIX async I/0
mechanism.

Command Line options:

The following is the output from the built in help. Eagition’s purpose is explained in this section of the

manual.

Usage: iozone [-s filesize_Kb] [-r record_size_Kb Jpath]filename]
[-i test] [-E] [-p] [-a] [-A] [-Z] [-Z] [-m] [-M] [- t children] [-h] [-0]
[-I min_number_procs] [-u max_number_procs] [-V] [-R]][-X
[-d microseconds] [-F pathl path2...] [-V pattern] [-jc}
[-T1[-C]1[-B] [-D] [-G] [-1] [-H depth] [-k depth] [-U mount_point]
[-S cache_size] [-O] [-K] [-L line_size] [-g max_files_Kb]
[-n min_filesize_Kb] [-N] [-Q] [-P start_cpu] [-c] [-e}b filename]
[-J milliseconds] [-X filename] [-Y filename] [-w] W]
[-y min_recordsize_Kb] [-g max_recordsize_Kb] [-+m filame]
[-+u][-+d] [-+p percent_read] [-+r] [-+t] [-+A #]

What do they all mean ?

-a
Used to select full automatic mode. Produces output thatscalldested file operations
for record sizes of 4k to 16M for file sizes of 64k to 512M.

-A
This version of automatic mode provides more coveragedmgumes a bunch of time.
The—a option will automatically stop using transfer sizesslthan 64k once the file
size is 32 MB or larger. This saves time. Heoption tells lozone that you are willing to
wait and want dense coverage for small transfers even thie file size is very large.
NOTE: This option is deprecated in lozone version 3.61. 4dge-i 0 —i linstead.

-b filename
lozone will create a binary file format file in Exagmpatible output of results.

-B
Use mmap() files. This causes all of the temporaeg fileing measured to be created
and accessed with the mmap() interface. Some applisgti@fer to treat files as arrays
of memory. These applications mmap() the file and jhst access the array with loads
and stores to perform file I/O.

-C
Include close() in the timing calculations. This isfukenly if you suspect that close() is
broken in the operating system currently under testnlbeauseful for NFS Version 3
testing as well to help identify if the nfs3_commit isrking well.

-C
Show bytes transferred by each child in throughput testisefulif your operating
system has any starvation problems in file I/O orrcpss management.

-d#
Microsecond delay out of barrier. During the throughesitstall threads or processes are
forced to a barrier before beginning the test. Normallypf the threads or processes are
released at the same moment. This option allows odelagy a specified time in
microseconds between releasing each of the procestezads.

-D
Use msync(MS_ASYNC) on mmap files. This tells the ofiegesystem that all the data in

the mmap space needs to be written to disk asynchronously

-e
Include flush (fsync,fflush) in the timing calculations

-E
Used to select the extension tests. Only availabl@me platforms. Uses pread interfaces.

-f filename
Used to specify the filename for the temporary file uridst. This is useful when
the unmount option is used. When testing with unmount betvesésiit is necessary for
the temporary file under test to be in a directory thatlwe unmounted. It is not possible
to unmount the current working directory as the medezone is running in this directory.

-F filename filename filename ...
Specify each of the temporary file names to be usedtkithroughput testing. The number
of names should be equal to the number of processkeeads that are specified.

_g #
Set maximum file size (in Kbytes) for auto mode.

-G
Use msync(MS_SYNC) on mmap files. This tells the opegatystem that all the data in the
mmap space needs to be written to disk synchronously.

-h
Displays help screen.

-H #
Use POSIX async I/0O with async operations. lozone will use POSIX async lith &
bcopy from the async buffers back into the applicatibuffer. Some versions of MSC
NASTRAN perform I/O this way. This technique is used by iapfibns so that the async
I/0 may be performed in a library and requires no chatméhe applications internal model.

-i #
Used to specify which tests to run. (O=write/rewriterebed/re-read, 2=random-read/write
3=Read-backwards, 4=Re-write-record, 5=stride-read, 6tefingifwrite, 7=fread/Re-fread,
8=random mix, 9=pwrite/Re-pwrite, 10=pread/Re-pread, 11=puRtepwritev, 12=preadv/Re-
preadv).
One will always need to specify 0 so that any of thiedohg tests will have a file to measure.
-i # -1 # -i #is also supported so that one may select more thansine te

Use VXFS VX_DIRECT for all file operations. Tells th&XFS filesystem that all operations
to the file are to bypass the buffer cache and go Hirectisk.

