
D
RAFT

VOCAL

Vovida Open Communication Application Library

VOCAL Prepaid B2BUA

Software Version 0.1.0 (Alpha)

D
RAFT

Copyright Copyright © 2001, Cisco Systems, Inc.

Revision History The following table itemizes the revision history of this manual:

Version This manual is written to support the VOCAL Prepaid B2BUA Version 0.1.0.

Support The primary location for support, information and assistance for the VOCAL
system is www.vovida.org. This site contains other documentation, training
materials, development tools, development resources and informational
mailing lists.

Software
Version

Guide
Version

Date Comments

0.1.0 D 9/26/01 Alpha release.

Table 1. Software Release History

Revision Date Originator Comments

A 6/15/01 Chok Lam Created this document and updated
Surendra’s initial draft.

B 8/3/01 Chok Lam Incorporated Surendra’s call flow diagrams,
state machines and other material.

C 9/23/01 Surendra Prajapat,
Chok Lam

Update for Alpha Release

D 9/26/01 David Kelly Original word document ported into
FrameMaker and edited by David Kelly

Table 2. Documentation History
ii

D
RAFT

�������

Introduction This manual provides high-level design information for developers who are
interested in working with the VOCAL B2BUA and its source code.

Objectives of this
manual

This manual is intended as a technical briefing for C++ developers.

Intended audience Software developers, architects, product managers and anyone else who is
interest in the specific details about the function and coding of the VOCAL
B2BUA.

Organization This guide is organized as follows:

Documentation
conventions

The following is a list of conventions used in this guide:

Chapter Title Description

Chapter 1 Specification A high level overview of the system architecture.

Convention Description

bold text Names of elements found on the GUI screen,
including buttons, and selectable entities such as,
servers and server groups.

< > Text that appears between angle brackets
describes variables such as, <group name>.

courier font System responses and prompts either from the
CLI or GUI.

D
RAFT

Terms found within
this document

This section defines words, acronyms, and actions which may not be readily
understood.

Additional
resources

On-Line Resources
Vovida.org (http://www.vovida.org) is a community web site dedicated to
providing a forum for open source software used in datacom and telecom
environment. This site was created to provide an environment where open
source communications information and software can be easily located,
accessed, retrieved and shared.

bold courier
font

Indicates information that you must enter.

Note Highlights points of additional interest for the user.

Caution Be careful, this symbol highlights a potential for
equipment damage or loss of data.

Convention Description

Table 1-1. Definitions

Term Definition

SIP Session Initiation Protocol

session SIP session

transaction SIP transaction

call leg SIP call leg

B2BUA An application that acts as a User Agent Server when it
receives a SIP session invitation. It may act as a User
Agent Client and create another call leg to the destination.

multi-leg call A B2BUA call with one or more call legs.

VOCAL Vovida Open Communication Application Library

RADIUS Remote Authentication Dial In User Service

AAA Authentication, Authorization and Accounting
iv

Table of Contents
Preface. iii

Chapter 1.
Specification
Problem Definition . 1-2
Design . 1-3
Memory and Performance Impact . 1-17
End User Interface . 1-18
AAA . 1-20
Configuration and Restrictions . 1-22
Testing Considerations. 1-23
Design Specifications for Reliability and Availability. 1-24
Reference Documents . 1-25
1

Table of Contents (continued)
2

D
RAFT

����	�	��
	��

Topic See Page

Problem Definition . 1-2
Design . 1-3

Overview. 1-4
Threads . 1-6

Worker Thread . 1-7
RADIUS AAA Transceiver Thread . 1-7
HTTP Server Thread . 1-7

Call Data. 1-8
Finite State Machines . 1-11

Multi-Leg Call Control Finite State Machine 1-11
User Agent Server Finite State Machine . 1-12
User Agent Client Finite State Machine . 1-14
In-Call State Re-INVITE Handling . 1-16

Memory and Performance Impact . 1-17
End User Interface . 1-18

Caller and Callee . 1-19
AAA . 1-20

Requests to RADIUS Server . 1-20
Access-Request . 1-20
Accounting-Request . 1-20

Responses From RADIUS Server . 1-20
Configuration and Restrictions . 1-22
Testing Considerations. 1-23
Design Specifications for Reliability and Availability. 1-24
Reference Documents . 1-25
Attachments . 1-26

