
Rivendell
Design Overview

26 April 2002

The overall structure of the Rivendell system is envisioned as being an interconnected system of software
components. Depending upon the size of the facility served and degree of redundancy required, these
functional blocks will be able to work in a wide variety of hardware configurations, from a single
computer to a large, LAN connected cluster. Communications between these components will be by
means of TCP/IP connections.

Within the context of the application, the software components can be divided into two broad categories:
the core layer and the presentation layer. As the names imply, the core layer is where the primary
functionality of the application resides, while the presentation layer is primarily responsible for
presentation of an interface to the user.

Core Layer
This layer consists of the following components:

Audio Storage
A storage medium for the digitally encoded audio, this could range from a single hard drive to a fibre−
channel disk array, depending upon the needs of the facility. A noteworthy feature of the design is that
this storage is not generally available to all the components of the application, but is only accessible from
the Core Audio Engine. This architecture gives Rivendell a strong mechanism for centrally managing
bandwidth utilization within the audio storage subsystem.

RDBMS
A relational database management system, used to record and track the details and status of all audio and
events, thus becoming the central bookkeeper of the system. Rivendell will use the well known MySQL
Open Source RDBMS.

Core Audio Engine
The very heart of the Rivendell system, this component operates the actual audio and communications
hardware (such as audio adapters, serial and GPI interfaces) and is responsible for all audio playout and
recording. No other components in the system directly touch these resources. The hardware abstraction
provided by this component is at a fairly low level, being somewhat analogous to that of a tape recorder
with the functions PLAY, STOP, REC, etc.

Playout Engine
This is where audio and data meet. The Core Audio Engine has no knowledge or awareness of the
database −− it only plays or records specific cuts when told to. The Playout Engine implements the
abstractions of a modern digital audio system −− features like playlists, netcatcher schedules, production
recorders and the like −− on top of the basic "tape recorder" interface provided by the Core Audio
Engine. It also provides a TCP−based command and control channel to allow user clients to connect and
control its operations.

The above components themselves constitute a functional digital audio system, in the sense that a log
could be loaded into it, placed into AUTO mode and let play. In theory, no user interface at all would be
required for this. Of course, in any practical system, user interfaces are required, and Rivendell makes
full provision for them in the presentation layer. The reason for seperation of the two functions is worth
noting here, however. Historically, in any application, it is the user interface portion that is most prone to
bugs and instability. The separation of the core application components from the user interface thus
provides a significant measure of insulation for the former from user interface bugs. Thus, bugs or a
crash in the presentation layer systems need not interrupt proper execution of the application within the
core layer.

Presentation Layer

The choice of MySQL and TCP control for the Playout and Core Audio Engine components leaves us
with lots of choices in the presentation layer. In theory, it would not be difficult to implement control
clients using a wide array of platforms, such as Windows, Linux or Mac OS X. In practice, two basic
methodologies for implementing control clients are envisioned:

X11/VNC Client
These clients could be run either on individual computers located at the various work locations (control
room, production room, etc) or run on one or more central GUI Servers whose output would be directed
through the network to thin clients located at the work locations. The use of thin clients would be
particularly compelling for larger facilities, in that these terminals are rugged, inexpensive, have no
moving parts such as fans or disk drives (and hence are quiet) and need no local configuration
whatsoever. Planned X11/VNC clients include the following:

Production Room Interface
For recording and audition of spots and other audio on the system

Netcatcher Interface
For configuring the automatic recording features of the system.

Simple Control Room Interface
A "generic" on−air interface.

We will certainly be adding others to this list as discussion goes forward.

Windows
A traditional program written for Windows is quite viable as a control interface too, particularly where
there are legacy systems (such as traffic packages) to interface with.

Traffic Interface
For interfacing with traffic and music scheduler systems.

The above is only a broad outline. As development goes forward, this model will doubtless be honed and
refined. Rivendell aims to be above all a user driven system, and so will only be as good as the ideas and
input from folks in the "real world".