_j #
Set stride of file accesses to (# * record size). Sthide read test will read records at this stride.
-J # (in milliseconds)

Perform a compute delay of this many milliseconds befanh 1/0 operation. See also
-X and-Y for other options to control compute delay.

-k #
Use POSIX async I/0 (no bcopy) withasync operations. lozone will use POSIX async
I/0 and will not perform any extra bcopys. The buffesed by lozone will be handed to
the async 1/O system call directly.

-K
Generate some random accesses during the normal testing.

-l #
Set the lower limit on number of processes to run. Whaning throughput tests this
option allows the user to specify the least number afga®es or threads to start. This
option should be used in conjunction with toeoption.

-L#
Set processor cache line size to value (in bytesls Tazdone the processor cache line size.
This is used internally to help speed up the test.

-m
Tells lozone to use multiple buffers internally. Sorppleations read into a single
buffer over and over. Others have an array of buffenis option allows both types of
applications to be simulated. lozone’s default behasitw re-use internal buffers.
This option allows one to override the default and tonusitiple internal buffers.

-M
lozone will call uname() and will put the string in thatput file.

-n#
Set minimum file size (in Kbytes) for auto mode.

-N
Report results in microseconds per operation.

-0
Writes are synchronously written to disk. (O_SYNC)oloz will open the files with the
O_SYNC flag. This forces all writes to the file to gonpletely to disk before returning to
the benchmark.

-0
Give results in operations per second.

P
This purges the processor cache before each file aperkizone will allocate another
internal buffer that is aligned to the same procesaonhe boundary and is of a size that
matches the processor cache. It will zero fill titernate buffer before beginning each test.
This will purge the processor cache and allow orsetothe memory subsystem without
the acceleration due to the processor cache.

-P#
Bind processes/threads to processors, starting lvtcpu# Only available on some
platforms. The first sub process or thread will begirihe specified processor. Future processes
or threads will be placed on the next processor. Onamtalenumber of cpus is exceeded then
future processes or threads will be placed in a rourid fabhion.

_q #
Set maximum record size (in Kbytes) for auto mode. @agalso specify
-q #k (size in Kbytes) org #m (size in Mbytes) okq #g (size in Gbytes).
See-y for setting minimum record size.

Create offset/latency files. lozone will createstaty versus offset data files that can be
imported with a graphics package and plotted. This isilgeffinding if certain offsets
have very high latencies. Such as the point where UR&laitate its first indirect block.
One can see from the data the impacts of the extecttibns for extent based filesystems
with this option.

-r#
Used to specify the record size, in Kbytes, to test. i@ag also specify
-r #k (size in Kbytes) ofr #m (size in Mbytes) ofr #g (size in Gbytes).

-R
Generate Excel report. lozone will generate an Excepatibie report to standard out. This
file may be imported with Microsoft Excel (space delim)tand used to create a graph of
the filesystem performance. Note: The 3D graphsealterm oriented. You will need to
select this when graphing as the default in Excel isomented data.

-S#
Used to specify the size, in Kbytes, of the file to.t€ste may also specify
-s #k (size in Kbytes) ors #m(size in Mbytes) ors #g(size in Gbytes).

-S#
Set processor cache size to value (in Kbytes). Thésltzone the size of the processor cache.
It is used internally for buffer alignment and for thegaufunctionality.

-t#
Run lozone in a throughput mode. This option allows thetosgsecify how
many threads or processes to have active during theuneezent.

-T
Use POSIX pthreads for throughput tests. Available ongptaf that have POSIX threads.

-u#
Set the upper limit on number of processes to run. Wiremirg throughput tests this
option allows the user to specify the greatest nurabprocesses or threads to start.
This option should be used in conjunction with theption.

-U mountpoint
Mount point to unmount and remount between tests. lozdhenmount and remount
this mount point before beginning each test. This guaratiteethe buffer cache does not
contain any of the file under test.

-V
Display the version of lozone.

-V #
Specify a pattern that is to be written to the tempydiie and validated for accuracy in
each of the read tests.

-w
Do not unlink temporary files when finished using them. kedvem present in the filesystem.

-w
Lock files when reading or writing.