Problem Definition

D
RAFT

Problem Definition

Purpose This project requires a Session Initiation Protocol (SIP: RFC 2543)
application that can handle prepaid calls while being able to modify the
media and initiate session tear-downs during established calls. This
functionality is beyond the ability of standard SIP proxy servers, therefore we
have implemented these functions into a Back-to-Back User Agent (B2BUA).
The B2BUA is defined in the draft (http://www.cs.columbia.edu/~hgs/sip/
drafts/draft-ietf-sip-rfc2543bis-04.txt) as follows:

Back-To-Back User Agent: Also known as a B2BUA, this is a logical entity
that receives an invitation, and acts as a UAS to process it. In order to
determine how the request should be answered, it acts as a UAC and
initiates a call outwards. Unlike a proxy server, it maintains complete call
state and must participate in all requests for a call. Since it is purely a
concatenation of other logical functions, no explicit definitions are needed
for its behavior.

This B2BUA acts as a User Agent Server (UAS) in the caller initiated call leg
and creates another call leg to the destination as a User Agent Client (UAC).
After the call is set up, the B2BUA may send SIP messages to modify the
caller’s media to convey call duration or billing related information. It may
also use Hypertext Transfer Protocol (HTTP: RFC 2616) messages to carry
the same information. The B2BUA can control the call by tearing it down
when the caller’s prepaid time has expired.

Stand alone This application is a “stand alone” VOCAL SIP server: it has been built with
Vovida Open Communications Applications Library (VOCAL) software
components, but does not depend on other VOCAL servers such as, the
Provisioning server. However, it is capable of working with other
componentized VOCAL servers. Componentizing the VOCAL servers is a
planned, future project.

User account
information

User account information, such as prepaid amount or duration, is assumed to
be stored persistently in an external Billing Server. The B2BUA uses Remote
Authentication Dial In User Service (RADIUS: RFC 2138) messages to query
and update user account balances. Other protocols, such as Open
Settlement Protocol (OSP: A European Telecommunications Standards
Institute (ETSI) protocol http://www.etsi.org/) messages could perform the
same tasks, but this release of the B2BUA works only with RADIUS.

Media handling In addition to handling SIP signaling, it would be desirable to handle media
within the server. However, this would add latency to the media stream and
limit the number of concurrent sessions that it can handle. The number of
concurrent media sessions is undetermined, but the guesstimate is less than
50 G.711�-law voice calls using a single high-end Pentium III processor and
1GB of memory.

Note
50 sessions mean 25 two-leg calls.

The initial implementation does not handle media locally in the server.
1-2

Design

D
RAFT

Design

Component reuse The B2BUA has been mostly constructed from VOCAL components. Some
new components have been added to the library for future re-use including
the following:
• New RADIUS stack code

• AAA Transceiver

• UAC and UAS State Machines

Some existing components may be modified for inclusion within the stand-
alone server. For example, PSLib will be able to access local files (or
database(?)) instead of querying them from the existing VOCAL Provisioning
server. Design and implementation should not prevent it from working as part
of a VOCAL softswitch. Initially, there are no plans to test the B2BUA as a
VOCAL server.

VOCAL RADIUS
stack

The current VOCAL RADIUS stack code has been used for the VOCAL
proxy server (Marshal) and Call Details Record (CDR) server. Instead of
modifying it extensively to support this application, a new modular
Authentication, Authorization and Accounting (AAA) client has been
implemented to permit future re-use of the code. In addition, the AAA
messaging protocol has been designed as another module to permit any
future requirement to replace RADIUS with another protocol.
RADIUS servers from different vendors are likely to have different
requirements for messages and attributes from their clients. Therefore, it is
desirable to have a RADIUS client implementation that allows customization
of its messages and attributes without rebuilding the object code.

