OpenOSP

Interface Specification

10 April 2001

Document Version 1.3

Data Connection Manual MOM-101-0103

Cisco SysTems

e

-
EMPOWERING THE
INTERNET GERERATION ™ CONNECTION

Notice

Copyright (c) 1999, 2000, 2001 Data Connection Limited.

This manua is provided in the hope that it will be useful but without any warranty, either
express or implied.

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on al copies.

Data Connection Limitec
100 Church Street
Enfidd
Middlesex
EN2 6BQ
England

+44 20 8366 1177
http://www.dataconnection.com

Contents

1 INTRODUCGTION ...ttt sttt s e et sseeeseesaeeenbeesneeenseesneeannas 1
1.1 TypographiCal CONVENTIONS.......ccoiuiieiiieeriiie et riiee et 1

2 OPENOSP INTERFACES OVERVIEW........ooiiiiiiiiieiee e 2
2.1 OSSP APIS ..t 2
2.1.1 OSPAPI Parameters ANd SEQUENCES.uevvveeeiieiciiieeeeeee e essiiireee e e e e e 3

2.2 ULHHEY APIS. .ttt ettt nee s 3

3 COMMON INFORMATION FOR OSP APIS.....coiiiiieiee et 4
3.1 Calback MEChANISM 4

3.2 INitialiZatiON SEOUENCE.........eie ittt 5

3.3 TermMiNation SEQUENCE.uteiieieiieeeiiee e ettt e stee e st e et e e e e sbe e e sbeeesneeeanneeeeaes 5

3.4 Common data StruCtures and tYPES........ueeerieeeriieeriie e riee e 5
341 OSP_ADDRESS.......c.coiiieitie ettt 5

342 OSP_CALL_ID...ciiiiiieie ettt 6

343 OSP_CLIENT _ID ..oiiiiiiiieiieeie ettt 7

344 OSP_CORRELATOR......cciiiitiatiesite ettt 7

345 OSP_DESTINATION ..ottt ettt 8

346 OSP_TOKEN ..ottt 9

347 OSP_USAGE DETAIL....ioiiiiiiiieeee et 9

3.4.8 OSP_TERM_CAUSE........oooi et 1

349 OSP_USAGE_STATISTICS......coiiieiiiee e 1

3410 OSP_USAGE_STATISTICS PF....ooiiiiiiiiiie e 12

3411 OSP_USAGE_STATISTICS MMVS.....oooiiiiiiiiiee e 12

3412 OSP_STATUS....ie it 13

34.13 OSP_SERVICE_INFO......cccttiiiiiiieiieaieesiee st 13

34.14 OSP_PROTOCOL_TYPE. ..ot 14

3415 OSP_AUTH_INFO.....coiiiiiiiiie it 14

3.5 REIUM COUBS.....coiieii ettt e e 15

3.6 SIgNal Handling........cooueiiiiiiiiie e 16

3.7 Cimplementationcooouiiiieieiie e 16

4 CONTROL APttt et e et e s te e bt e anbeeabeeeneeesneeanees 17
2 R o o [) SRR 17

o o 11 = o PRSP 17

VARG TN o 1=~ o T 0 1 1 18

4.4 0P _Client_VENTy TEOISIEN ..o 18

45 POSP_CLIENT_VERIFY_CALLBACK ...t 19

4.6 POSP_CLIENT _DISCONNECT_CALLBACK......ccciiiiiieiie e 20

OpenOSP Interface Specification

4.7 05P_NoN_repudiation FEQISLENcccueierieeeriieeiieeerieee ettt 20

4.8 POSP_NON_REPUDIATION_CALLBACK ...ttt 21
4.9 090 get SACK StAlISHCS....ccuvveeeeeiiiiee e et e 21
USAGE METERING AP ...t 23
S o= o TV 10 (T = o [(= SRR 23
5.2 POSP_UM_CALLBACKottt 23
oG I o= o I 0 (T == 00 0 PRSP 25
AUTHORIZATION AND ROUTING APlooiiiiiiiiiiienie e 26
(O R o S oI g (= o = TP UPR TR PRI 26
6.2 POSP_AR AUTH_RQ CALLBACK. ..ottt 27
6.3 O @ _AULN FESPONSE. ...ciiieieiieie ettt ettt ettt 29
6.4 POSP_AR_AUTH_IND_CALLBACKccttiitiieiiie e 30
6.5 0P a auth CONFIMM ..ccciiiiie e e 31
6.6 POSP_AR REAUTH_RQ CALLBACK......cooiiiiiiiieie e 32
6.7 OSP_a _r€AUIN _TESPONSE.eiiiiiiiieeiiiiiie e eitee e e ettt e e et e e e s e e e snbe e e e s snbaeeeean 33
6.8 POSP_AR _PRICING_IND_CALLBACK ..ottt A
6.9 0Sp_ar_Pricing_CONFIMMeiiiiiie it 35
6.10 POSP_AR_CAPS IND_CALLBACK ...ttt 36