Turn off stone-walling. Stonewalling is a technique usegtivally to lozone. It is used during
the throughput tests. The code starts all threads oegses and then stops them on a barrier.
Once they are all ready to start then they aresbdbsed at the same time. The moment that
any of the threads or processes finish their work themitire test is terminated and
throughput is calculated on the total I/O that was completed thys point. This ensures

that the entire measurement was taken while all gbtbeesses or threads were running

in parallel. This flag allows one to turn off therstwvalling and see what happens.

-X filename
Use this file for write telemetry information. Thieefcontains triplets of information:
Byte offset, size of transfer, compute delay in millisets. This option is useful if one has
taken a system call trace of the application that istefest. This allows lozone to replicate the
I/O operations that this specific application generatebprovide benchmark results for this file
behavior. (if column 1 contains # then the line is@mment)

_y #
Set minimum record size (in Kbytes) for auto mode. Ongatsp specify
-y #k (size in Kbytes) ory #m (size in Mbytes) ory #g (size in Gbytes).
See—(q for setting maximum record size.

-Y filename
Use this file for read telemetry information. The fdontains triplets of information:
Byte offset, size of transfer, compute delay in millisets. This option is useful if one has
taken a system call trace of the application that istefest. This allows lozone to replicate the
I/O operations that this specific application generatebprovide benchmark results for this file
behavior. (if column 1 contains # then the line toenment)

-z
Used in conjunction witha to test all possible record sizes. Normally lozonsts testing
of small record sizes for very large files when usedlirafutomatic mode. This option forces
lozone to include the small record sizes in the autiortests also.

-Z
Enable mixing mmap 1/O and file I/O.

-+m filename
Use this file to obtain the configuration informatiortioé clients for cluster testing. The file
contains one line for each client. Each line has tfietds. The fields are space delimited. A #
sign in column zero is a comment line. The first fislthe name of the client. The second field is
the path, on the client, for the working directory whiezone will execute. The third field is the
path, on the client, for the executable lozone.
To use this option one must be able to execute commante cfients without being challenged
for a password. lozone will start remote executiomising “rsh”.

-+u
Enable CPU utilization mode.

-+d
Enable diagnostic mode. In this mode every byte is valitiathis is handy if one suspects a
broken 1/0 subsystem.

-+p percent_read
Set the percentage of the thread/processes that vidhperandom read testing. Only valid in
throughput mode and with more than 1 process/thread.

-+r
Enable O_RSYNC and O_SYNC for all I/O testing.

-+t
Enable network performance test. Requires -+m

-+A
Enable madvise. 0 = normal, 1=random, 2=sequential, 3reedt 4=willneed.
For use with options that activate mmap() file 1/0e:S8&

What can | see:

The following are some graphs that were generated thhenozone output files.

CPU cache effect

Read performance

Buffer cache effect

m 300000-320000
m 250000-300000
m 250000-250000
m240000-260000
@ 220000-240000
0200000-220000
= 150000-200000
m 160000-150000
@ 140000-160000
= 120000-140000
= 100000-120000
m50000-100000
oB0000-50000

0 40000-50000

¥ ! m20000-40000
m0-20000

kB/sec

pusl

gy~)
e L O
ey ARRNITAIRD ., A, __!!" g’
S ATAs IR g0
20000 =‘“-1-1-|"’I-’-'-'-" ' '4!4

a

Not measured
kB file

16384

© KB record 1/0 performance after
= caches are exceeded

G5536
262144

From the graph above one can clearly see the buffaededping out for file sizes that are less than
256MB but after that the actual disk I/O speed can be sésmnote that the processor cache effects can

be seen for file sizes of 16 Kbytes to 1Mbyte.

Re-read performance
CPU cache effect

gggggg :__,__:::HA Buffer cache effect
800000 ' T T L T
750000 _‘““745_1%_““% 0 850000-900000
700000 ‘Zéhmnh_ﬁ T = 800000-850000
F50000 %H:“Exhi:““ W 750000-500000
600000 ahH:“‘Emmh: m700000-750000
550000 T] m550000-700000
\Blsoc iggggg ::mn_:::ax m B00000-E50000
400000 e SN @ 550000-500000
- Mt

~e000 iy e Ny 0500000-550000
300000 Tk Z-~ B 450000-500000
250000 Ny 2NN m 400000-450000
200000 L T 0 350000-400000
150000 ® 300000350000
100000 @ 250000-300000
SDDDE W 200000-250000
_ 0 150000-200000
w - 0 100000-150000

Not measured w 2 5 T8 @ m50000-100000

g @ = m0-50000
kB file g @ -+ & kB record
2 8 o ¥
5 = = 1/10 performance after
& caches are exceeded

The graph above is displaying the impact of re-readifilg.a\otice that the processor cache is now very
important and causes the sharp peak. The next plattfae ight is buffer cache and finally above 256MB
the file no longer fits in the buffer cache and reahdlg speeds can be seen.