HTTP server The B2BUA may contain an HTTP server component that was developed by
the Mascarpone (new Provisioning) project. HTTP clients at the end users or
other servers may use HTTP requests to retrieve or update billing
information. It can also be used in the future as an interface for third party call
control. The initial phase of this project does not include this component.

bis-04 draft
compliant

The B2BUA needs to be SIP bis-04 draft compliant in the final release.
Therefore, some code in the current SIP stack needs to be changed.

A reusable design It is desirable to have a reusable design for future implementation of a Third
Party Call Controller, Voice XML Server, Middlebox Communication
(MIDCOM) Agent, Multi-line User Agent or other applications. Each call leg
has its own UAS or UAC state machine and communicates with the multi-leg
call control through a FIFO queue and a third party call control type interface.
1-3

Design

D
RAFT

Overview

Call initiation When an INVITE comes into the B2BUA, it queries the Billing Server for the
caller’s unused prepaid call time via a RADIUS Accounting Start message. If
there is no more unused time left, it returns a “402 Payment Required” (or
“403 Forbidden” because 402 is indicated as Reserved for future use).
It may also need to check if the caller has at least a minimal amount of
remaining prepaid time, for example, 1 minute. The actual RADIUS
messaging sequence for prepaid probably varies among different billing
server implementations. RADIUS Access-Request messages can be used to
obtain user authorizations from the RADIUS server. Additional Attributes or
Vendor-Specific Attributes (VSAs) may need to be added to meet a specific
billing server’s requirements.

Call establishment If there is unused time, the Multi-Leg Call Control (MLCC) initiates another
call leg to the callee. Once the callee answers the call, it sends a RADIUS
Accounting Interim message to the billing server to record the fact that the
call has been answered. It may also send an INFO message upstream to the
caller with the user’s account balance. In addition, it may start a timer with
the duration of a predefined number of seconds (180?) or unused time,
whichever is less.
When the timer expires, the B2BUA sends a RADIUS Accounting Interim to
the Billing Server and deducts the amount from the balance locally. If the
balance is below a predefined duration, for example, 30 seconds, the B2BUA
may warn the caller by sending an INFO message upstream and/or inject an
additional compatible media stream into the caller’s media stream. The
source of the media may be a SIP or Real Time Streaming Protocol (RTSP:
RFC 2326) Media Server.

Note
Working with a media server will not be implemented in the initial release.

These checkpoints allow a single account to make long duration calls.
However, if it is not possible with the Billing Server or the currently defined
RADIUS messages, the B2BUA will update the Billing Server only at the
termination of a call with an Accounting Stop message.

Checking
remaining prepaid
time

If there is more time left, the B2BUA starts the timer again with the same
operations as described above. If there is no more time left, the call legs will
be disconnected by sending BYE messages to all call legs and a RADIUS
Accounting Stop message to the Billing Server, instead of the Accounting
Interim message, to terminate the call. If either side disconnects the call, the
B2BUA stops accounting with the elapsed time since the previous update.

HTTP requests (The HTTP operations are as of yet, unknown.) If somehow the B2BUA is
able to associate an HTTP request with a multi-leg call (which one came
first?), it should be able to send responses to the client upon call control
events.
1-4

Design

D
RAFT

Source code The B2BUA uses most of the SIP proxy base code. It extends CommandLine
to support stand-alone mode. The Provisioning Server address and port
number arguments become optional in this mode. By default, PSLib looks for
the configuration file b2bua.xml in the directory where the application is
started. If the Provisioning Server address is provided, it retrieves a
configuration file from there. In addition, the application becomes a
“HeartlessProxy” instead of a “BasicProxy” in stand-alone mode.
A HeartlessProxy is one that does not multicast heartbeating pulses.
Heartbeating is used within VOCAL’s network management scheme.
1-5

Design

D
RAFT

Threads

Illustration Figure 1-1 shows how different B2BUA threads communicate through FIFO
queues when they are running.

Figure 1-1. Figure 1. B2BUA Threads.