6.10.1 OSP DEVICE _INFOcciiiiiiiiieiiiieeiee e 37

6.10.2 OSP_CAPS.... .o 37

6.10.3 OSP_RESOURCE..........cciiiiiiiiieiiiie et 37

6.10.4 OSP_SUPP_PROTOQCOLccuteiiiieiieiieesiie s 33

6.10.5 OSP DATA_RATEi it 33
6.11 OSP_a_CAPS COMPIM Leeiiiiiiiieeiiiiee e steee e e ettt e e st e e e e e e snae e e e e snneeeeeansneeeeans 39

6.11.1 OSP_SERVICE......ccoii ittt 40

6.11.2 OSP_SERVICE _URL......ciiiiiiiiiiiieiiie et 40

6.11.3 OSP_CERTIFICATE. ..ottt 41
SUBSCRIBER AUTHENTICATION APlcoiiiiiiiiiieiie e 42
A R o S oI N (= o[(= GRS RRPPRRTIN 42
7.2 POSP_SA CALLBACK ...ttt 42
S T 0 o == N (= 070] 115 = 43

7.3 1 OSP_CREDIT_AMOUNT.....cccitiiiiaiienieeniee e 44

7.32 OSP_CREDIT_TIME. ...ttt 44
SECURITY AP .ttt ettt nae e 46
S S R o 0 4 1|) SRR 46
8.2 PCCM_SSL_VERIFY_CALLBACK ...t 46
S T o ox 1 0 (= 1 PP UPPEP T PPPRPP PPN 47

OpenOSP Interface Specification

10

8.4 COM _PKCST _SION ittt ettt ettt e s sbb et e e enbe e e sanee e 47
8.5 COM _PKCST VEITY...eiiiiiie e e 48
8.6 CCM _PKCST ENCIYPL ..eieieiiiiie ettt e e e e e e e e s e e e e e erneeeeans 49
8.7 CCM _PKCST AECIYPL...eeee ettt et e e e e e e e e e e e erneee e 50
TS T ol 0 T (= o= 51
8.9 CCM_get Cart ChaiNoooieiiie e 51
8.10 ccm free ceart ChaiN.......cueeeiiiii e 51
S B R oot g T (=0 (1= A =V ol P 52
812 PCCM_NEW_CERT _CALLBACK.ottt iiie et eeieee e esee e siee e e srneee e 52
LS I B oo 0 T = 010 o] 4 PP UPRSURRPPRRTIN 53
RESOURGCE AP ...ttt ettt ettt ettt be e e e aa e e snnee e 54
LS00 R 11 0 T 1 SRR RRRPRRTI %)
1S 22 1 1 1 T = 1 1 DO PO PP PP OPTPPPI 4
LS TS T 0 T [S 1= PO %}
Lo ¢ 4 (= == S ST 111 0 SRR LY
L AT 1 0 (== 1 Lo ol 111 RSP 55
9.6 IM_QEL_SITUCIUIE.......eeiiiiiiiee et e s e e e e e e e 55
0.7 IM_rel@8SE _SITUCKUIE......ceiiiieiieie ettt 56
9.8 rm_request thread CrEaLe...........cooiuiiiiiiiie et 56
9.9 rm_NOtify thread EXIt.........ooiiiiiiiiieiii e 56
SECURE SOCKETSLAYER (SSL) APl ...oveiiiiiiecie et 57
10.1 Configuration FUNCLIONS...........ueiiiiiiiee e e 57
10.1.1 SSL_LIBrary init......oocceeeiieeiiie e 57
0 0 2o I 1= o = £ (0T (] 0 TP 57
10.1.3 CRYPTO set mem funClionS.........ccuveeeeieeiiiciiiieeeee et 57
10.1.4 CRYPTO_set_id CallbaCk.......c.ceeviueeiiiieiiiie e eee e see e 58
10.1.5 CRYPTO_set_locking_callback...........coeevviueieeeniiiiieeeiiiie e 58
10.1.6 SSLV23 server MEthOdcccveeiiiieeiiiee e 59
1017 SSL_CTX NEW ceeiiiieiiiieeciteeeciteeeetee e e steeeesseeesssaeeessaeesnseeeaseeesnneeanneeens 59
10.1.8 SSL CTX . iiiieiiie ettt eaee e 59
10.1.9 SSL CTX_SEL OPLIONS......eeieeiiiieeeeeiiiee e e et e e 59
10.1.10 SSL_CTX_sess set cache Sze.....cccvvveeeiieiiiiceeee e 60
10.1.11 SSL_CTX_Set CIPher ISt ...oeeieeieeiieeeiiee e 60
10.1.12 SSL_CTX_USE PriVAEKEYvveeecieie et 61
10.113 SSL_CTX _USE CAMIfICAIE ..vuveieieiiiiciiiiieeee et 61
10.1.24 SSL_CTX_SEL VEIITY.coiiiiiie et 61
10.1.15 SSL_CTX_SEl_CAIt SIOM....eiiiiiieee et 62
10.1.16 SSL_CTX_set_ SeSSiON_id_CONMEXL.......eeviiurieiiiieeiiee s 62
10.1.17 SSL_CTX_set_ tmp_dh calbackcccovviiiiiiiiiecee e, 63
10.1.18 SSL._ CTX_set_ tmp rsa calbacK.........ccoocveeeeiiiiieeeccee e, 63
10.1.19 RAND_set rand methodceeeviiiieiiiiiiie e 63