Read throughput scaling

—_(_-—"
/..—-'
|1
_ LT
300000 =
1
L] |1
QEDDDDl’/ o
L1 |1
P = @ 250000-300000
200000

W 200000-250000
01 150000-200000
01 100000- 150000
W 50000-100000
24 O 0-50000

|~
KBisec 1SDDDDJ/

1nunun+f’

50000 -

& Disks

Processes

The graph above was created by running lozone multipstand then graphing the combination of the
results. Here the graph is showing the throughput peeioce as a function of processes and number of

disks participating in a filesystem. (disk striping) Tdaod news is that on this system as one adds disks
the throughput increases. Not all platforms scaleedb w

Re-write performance

CPU cache effect

: Buffer cache effect
300000 N
Z:‘;zzz - m 270000-300000
210000 N B 240000-270000
KBlcoc 120000 O 210000-240000
Egggg = 180000-210000
90000 B 150000-180000
ggggg B 120000-150000
5 00 90000-120000
3 - O 60000-90000
Not measured = o E B 3000050000
[+1] wn =3 -
g g o £ & @ 0-30000
File size (KB} o -+

262144

Req size (KB)

The graph above shows single stream performance whesizf and request size are changed. The place
on the lower right that touches the floor of the grapnot actual data. Excel graphs empty cells as
containing a zero. This run was taken with the —a opli@ame used the —A option then the area that was
not tested would have been tested and had real valuesalotinis is not a desirable area to test because
it is very time consuming to write a 512MB file in 4k tséer sizes. The —a option in lozone tells lozone to
discontinue use of transfer sizes less than 64k oncédetsizk is 32MB or bigger. This saves quite a bit of
time. Notice the ridge that runs from the top lefthte lower right down the center of the graph. This is
where the request size fits in the processor cacbefil& sizes less than the size of the processtieca

you can see the rise in performance as well. Whentbetfile size and the transfer size is less than the
processor cache it rises even higher. Although istiergto see, it is unlikely that you will be ablegeet
applications to never write files that are bigger thengrocessor cactfe However it might be possible to
get applications to try to re-use buffers and keep thebsife smaller than the processor cache size.

Read Performance

T CPU cache effect
320000 —— |

300000 | L]]
280000 T T Buffer cache effect
20000
240000
220000
200000
180000

o T T m300000-320000
LA) A m250000-300000
L]] m260000-230000
o m240000-260000
Bisec 1oomn i @220000-240000
L] 0200000-220000
1 ;gggg i ! 7] = 150000-200000
= W 150000-180000
100000 0 140000-160000
80000 m120000-140000
E0000 @100000-120000
40000 m30000-100000
20000 OE0000-80000
] 040000-50000
m20000-40000
@0-20000

T

G4
a4

256

4096

Not measured

1024

1024

40596
256

kB file

G4

kB record Anomaly #1

163
16

G5536

262144

Anomaly #2

The graph above is an example of a real system with seresting “optimizations”. Here one can see
that there are some file sizes and some record thiaekave very bad performance. Notice the
performance dip at record sizes of 128Kbytes. (Anomaly #&)eTis also a dropoff for file sizes of 8 MB
and larger. The dropoff for files greater than 8MB igniBteresting since this machine has 16 GB of
memory and an 8GB buffer cache. This is a classic exaaiplning for a specific application. If the poor
system administrator ever installs an application thaslto read or write files in a record size of 128
Kbytes to 1 Mbyte his users will probably take him outki@r a conference. If the system would have
been characterized before it was purchased it would hewe made it into the building.

Another type of graph that can be produced is the LatemphgiVhen the -Q option is used lozone will
generate four .dat files. Rol.dat, wol.dat, rwol.dat aotdat. These are read offset latency, writseiff
latency, rewrite offset latency and reread offaggrncy. These files can be imported into Excel and then
graphed.