SIP thread and
transceiver

The SIP thread and Transceiver are the same as the ones used in the other
existing applications. The other existing SIP proxy base code threads are not
shown because there are no major changes and they are not interesting in
stand-alone mode.
1-6

Design

D
RAFT

Worker Thread

State machines The Worker thread contains the state machines for MLCC, UAS and UAC.
These state machines use the shared Multi-Leg Call Data (MLCD) and run
within the same thread so that it is not necessary to lock the call data. Events
in the Worker Thread FIFO queue can be either SIP messages, AAA
responses or time-outs.

SIP INVITE event If the event is a SIP INVITE message and the call leg does not exist in the
call database, it is processed by the MLCC state machine as a new call. It
sends a SIP “100 Trying” message upstream and creates a new MLCD
object with one UAS call leg. It then creates an accounting request event and
adds it to the Accounting RADIUS Client Thread’s FIFO queue.
MLCC sends call-leg control events back to the FIFO queue of it own thread
for the UA state machines to use. All other non-SIP and non-call-leg control
events are also handled by this state machine. One or more call-legs with
UAC state machines may be created for future releases.

Other SIP events If the event is a SIP message of an existing call-leg or a call-leg control
event, it is handled by the call leg’s state machine. It can either be a UAS or
UAC state machine. The UA state machines communicate with MLCC by
composing and sending B2B call control events back to the Worker Thread’s
FIFO queue. Call-legs of a multi-leg call can communicate with each other
via call-leg control events through the queue.

RADIUS AAA Transceiver Thread

Sending RADIUS
messages

The AAA Transceiver sends and receives RADIUS messages.
Add more details.
(I am not sure about this.) The Accounting RADIUS Client Thread sends
Accounting On during start up and Accounting Off during shutdown. It also
sends Keep Alive messages periodically.

Accounting When accounting is “on”, it listens for authorization requests from MLCC.
Each authorization request is assigned to a thread from a thread pool that
can be tuned to the input load. Each thread communicates with the Billing
Server via RADIUS messages. When it receives the accounting response, it
creates an AAA event and adds it to the Worker Thread FIFO queue.

HTTP Server Thread

Not implemented.
1-7

Design

D
RAFT

Call Data

Illustration Figure 1-2 shows the relationship among various call data.

Figure 1-2. Call Data Class Diagram

Class descriptions Figure 1-1 describes the classes found within the B2BUA.

controlState

uaState

AAAEvent

CInvalidStateException

RadiusPayload

BasicAgent

AuthAgent

UaClient

MultiLegCallData

CallTimerEvent

SipCallLegData

UaServer SipTransactionPeers

CallDB

AccountingData

ContactData

UaBase

0..1

0..1

0..1 0..1

0..1

0..1

0..1

0..1

Table 1-1. Class Descriptions

Class Name Description

AAAEvent Processes Authentication, Authorization and
Accounting events.
1-8

Design

D
RAFT

AccountingData This is a map of Accounting Session Id and smart
pointer to Multi-Leg Call Data pairs. It is used for
finding the multi-leg call when an accounting
response is received. An Accounting Session Id is
a unique string for identifying a query to the Billing
Server. It may be the SIP CallId of the UAS call
leg.

AuthAgent Authorizes Authentication, Authorization and
Accounting clients.

BasicAgent Base proxy class.

CallDB This is a map of SIP Call Leg and smart pointer to
Multi-Leg Call Data pairs. It is used for finding the
multi-leg call when a SIP message event is
received.

CallTimerEvent A timer that is configured to expire like an alarm.

CInvalidStateException A C++ programming aid that indicates errors as
they are propagated up through the application.

ContactData This class contains these attributes:
• Remote SDP - Remote SDP of this contact

• Peer List - a Peer Table of other call legs
involved

ControlState Base proxy class.

MultiLegCallData Multiple entries in the Call Legs Container and
Accounting Session Id Container may point to a
common MLCD.
Attributes:
• Call State - MLCC state machine states

• A smart pointer to FSM

• Call Legs - A vector of smart pointers to SIP
Call Leg Data (or a map of Call Leg and smart
pointers to SIP Call Leg Data pairs)

• SIP Transaction Peers - A map of SIP
transaction Id and Peer Table pairs. Not all
transactions involve all call legs.

Accounting data - Accounting Session Id, unused
credit, call start time, elapsed time, etc. (expand
this to a separate object?)