OpenOSP Interface Specification

10.2.20 RAND _1080 fil€....eeiiiiiieiiieeiie e 64

10.1.21 RAND _WIItE fil@ ..veiiiiiiiiiieiiie e 64
10.2 Operational fUNCLIONS.........cociuiiee e e s e e 64
10.2.1 SSL_NEW....etieiieeiieesiee ettt 64
10.2.2 SOL_fIBB...tietie ettt 65
10.2.3 SSL_SEL fll.eiiiiiiiieiieete e 65
10.2.4 SSL_ BCCEPLueeeeeieeeeei ettt e et e e e e e s e e e e e e e e e bbb eeeeaae e e 65
10.2.5 SSL_QBL EITON ..eeeiiiieee ettt s e 65
L0.2.6 SOL_WIITE ..ceiiiiieiiee ettt e e snnee e 66
10.2.7 SSL_T@AA......cueiiiiiie ettt 66
10.2.8 SSL_TENEQOLIELEeeeuveeeieieeiitieesieee ettt 67
10.2.9 SSL_SNULHOWN ...ttt 67
10.2.10 SSL_Sat @D 0aa.....ceivieiieiie et 67
10.2.11 SSL_get app data........c.cvvveeeieeee e 67
10.2.12 ERR_PIiNt_EITOrS fP..cciiiiiiie ittt 63
10.2.13 RAND _DYLES....ceiiiiiiiieeeiiiie ettt et e et e e e e e as 63

OpenOSP Interface Specification

1 Introduction

This document describes the external interfaces of the OpenOSP open source Open Settlement
Protocol (OSP) server protocol stack jointly developed by Cisco Systems and Data Connection
Limited (DCL).

Before starting to use this document, you should read the OpenOSP Product Overview for
genera information about OpenOSP.

The remainder of this document is structured as follows.
Section 2 gives an overview of the OpenOSP interfaces and how they are used.
Section 3 provides information that is common to the OSP APIs (the subset of interfaces
that your settlement application uses to interface directly to the stack: Control API, UM
API, AR API, and SA API).
Section 4 describes the Control API.
Section 5 describes the UM API.
Section 6 describes the AR API.
Section 7 describes the SA API.
Section 8 describes the Security API.

Section 9 describes the Resource API.

Section 10 describes the SSL API.

1.1 Typographical conventions
In this document, the following typographical conventions are used.
Bold text indicates an OSP primitive, for example: AuthorizationRequest.
Square brackets indicate a reference, for example: [OSP].
A line printer typeface indicates a C function or type definition, for example: osp_init.
All C types that are defined by OpenOSP (including function pointer types) are shown in

upper case; other C identifiers, such as function names and variables, are shown in lower
case.

1
OpenOSP Interface Specification

2

2.1

OpenOSP Interfaces Overview

The following diagram illustrates the core OpenOSP server stack together with the APIs and the
sample implementations of the other components.

Settlement application

Authorization, Subscriber
Usage . L o
logging routing and pricing | authentication
99 (via LDAP) (via LDAP)
Control API UM API AR API SA API
[] [] [] []
R S
e e
S c
0 u
Resource | || 1| | certomes
manager Core OpenOSP Stack
(RM) c t manager
e y (CCM)
A A
P P
I |

Sockets API SSL API

SSL/TLS

TCPIIP

Figure1l: OpenOSP Server APIs

OSP APlIs

At the top of the diagram are the four OSP API s, which provide access to the core OpenOSP
server function from your settlement application.

The Control API alows your application to start and stop OpenOSP, to verify incoming
client connections, and to gather statistical information about its operation.

The Usage M etering (UM) API dlows your application to collect and store usage
information about each call that has been made using the server (for example the call
duration and caling / caled numbers), for usein hilling.

2
OpenOSP Interface Specification

21.1

2.2

The Authorization and Routing (AR) API alows OpenOSP to request authorization and
routing information from your application for acal. This APl isaso used to pass pricing
and capabilities information (gathered from OSP clients) to your application, for usein
routing and authorization decisions.

The Subscriber Authentication (SA) API alows OpenOSP to request your application to
authenticate subscribers and check whether they are entitled to use the facilities that OSP
provides (for example to authenticate users with mobile telephones who are calling from
outside their usua network, and to verify whether they are permitted to do so).

Depending on your requirements, your settlement application may not need to use al of these
APIs. For example, you may have multiple OSP servers each providing a subset of these
functions, or you may have no requirement to support subscriber authentication.

OSP API Parameters And Sequences

The information passed on these APIs is based on the contents of the messages between OSP
sarvers and clients, but OpenOSP breaks it out into individuad fields and data structures for ease
of use by the application.

The sequence in which different messages will be received by the server is not specified in
[OSP; it will depend upon the configuration of the settlement servers and upon the behaviour
of the OSP clientsin use.

Utility APIs

The remaining APIs are used by OpenOSP to access utility functions.
The Security API alows OpenOSP to manage signatures and certificates.

The Resour ce API alows OpenOSP to make requests for operating system resources
(memory and threads), and to free these resources when no longer required. The supplied
Resource Manager code maps these requests to basic operating system functions; the API
alows you to change this mapping to manage your own resource alocation if required (for
example to pre-allocate resources, or to alocate and free them in larger ‘ chunks' rather than
in response to individual requests).