The latency versus offset information is useful foiirsgé there are any particular offsets in a file that
have high latencies. These high latencies can be causeddoiety of causes. An example would be if the
file size is just a bit bigger than the buffer cache.Sibe first time the file is written the latencylMe

low for each transfer. This is because the writeggaing into the buffer cache and the application is
allowed to continue immediately. The second time fleadiwritten the latencies will be very high. This is
due to the fact that the buffer cache is now complétdilpf dirty data that must be written before the
buffer can be reused. The reason that this occurs whéitetieebigger than the buffer cache is because the
write to the first block on the rewrite case willtfimd the block in the buffer cache and will be forced to
clean a buffer before using it. The cleaning will take tand will cause a longer latency for the write to
complete. Another example is when the filesystem isntexl from a remote machine. The latency graphs
can help to identify high latencies for files that being accessed over the network. The following are a
few latency graphs for file /O over an NFS versidilesystem.

Microseconds

Microseconds

NFS3 Write latency (4k transfers)

20000

18000

16000

14000

12000

10000

8000

G000

4000

2000

0
o oo = w0 0 0O o = 0 o0 OO ~ = O o o0 ™~ = O o O ~ = W o O o~ = 9 @@ O
m W o 4 @ T ™ 0 0 o wom — = @ — = M~ O = I~ O M O O M W o 4 D m
— — — N N om0 00 o= = = oy wnWm W @ e P~ ~ 0 om0 o m 0 O
Offset in file

NFS3 Rewrite latency (4k transfers)
1000
800
800
700
600
500
400
300
200

100

Offset in file

NF$S3 Read Latency (4k transfers)

fadaia

096
8z6

pELtE]

¥a8

ZE8
oog

834
9EL

FOL

249

Oy

809

945

-
=
w

ZLS

f]
[u}
=

w
==
-+

iy

=+
oo
o

]
['y)
"

[R]
[
[I)

jda}
Lo
&}

=+
g
[}

Bl

03l

8zl

ik
8

=+
o

P
Tt e
[=J}

o

9000

G000

7000

G000

5000
4000

SPUDIASOIINY

3000

2000

1000

a

Offset in the file

NFS3 Re-read latency (4k transfers)

40 q

35

30

Lo
&}

=
™

SPUDIASOIINNY

18
10

766
036
a6
968
st
ZER
oos
83;
9L
FOL
il
vy
209
945
Frs
8]
08y
ary
alr
FBE
25k
0ze
88z
952
i
6l
o9l
azl
96

¥4

[

Offset in file

In the re-read latency graph one can clearly seditrd side cache that is in NFS Version 3. The reread
latencies are clearly not the latencies that onedvget if the reads actually went to the NFS server and
back.

Run rules:

If you wish to get accurate results for the entire rasfgeerformance for a platform you need to make sure
that the maximum file size that will be tested igdar than the buffer cache. If you don't know how big the
buffer cache is, or if it is a dynamic buffer cachert just set the maximum file size to be greater than th
total physical memory that is in the platform.
In general you should be able to see three or four plateaus.

File size fits in processor cache.

File size fits in buffer cache

File size is bigger than buffer cache.
You may see another plateau if the platform has a pyiaved secondary processor caches. If you don't
see at least 3 plateaus then you probably have themaanxfile size set too small. lozone will default to a
maximum file size of 512 Mbytes. This is generally sudfitibut for some very large systems you may
need to use the —g option to increase the maximum#ide See the file Run_rules document in the
distribution for further information.

Source code availability
lozone is available for free. One might consider ugitgfore your company purchases its next platform.
Additional notes on how to make the graphs

lozone sends Excel compatible output to standard owut.rit&y be redirected to a file and then processed
with Excel. The normal output for lozone as well asEkeel portion are in the same output stream. So to
get the graphs one needs to scroll down to the Exciébpaf the file and graph the data in that section.
There are several sets of graph data. "Writer repodfie example. When importing the file be sure to tell
Excel to import with "delimited" and then click next, thaitk on the "space delimited" button. To graph
the data just highlight the region containing the file sizé record size and then click on the graph wizard.
The type of graph used is "Surface". When the nextgliadx pops up you need to select "Columns".
After that the rest should be straight forward.

Contributors: http://www.iozone.org
Original Author: William D. Norcott. wnorcott@us.afa.com
Features & extensions: Don Capps capps@iozone.org