RadiusPayload The RADIUS message packet.

Table 1-1. Class Descriptions

Class Name Description
1-9

Design

D
RAFT

SipCallLegData Attributes
• Call Leg - It’s own Id (not needed if Multi-Leg

Call Data use map instead of vector)

• State - Active or Inactive (on hold)

• Call State - UA state machine states

• A smart pointer to FSM

• Contact List - A vector of pointers to Contact
Data with the last one being current

• Route - SIP Route header for subsequent
requests

SipTransactionPeers This is a type definition of a vector of smart
pointers to Sip Call Legs.

UaBase Base proxy class.

UaClient Base proxy class.

UaServer Base proxy class.

uaState Base proxy class.

Table 1-1. Class Descriptions

Class Name Description
1-10

Design

D
RAFT

Finite State Machines

No replication State machines do not store any call related data locally so they don’t need to
be replicated for each call.

TODO Make sure they handle re-INVITE, proxy unknown methods, reject
unsupported methods, etc.

Multi-Leg Call Control Finite State Machine

Illustration Figure 1-3 illustrates the Multi-Leg Call Control State Machine.

Figure 1-3. Multi-Leg Call Control State Machine

TODO Add descriptions of states, operators and events
1-11

Design

D
RAFT

User Agent Server Finite State Machine

Illustration Figure 1-4 illustrates the User Agent Server State Machine.

Figure 1-4. User Agent Server State Machine

Responsibilities The UAS state machine is responsible for the transitions between states at
the callee side of a call leg. It handles messages received from the SIP stack
and sends SIP message requests from MLCC. The SIP stack keeps track of
the SIP transaction and retransmission, thereby relieving this state machine
from that duty. The initial state in the SIP Call Leg data is Idle when it is
associated with this state machine.

Transitions The call state will change over time according to the transitions described in
Table 1-2.

Table 1-2. User Agent Server State Machine Transitions

Transitions Description

1) Recv INVITE MLCC receives an INVITE for a new session,
creates this call leg and tries to contact the callee.
The next state is UAS Trying.
1-12

Design

D
RAFT

2) Send 18x The callee alerts: MLCC instructs the UAS to send
a 18x message to the caller. The next state is
Ringing.

3) Send 200 (INVITE) The callee answers immediately without going
through the alerting phase. MLCC instructs the
UAS to send a 200 OK message to the caller. The
next state is In Call.

4) Send >200 The session cannot be established, so MLCC
instructs the UAS to send the corresponding failure
code to the caller. The next state is Failure.

5) Recv CANCEL The UAS receives a CANCEL message from the
caller and sends back a 200 OK response, and
notifies MLCC of the cancellation. The next state is
Idle.

6) Send 200 (INVITE) The callee answers the call. MLCC instructs the
UAS to send a 200 OK message to the caller. The
next state is In Call.

7) Send >200 See Transition 4.

8) Recv ACK The UAS receives an ACK from the caller for the
failure status message. It notifies MLCC of the
transaction’s completion. The next state is Idle.

9) Recv ACK The UAS receives an ACK from the caller for the
200 OK status message. It notifies MLCC of the
transaction’s completion.

10) Recv INFO The UAS receives an INFO message from the
caller, sends back a 200 OK response, and notifies
MLCC of the INFO message.

11) Send BYE The MLCC instructs the UAS to terminate the call
by sending a BYE message to the caller. The next
state is End.

12) Recv BYE The UAS receives a BYE message from the caller,
sends back a 200 OK response, and notifies
MLCC of the termination.The next state is Idle.

13) Recv 200 (BYE) The UAS receives a 200 OK response for the BYE.
It notifies the MLCC of the transaction’s
completion. The next state is Idle.

Table 1-2. User Agent Server State Machine Transitions

Transitions Description
1-13

Design

D
RAFT

User Agent Client Finite State Machine

Illustration Figure 1-5 illustrates the User Agent Client State Machine.