The Secure Sockets Layer (SSL) API provides accessto OSP clients through SSL / TLS.
It is asubset of the API defined by the OpenSSL open source SSL / TLS implementation,
allowing you to use this implementation without change. If you intend to use a different

SSL / TLS implementation with OpenOSP, the implementation must provide this interface.

The Sockets API isthe standard BSD sockets interface as implemented on Sparc Solaris,
and provides access to OSP clients through TCP. Thisinterface is not described in detail in
this document; refer to the Solaris documentation for details.

Note that OpenOSP aso implements the Simple Certificate Enrollment Protocol (SCEP), but no
API isrequired for its operation. Please refer to [SCEP] for details of the protocol.

3
OpenOSP Interface Specification

3.1

Common Information for OSP APIs

This chapter provides APl usage information that is common to some or all of the OSP APIs
(Control AP, UM API, AR API, and SA API).

Callback mechanism

The UM, AR, and SA APIsdl use a callback mechanism to allow OpenOSP to make callsinto
your application. This mechanism operates as follows. (See Chapters 5-7 for details of the
specific calls used at each API.)

1. Atinitidization, the application registers with OpenOSP for a specific type of information
(such as usage metering information or authorization requests). This registration includes
the address of a callback function provided by the application to handle this information
type. Only one callback function can be registered for each type of information.

2. Eachtime OpenOSP needs to pass information to the application, it calls the callback
function that the application has registered for the appropriate type of information.

The callback function can use the supplied information as required, with the following
restrictions:

It must not block while processing the information. Blocking on a callback will affect
the internal operation of OpenOSP and will reduce overall throughput.

It must not modify any of the supplied parameters.

If it needs to use the information outside the callback function itsalf, it must make a
copy of the data. The supplied parameters, including pointersto data, are valid only for
the lifetime of the callback function, and the application will not be able to access them

after the function has compl eted.
It must not call osp_term().

3. The application must then call a“‘response’ or ‘confirm’ function to inform OpenOSP of the
results of its processing. It can do this synchronoudly from within the callback function
itsalf, or it can make the call asynchronoudy from some other thread after the callback
function has completed.

At termination, the application calls the registration function with a null address; this indicates
that it will no longer handle the appropriate information type, and OpenOSP will no longer
make callsto it to do so.

The Control APl uses asimilar callback mechanism to alow your application to verify the
credentias of each client that connects to the server and to receive a copy of each signed OSP
request that is received. However, the application must process these callbacks synchronously
and there is therefore no ‘response’ or ‘confirm’ function — step 3 above does not apply.

4
OpenOSP Interface Specification

3.2

3.3

3.4

34.1

Initialization sequence

To start using OpenOSP, the settlement application must do the following initialization:

1. Cdl ogp_init() to initidize the OpenOSP stack and its associated libraries.

2. Usetheregister functions at each API to register for each callback that it will handle.

3. Cadl osp_listen() to instruct OpenOSP to start listening for OSP client connections.

Termination sequence

To stop using OpenOSP, the settlement application must do the following termination:

1. Usetheregister functions at each API to deregister for each callback that it is currently
handling (by supplying a null pointer for each callback function).

2. Cdl osp_term() to stop the OpenOSP stack and its associated libraries.

Common data structures and types

This section describes data structures and types that are used in more than one function call on
the OSP APIs. Data structures that are used in only one function call are included in the
individud function cal descriptions.

OSP_ADDRESS

The OSP_ADDRESS data structure holds address information for the source or destination of a
cal. This structure corresponds to the Sour cel nfo and Destinationl nfo el ements described in
[OSP].

typedef struct osp_address

{

struct osp_address *next;

char *type;

char *addr ess;
} OSP_ADDRESS;

Members:

next A pointer to the next item if this structure isin alist, or anull
pointer if there are no further items.

type A null-terminated string that specifies the type of addressing
information provided. This may take one of the following
values:
el64 An E.164 telephone number (digits only).

h323 An H.323 identifier.

5
OpenOSP Interface Specification

3.4.2

url A uniform resource locator.

email An éectronic mail address.

transport A transport address of the form name:nn,
where name is the domain name, or the IP
address enclosed in square brackets, and nn
isan optional port number.

international An international party number.

national A nationa party number.

network A network-specific party number.

subscriber A subscriber party number.

abbreviated An abbreviated party number.

el6dprefix Theinitid (most significant) digits of an

E.164 number (digits only).

507818 *An 1S07818-1 ID card number (digits
only).

pin * A persona identification number (digits
only).

ein * A base64-encoded encrypted PIN.

*These values are valid only for source addresses.

See the descriptions of Sour cel nfo and DestinationInfo in
[OSP] for further descriptions of the above values.

address A null-terminated string containing the addressing information
for the source or destination.

OSP_CALL_ID

The OSP_CALL_ID data structure holds an H.323 cdl identifier, which uniquely identifies an
individud call. This structure corresponds to the Calll d element described in [OSP].

typedef struct osp_call_id
{

struct osp_call _id *next;
char *encodi ng;
char *dat a;

} OSP_CALL_ID;

6
OpenOSP Interface Specification

Member s:

next A pointer to the next item if this Structure isin alist, or anull
pointer if there are no further items.

encoding A null-terminated string that identifies the encoding in which
the call identifier is stored. One of the following:

cdata (XML CDATA format)
base64

data A null-terminated string containing the call identifier.

3.4.3 OSP_CLIENT_ID

The OSP_CLIENT _ID data structure holds details of a client that is connected to the OSP
server. It is specific to OpenOSP and does not correspond to any element defined in [OSP).

typedef struct osp_client_id
{
unsigned | ong ip_address;
voi d *ver _cooki e;
} OSP_CLIENT_ID;

Members:
ip_address The IP address of the client.
ver_cookie A ‘cooki€’ that the application suppliesin the client

verification callback routine. This parameter may take any
value appropriate for your application. OpenOSP does not
make use of the cookie, but smply storesit and suppliesit on
subsequent callbacks so that the application can identify the
client. See section 4.5,
POSP_CLIENT_VERIFY_CALLBACK, for details of the
client verification callback.

3.4.4 OSP_CORRELATOR

The OSP_CORRELATOR datatypeis used for a correlator that OpenOSP uses to match
requests and responses. It is specific to OpenOSP and does not correspond to any element
defined in [OSP].

When it uses a callback function that requires a response from the application, OpenOSP
supplies a unique correlator, which the application must return on the response. This ensures
that the server can match the response to the original request even if there are multiple requests
outstanding.

typedef void *OSP_CORRELATOR;

7
OpenOSP Interface Specification

3.4.5 OSP_DESTINATION

The OSP_DESTINATION data structure holds information about the destination for a call that
is being routed using the OSP server. This structure corresponds to the Destination element
described in [OSF].

typedef struct osp_destination

{

struct osp_destination *next;

OSP_ADDRESS *info;
OSP_ADDRESS *alt _list;

char *signal _address;
OSP_TOKEN *token_|ist;
char *valid_after;
char *valid_ until;
OSP_USAGE_DETAI L *usage_l i st;
OSP_SERVI CE_URL *auth_url _|ist;
OSP_CALL_ID call _id;

} OSP_DESTI NATI ON;
Member s:

next A pointer to the next item if this Structureisin alist, or anull
pointer if there are no further items.

info The address of the cdl detination, or anull pointer if no
destination address has been supplied.

dt ligt A pointer to thefirst itemin alist of OSP_ADDRESS
structures, each of which contains an alternative address that
could be used to reach the required destination. The addresses
are listed in order of preference, highest first.

signa_address A null-terminated string containing the call signalling address
for the destination. It is represented as name: nn, wherename is
adomain name or an IP address enclosed in square brackets.
The :nn is optional and indicates a TCP port number.

token list A pointer to thefirgt item in alist of OSP_TOKEN structures,
each of which contains an H.235 security tokens.

valid_after A null-terminated string containing the time at which
authorization begins for this destination. Thisisin the format
YYYY-MM-DDThh:mm:ssZ (the T and Z are literal characters
used as delimiters). A null pointer indicates that authorization
is effective immediately.

vaid_until A null-terminated string containing the time at which
authorization ends for this destination. Thisisin the format
YYYY-MM-DDThh:mm:ssZ (the T and Z are literal characters
used as delimiters). A null pointer indicates that authorization
continues indefinitely.

8
OpenOSP Interface Specification

3.4.6

3.4.7

usage list A pointer to thefirst itemin alist of OSP_USAGE_DETAIL
structures, each of which contains usage information.

auth_url_list A pointer to thefirst item in alist of OSP_SERVICE_URL
structures, each of which contains a uniform resource locator
(URL) of an OSP server by which authorization may be
verified or refreshed.

cdl_id H.323 cdl identifier that uniquely identifies the call.

OSP_TOKEN

The OSP_TOKEN data structure contains an H.235 security token. This structure corresponds
to the T ok en element described in [OSP]. OpenOSP does not process the token data itself, but
simply passesit to or from aclient.

typedef struct osp_token

{

struct osp_token *next;

char *encodi ng;
i nt token_l en
char *t oken_dat a;
} OSP_TOKEN,
M embers:
next A pointer to the next item if this Structure isin alist, or anull

pointer if there are no further items.

encoding A null-terminated string that identifies the encoding in which
the token is stored. One of the following:

cdata (XML CDATA format)
base64

token_len The size in bytes of the token data. Thisfield isonly valid for
tokens that are generated by an application and passed as a
parameter to the OpenOSP stack; for such tokens, token_len
must be set to the size of the token data. Tokens that are
generated by the OpenOSP stack are aways null-terminated
and so do not require the use of this field.

token data A string containing the token data. For tokens generated by the
OpenOSP stack, the string is null-terminated.

OSP_USAGE_DETAIL

The OSP_USAGE_DETAIL data structure contains information about resource usage. It
corresponds to the UsageDetail element described in [OSP].