Figure 1-5. User Agent Client State Machine

Responsibilities The UAC state machine is responsible for the transitions between states at
the caller side of a call leg. It handles messages received from the SIP stack
and sends SIP message requests from MLCC. The SIP stack keeps track of
the SIP transaction and retransmission, thereby relieving this state machine
from that duty. The initial state in the SIP Call Leg data is Idle when it is
associated with this state machine.
1-14

Design

D
RAFT

Transitions The call state will change over time according to the transitions described in
Table 1-3.

Note
The transitions, 10 to 13, in the shaded area of Figure 1-5 are identical to
those of the UAS FSM as shown in Figure 1-4, and therefore their
descriptions are not included in Table 1-3.

Table 1-3. User Agent Client State Machine Transitions

Transition Description

1) Send INVITE MLCC instructs the UAC to initiate a session to the
callee. The next state is UAC Trying.

2) Recv 1xx The UAC receives a 1xx provisional message from
the callee and notifies the MLCC of the status
message. The call state is not changed.

3) Recv 200 (INVITE) The UAC receives a 200 OK response for the
INVITE message from the callee. It notifies MLCC
of the callee answering the call.

Note
An ACK is not sent yet since the SDP information
may be changed by the MLCC.
The next state is In Call.

4) Recv >200 The UAC receives a failure final response from the
callee. It Sends an ACK to the callee to complete
the transaction and Notifies MLCC of the
failure.The next state is Idle.

5) Send CANCEL MLCC wants to abort the session and instructs
UAC to send a CANCEL to the callee. The next
state is Failure.

6) Recv 200 (INVITE) The UAC receives a 200 OK response for the
CANCEL and notifies MLCC of the transaction’s
completion. The next state is Idle.

7) Send ACK MLCC instructs the UAC to send an ACK to the
callee to complete the transaction. The call state is
not changed.
1-15

Design

D
RAFT

In-Call State Re-INVITE Handling

Illustration Figure 1-6 illustrates the in-call state transitions for a Re-INVITE message.

Figure 1-6. In-Call state transitions for Re-INVITE.

Common to UAC
and UAS

This section is common to both the UAC and UAS.
• Self-transitions 1 to 5 are for a re-INVITE transaction initiated from

MLCC.

• Transitions 6 to 9 are for a re-INVITE transaction initiated from the remote
User Agent.

In general, all “Send xx” transitions are instructed by MLCC and all “Recv xx”
transitions are triggered by reception of SIP messages from the remote UA.
MLCC is notified of all “Recv xx” events. The call leg is in In Call state,
therefore, if the re-INVITE request fails (Recv >200 or Send >200), the
Session Description Protocol (SDP) agreed upon in the last successful
INVITE transaction remains in force. Therefore, the call state is not changed
for any of these transitions.
1-16

Memory and Performance Impact

D
RAFT

Memory and Performance Impact

Overview Details such as, calls per second, are TBD.
The B2BUA is slower and bigger than a basic proxy due to additional
message parsing, RADIUS queries, HTTP connections, call legs lookup, call
control, for example. If the media is handled locally, it will be much slower
than it already is. In addition, media quality will be worse with the additional
latency expended by forwarding media packets.
1-17

End User Interface

D
RAFT

End User Interface

Section contents This section contains information about the following:
• Caller and Callee

• AAA
1-18

End User Interface

D
RAFT

Caller and Callee

Interface Interface to the caller and callee will be via messages.

TODO Document the INFO message content here
Document the HTTP messages here when they are added later on.
1-19

AAA

D
RAFT

AAA

Interface Interface to the AAA (Billing) server will be RADIUS messages.

TODO Document the RADIUS messages and attributes here

Requests to RADIUS Server

Overview

Access-Request

Description

Accounting-Request

Descriptions Figure 1-4 describes the RADIUS accounting request messages.

Responses From RADIUS Server

Descriptions Figure 1-5 describes the RADIUS responses.