9
OpenOSP Interface Specification

It isused at the UM API to record details of acall that has been completed, and at the AR API
to describe the services that have been authorized for a call.

typedef struct osp_usage_detail

{

struct osp_usage_detail *next;

OSP_SERVI CE_I NFO

char
char
char
char
char

OSP_TERM CAUSE
OSP_USAGE_STATI STI CS
} OSP_USAGE_DETAI L;

M embers:

next

service

amount

increment

unit

start_time

end time

term_cause

*service;
*amount ;
*increment;
*unit;
*start _tine;
*end_ti me;
*term.cause;
*statistics;

A pointer to the next item if this Structureisin alist, or anull
pointer if there are no further items.

A pointer to an OSP_SERVICE_INFO structure describing the
type of service. A null pointer indicates basic internet
telephony service, which isthe only type of service currently
defined by [OSP].

A null-terminated string containing a number which, when
multiplied by ‘increment,’ gives the number of units of service
used or authorized.

A null-terminated string containing a number which, when
multiplied by ‘amount,” gives the number of units of service
used or authorized.

A null-terminated string containing the units of use by which
the usage or authorization period is indicated, for example,
seconds, packets, bytes.

A null-terminated string containing the time at which the
service begins. Thisisin the format YYYY-MM-
DDThh:mm:ssZ (the T and Z are literal characters used as
ddimiters).

In acal authorization, this parameter can be set to anull
pointer, indicating that authorization is effective immediately.

A null-terminated string containing the time at which the
sarvice ends. Thisisin the format YYYY-MM-DDThh: mm:ssZ
(the T and Z are literal characters used as delimiters).

In acall authorization, this parameter can be set to a null
pointer, indicating that authorization continues indefinitely.

A pointer to an OSP_TERM_CAUSE structure indicating why
the call ended.

10

OpenOSP Interface Specification

3.4.8

3.4.9

statistics A pointer to an OSP_USAGE_STATISTICS structure
containing enhanced usage statistics for the call. This
parameter may be null if no enhanced usage statistics were
provided by the OSP client.

Example: If ‘amount’ is*10,” ‘increment’ is‘60,” and ‘unit’ is‘s,’ thisindicates a usage
duration of 10 minutes.

OSP_TERM_CAUSE

The OSP_TERM_CAUSE structure contains information about how and why a call ended. It
corresponds to the TCCode and Ter minationCause elements described in [OSP].

typedef struct osp_term cause
{

char *term code;

char *term.desc;
} OSP_TERM _CAUSE;

Members:

term_code A null-terminated string containing a numerical code indicating
why acall ended. See the description of TCCode in [OSP] for
the values this can take.

term_desc A null-terminated string containing a summary description of

this termination code. See the description of
TerminationCause in [OSP] for typica summary descriptions.

OSP_USAGE_STATISTICS

The OSP_USAGE_STATISTICS contains enhanced statistical information about acal. It
corresponds to the Statistics element described in [OSP].

typedef struct osp_usage_statistics

{
struct osp_usage_statistics *next;
OSP_USAGE_STATI STI CS_PF *| oss_sent;
OSP_USAGE_STATI STI CS_PF *| oss_received;
OSP_USAGE_STATI STI CS_MWS *one_way_del ay;
OSP_USAGE_STATI STI CS_MWS *round_trip_del ay;

} OSP_USAGE_STATI STI CS;

Members:

next A pointer to the next item if this structureisin alist, or anull
pointer if there are no further items.

loss sent A pointer to an OSP_USAGE_STATISTICS_PF structure

containing statistical information about lost packets that were
sent from the originating gateway to the terminating gateway.

11
OpenOSP Interface Specification

loss received A pointer to an OSP_USAGE_STATISTICS_PF structure
containing statistical information about lost packets that were
sent from the terminating gateway to the originating gateway.

one way delay A pointer to an OSP_USAGE_STATISTICS MMVS structure
containing datistical information about the one way delay
between the originating gateway and the terminating gateway.

round_trip_delay A pointer to an OSP_USAGE_STATISTICS MMV structure
containing statistical information about the round trip delay
between the originating gateway and the terminating gateway.

3.4.10 OSP_USAGE_STATISTICS_PF

The OSP_USAGE_STATISTICS PF data structure is used as a substructure of
OSP_USAGE_STATISTICS.

typedef struct osp_usage_statistics_pf

{
struct osp_usage_statistics_pf *next;
char *packet s;
char *fraction;

} OSP_USAGE_STATI STI CS_PF;

Members:

next A pointer to the next item if this Structureisin alist, or anull
pointer if there are no further items.

packets A null-terminated string containing the total number of packets
that was lost during the cdll.

fraction A null-terminated string containing the fraction of packets that

were lost, expressed as a number between 0 (no packets lost)
and 255 (al packetslost).

3.4.11 OSP_USAGE_STATISTICS_MMVS

The OSP_USAGE _STATISTICS MMV S data structure is used as a substructure of
OSP_USAGE_STATISTICS.

typedef struct osp_usage_statistics_nmmvs

{

struct osp_usage_statistics_mvs *next;

char *m oni mum
char *mean;

char *vari ance;
char *sanpl es;

} OSP_USAGE_STATI STI CS_MWS;

12
OpenOSP Interface Specification

Member s:

next
minimum
mean
variance
samples

3.4.12 OSP_STATUS

A pointer to the next item if this Structure isin alist, or anull
pointer if there are no further items.