Table 1-4. RADIUS Accounting Request Messages

Request Description

Start

Stop

Interim

Table 1-5. RADIUS Responses

Response Description

Access-Accept

Access-Reject

Accounting-Response
1-20

AAA

D
RAFT

TODO If RTSP messages are used, document them.
Interface to the media server will be SIP (or RTSP?) messages.
1-21

Configuration and Restrictions

D
RAFT

Configuration and Restrictions

Issues Configuration data: local SIP port, Billing Server (address, port,
authentication, password), local RADIUS port, call check point duration
(180seconds?), warning duration(s) (30 seconds and 20 seconds?), thread
pool size, UAC side proxy server address, HTTP Server port, redundant
B2BUA (TBD) TODO: include sample b2bua.xml
• No registration

• Do not support REFER, SUBSCRIBE/NOTIFY

• No user authentication locally

• No media handling in initial release, but may consider working with media
server if one available and time permits.

• First release will not work in VOCAL.

• No Session timer support

• No Redundancy
1-22

Testing Considerations

D
RAFT

Testing Considerations

Tested as a stand-
alone server

The B2BUA will be tested as a stand-alone server. If we cannot find a UAC
that can handle mid-call media changes and SIP INFO messages from the
B2BUA, the existing VOCAL UA will be modified for testing. We also need to
write a HTTP client test driver that sends HTTP requests for billing
information. This may as well be the VOCAL UA.
• Test drivers that simulate a RADIUS Server will be developed. Test with

actual Billing server if available.

• No testing with media server.

• Automate and document test cases with “make test” and Verify utility.
1-23

Design Specifications for Reliability and Availability

D
RAFT

Design Specifications for Reliability and Availability

Not in release TBD. It is not considered in the first release.
1-24

Reference Documents

D
RAFT

Reference Documents

URLs Figure 1-6 lists the URLs for some reference documents.

Table 1-6. Reference Document URLs

Document URL

RFC2543bis (-04) draft http://www.cs.columbia.edu/~hgs/sip/drafts/
draft-ietf-sip-rfc2543bis-04.txt

RFC2865 http://www.ietf.org/rfc/rfc2865.txt

RFC2866 http://www.ietf.org/rfc/rfc2866.txt

MIDCOM framework draft http://www.ietf.org/internet-drafts/draft-ietf-
midcom-framework-03.txt
1-25

Reference Documents

D
RAFT

1-26

Index
Numerics

402 Payment Required 1-4
403 Forbidden 1-4

A

AAA
see Authentication, Authorization and Ac-

counting
AAAEvent 1-8
AccountingData 1-9
AuthAgent 1-9
Authentication, Authorization and Accounting

events 1-7
RADIUS stack 1-3
worker thread 1-7

B

B2BUA
see Back-to-Back User Agent

b2bua.xml
Back-to-Back User Agent 1-5
PSLib 1-5

Back-to-Back User Agent
b2bua.xml 1-5
defined 1-2

BasicAgent 1-9
Billing Server 1-2
bis-04

see Session Initiation Protocol

C

call data
illustration 1-8

call establishment 1-4
call initiation 1-4
CallDB 1-9
Caller and Callee 1-19
CallTimerEvent 1-9
CInvalidStateException 1-9
classes

AccountingData 1-9
AuthAgent 1-9
BasicAgent 1-9
CallDB 1-9
CallTimerEvent 1-9
ContactData 1-9
ControlState 1-9
descriptions 1-8
diagram 1-8
MultiLegCallData 1-9
RadiusPayload 1-9
SipCallLegData 1-10
SipTransactionPeers 1-10
UaBase 1-10

UaClient 1-10
UaServer 1-10
uaState 1-10

component reuse
discussion 1-3
PSLib 1-3

componentizing 1-2
Configuration and Restrictions 1-22
ContactData 1-9
ControlState 1-9

D

Design 1-3
Design Specifications for Reliability and

Availability 1-24

E

End User Interface 1-18
ETSI

see European Telecommunications Stan-
dards Institute

European Telecommunications Standards
Institute 1-2

F

Finite State Machines 1-11
functionality 1-2

G

G.711 1-2

H

heartbeating 1-5
HeartlessProxy 1-5
HTTP

see Hypertext Transfer Protocol
Hypertext Transfer Protocol

requests 1-4
RFC 1-2
server 1-3
server thread 1-7

I

illustrations
call data 1-8
In-Call State Re-INVITE Handling 1-16
Multi-Leg Call Control Finite State