A null-terminated string containing the minimum measured
delay time in milliseconds.

A null-terminated string containing the mean measured delay
time in milliseconds.

A null-terminated string containing the statistical variance of
the measured delay time in squared milliseconds.

A null-terminated string containing the number of delay time
samples measured by the reporting system.

The OSP_STATUS data structure contains information about the status of an OSP operation. It
corresponds to the Status element described in [OSP).

It isused by the UM, AR and SA APIsto indicate the status code and description that should be
used to form the XML response for an OSP operation.

typedef struct osp_status

{

i nt code;
const char *desc;

} OSP_STATUS;
M embers:

code

desc

The OSP status code to be returned to the client. See the
description of Code in [OSP] for the values this can take.

A null-terminated string containing a summary description of
this status code.

3.4.13 OSP_SERVICE_INFO

The OSP_SERVICE_INFO data structure contains information about the type of servicethat is
either requested for a particular operation or supported by a particular gateway. It corresponds
to the Service element described in [OSP).

typedef struct osp_service_info

{
char
char
OSP_PROTOCOL_TYPE
} OSP_SERVI CE_I NFQ,

*pbandwi dt h;
*service_type;
*prot _type

13

OpenOSP Interface Specification

Member s:

bandwidth A null-terminated string containing the requested or supported
bandwidth.
service type A null-terminated string containing the requested or supported

type of service. For example, this field might contain one of
the values “voice’ or “fax”.

prot_type A pointer to thefirst itemin alist of OSP_PROTOCOL_TYPE
structures, each of which specifies a requested or supported set
of protocol details.

3.4.14 OSP_PROTOCOL_TYPE

The OSP_PROTOCOL_TY PE data structure contains information about the protocol details
that are either requested for a particular operation or supported by a particular gateway.

It isused as a part of the OSP_SERVICE_INFO and OSP_SUPP_PROTOCOL structures.

typedef struct osp_protocol _type
{

struct osp_protocol _type *next;

char *pr ot _name;
} OSP_PROTOCOL_TYPE;

Members:

next A pointer to the next item if this Structure isin alist, or anull
pointer if there are no further items.

prot_name A null-terminated string containing the requested or supported

protocol name. For example, thisfield might contain one of
the values “sip” or “h323".

3.4.15 OSP_AUTH_INFO
The OSP_AUTH_INFO data structure contains a subscriber authentication token.

Subscriber authentication tokens are used by the AR and SA APIs to describe the fact that a
particular subscriber has been authenticated by the OpenOSP server.

typedef struct osp_auth_info

{

struct osp_auth_info *next ;
char *encodi ng;
char *aut h_dat a;

} OSP_AUTH_I NFO,
M ember s:

next A pointer to the next item if this structure isin alist, or anull
pointer if there are no further items.

14
OpenOSP Interface Specification

3.5

encoding A null-terminated string that identifies the encoding in which
the token is stored. One of the following:

cdata (XML CDATA format)
base64

auth_data A null-termination string containing the token data.

Return codes

All function calls at the OpenOSP interfaces use a standard set of return codes, to indicate that
the function completed successfully or to indicate the type of error that occurred.

When your application makes a call to OpenOSP, it must check the return value from the
function to determine whether it was successful.

Callback routines supplied by your application must use these return codes to indicate
success or error conditions to OpenOSP.

The following return code indicates that the function was successful. The caller can use the
values of any parameters that have been modified by the function.

OSP_SUCCESS The function completed successfully.

The following return codes indicate that the function was unsuccessful. The values of any
parameters modified by the function may not be valid, and the caller should not use them.

OSP_ERROR The function failed for an unspecified reason.
OSP_ERR_ALREADY_INIT OpenOSP was aready initiaized.
OSP_ERR_NOT_INIT OpenOSP was not initiaized.
OSP_ERR_BAD_HANDLE The supplied component handle parameter was not valid.
OSP_ERR_BAD_PARAM Oneor more of the parameters was not valid.
OSP_ERR_BAD REQUEST The supplied request data was not valid.
OSP_ERR BAD CORR The supplied correlator was not vaid.
OSP_ERR_MEMORY The function failed for lack of system memory.
OSP_ERR_NO_RESOURCES The function failed for lack of a system resource.
OSP ERR FILE The function failed because of afile access problem.
OSP_ERR_CONFIG OpenOSP was not configured correctly.

OSP_ERR_BIND_FAILED OpenOSP could not bind to the directory server.

15
OpenOSP Interface Specification

3.6

3.7

OSP_ERR_DENIED The supplied credentials were not acceptable.
OSP_ERR _MISSING _ATTR The supplied address did not carry atype attribute.
OSP_ERR_FAILED VERIFY Veification of the supplied data failed.

OSP_ERR _BUFSIZE The supplied buffer was not large enough.

Signal Handling

Each of the OpenOSP API functions sets the thread signal mask on entry to mask all maskable
signas, and restores the old mask on exit. Thisis done to ensure predictable operation of the
OpenOSP stack.

C implementation

All of the OSP APIs, together with their associated types and return codes, are defined in the
header file openosp.h. The CCM and RM APIs are defined in the header files ccmextrn.h and
rmextrn.h.