Machine 1-11
Threads 1-6
UAC Finite State Machine 1-14
UAS Finite State Machine 1-12

In-Call State Re-INVITE Handling 1-16

Index (Continued)
INFO 1-4
INVITE 1-4

event 1-7

M

Mascarpone 1-3
media handling 1-2

concurrent media sessions 1-2
media server 1-4
Memory and Performance Impact 1-17
MLCC

see Multi-Leg Call Control
MLCD

see Multi-Leg Call Data
Multi-Leg Call Control

state machine 1-7
unused time 1-4
worker thread 1-7

Multi-Leg Call Control Finite State Machine 1-
11

Multi-Leg Call Data 1-7
MultiLegCallData 1-9

O

Open Settlement Protocol 1-2
OSP

see Open Settlement Protocol
Overview 1-4

P

Problem Definition 1-2
Provisioning Server

address and port numbers 1-5
PSLib

b2bua.xml 1-5
Purpose 1-2

R

RADIUS
see Remote Authentication Dial In User

Service
RadiusPayload 1-9
Real Time Streaming Protocol 1-4
Recv 200 (BYE) 1-13
Recv ACK 1-13
Recv CANCEL 1-13
Recv INFO 1-13
Recv INVITE 1-12
Reference Documents 1-25
remaining prepaid time 1-4
Remote Authentication Dial In User Service 1-

2
AAA Transceiver Thread 1-7
Access-Request message 1-4

accounting 1-7
Accounting Interim message 1-4
Accounting Start message 1-4
Accounting Stop message 1-4
sending messages 1-7

replication 1-11
reusable design 1-3
RTSP

see Real Time Streaming Protocol

S

Send >200 1-13
Send 18x 1-13
Send 200 (INVITE) 1-13
Send BYE 1-13
Session Initiation Protocol

bis draft URL 1-2
events 1-7
stack 1-3
thread 1-6
Worker Thread FIFO queue 1-7

Session Intitiation Protocol
RFC 1-2

SIP
see Session Initiation Protocol

SipCallLegData 1-10
SipTransactionPeers 1-10
Source code 1-5
stand alone

defined 1-2

T

Testing Considerations 1-23
Threads 1-6
timer expiry 1-4
Transceiver 1-6
transitions

Recv 200 (BYE) 1-13
Recv ACK 1-13
Recv CANCEL 1-13
Recv INFO 1-13
Recv INVITE 1-12
Send >200 1-13
Send 18x 1-13
Send 200 (INVITE) 1-13
Send BYE 1-13

U

UaBase 1-10
UAC

see User Agent Client
UaClient 1-10
UAS

see User Agent Server
Index-2

Index (Continued)
UaServer 1-10
uaState 1-10
User account information 1-2
user account information 1-2
User Agent Client

state machine 1-7
within B2BUA 1-2
worker thread 1-7

User Agent Client Finite State Machine 1-14
User Agent Server

state machine 1-7
within B2BUA 1-2
worker thread 1-7

User Agent Server Finite State Machine 1-12

V

Vendor-Specific Attributes 1-4
VOCAL

see Vovida Open Communications Applica-
tions Library

VOCAL RADIUS stack 1-3
Vovida Open Communications Applications

Library 1-2
VSAs

see Vendor-Specific Attributes

W

Worker Thread FIFO queue 1-7
Index-3

Index (Continued)
Index-4

	Title Page
	Preface
	Table of Contents
	Specification
	Problem Definition
	Design
	Overview
	Threads
	Worker Thread
	RADIUS AAA Transceiver Thread
	HTTP Server Thread

	Call Data
	Finite State Machines
	Multi-Leg Call Control Finite State Machine
	User Agent Server Finite State Machine
	User Agent Client Finite State Machine
	In-Call State Re-INVITE Handling

	Memory and Performance Impact
	End User Interface
	Caller and Callee

	AAA
	Requests to RADIUS Server
	Access-Request
	Accounting-Request

	Responses From RADIUS Server

	Configuration and Restrictions
	Testing Considerations
	Design Specifications for Reliability and Availability
	Reference Documents
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	M
	O
	P
	R
	S
	T
	U
	V
	W

	Index