The OSPAPI modifier on the OSP APIsisincluded to alow explicit specification of the calling
conventions for these functions. It is defined in openosp.h.

16
OpenOSP Interface Specification

4.1

4.2

Control API

The Control API alows the settlement application to
initialize the OSP stack, start it listening for client connections, and terminate the stack
obtain statistical data about the stack.

The settlement application may aso register callbacks with the Control API. These calbacks
are used to

verify aclient when it connects
store received messages for non-repudiation purposes.

If the application registers a client verification callback, OpenOSP passes out details of each
connecting client, including any certificates received during SSL / TLS negotiation. The
application may then return a‘cooki€' (that is, some application-specific correlator), which the
server will pass back to the application on any subsequent callbacks. When the client
connection is closed, the server calls the gpplication’s disconnection callback (if oneis
registered) to allow the application to free any resources associated with the connection.

If no client verification callback is registered, the server will accept al non-secure connections,
and it will accept al secure connections subject to a consistent and within-date certificate chain.

OpenOSP calls the non-repudiation callback with al SMIME-signed OSP requests that it
receives. This allows the application to store a complete copy of the request.

osp_init

The settlement application calls this function to initialize the OpenOSP stack and its associated
libraries.

See section 3.2, Initidization sequence, for details of how this function must be used within
OpenOSP s initialization sequence.

OSP_RC OSPAPI osp_init(void);

Parameters:
None.
osp_listen

The settlement gpplication cdls this function to instruct OpenOSP to begin listening for
connections from clients.

See section 3.2, Initidization sequence, for details of how this function must be used within
OpenOSP s initialization sequence.

17
OpenOSP Interface Specification

4.3

4.4

OSP_RC OSPAPI osp_listen(void);
Parameters:

None.

osp_term

The settlement application calls this function to terminate the OpenOSP stack and its associated
libraries. This function blocks until the stack has completely terminated. Note that this means
that osp_term() may not be caled from within a callback.

See section 3.3, Termination sequence, for details of how this function must be used within
OpenOSP' s termination sequence.

OSP_RC OSPAPI osp_term(void);
Parameters:

None.

osp_client_verify_register

The settlement application calls this function to register two callback routines. One callback
handles verification of each connecting client, while the other receives a notification for each
disconnecting client. The gpplication does not need to register both callback routines; a null
pointer may be supplied in place of either function pointer if appropriate.

If the application issues more than one call to this function, the parameters provided in the most
recent cal override those provided in previous calls.

The application may deregister either or both callbacks at any time by caling this function with
anull pointer in place of the appropriate function pointer (and repesating the existing callback
function pointer for a callback that it still wishesto handle).

OSP_RC OSPAPI osp_client_verify_register
(POSP_CLI ENT_VERI FY_CALLBACK cv_cb,
POSP_CLI ENT_DI SCONNECT_CALLBACK cd_cb);

Parameters:

cv_cb A pointer to the settlement application’s client verification
callback routine. See section 4.5,
POSP_CLIENT_VERIFY_CALLBACK, for details of this
routine.

To deregidter the existing callback routine, the application
supplies anull pointer.

18
OpenOSP Interface Specification

4.5

cd_cb A pointer to the settlement gpplication’s client disconnection
callback routine. See section 4.6,
POSP_CLIENT_DISCONNECT_CALLBACK, for details of
this routine.

To deregigter the existing callback routine, the application
supplies anull pointer.

POSP_CLIENT_VERIFY_CALLBACK

The settlement application provides this function to receive details of each connecting OSP
client. 1t may accept or deny the connection attempt based on the information supplied. The
gpplication regigters this function during initidization by supplying the address of the function
onthe osp_client_verify register() call.

OpenOSP cdls this callback function only once for each new non-secure connection from an
OSP client. Only the parametersi p_address and ver _cooki e_pt r arevalid in this case; the
other parameters are set to null or zero. The vaue of the cookie pointed to by ver _cookie_ptr
isinitially null, and the application is free to set it to whatever value is desired. The application
may then use the cookie as a corrator to identify this connection in subsequent callbacks
across the application API.

OpenOSP calls this callback function one or more times for each new secure connection from
an OSP client. Inthis case, each call suppliesinformation about one of the certificates
presented by the client during the SSL / TLS negotiation. The certificates are supplied in order,
with the root certificate in the first call and the client’s certificate in the last call.

Thefirst time this function is called for a particular secure connection, the cookie is set in the
same way as described above for non-secure connections. On subsequent calls to this function
for the same connection, the cookie value pointed to by ver _cooki e_pt r iSthe same as that
returned on the previous cal. The gpplication may change the value of the cookie on each call

if desired. The last returned cookie value is saved for later use on the application API callbacks
and on the disconnection callback.

The application must return OSP_SUCCESS if the client’s credentials are acceptable, and
OSP_ERR_DENIED otherwise. If the application returns OSP_ERR_DENIED, the client’s
connection attempt is denied and OpenOSP calls the disconnection callback, if oneis registered.
OpenOSP will not make further calls to the client verification callback for a connection that has
been denied.

OSP_RC (OSPAPI *POSP_CLI ENT_VERI FY_CALLBACK)

(unsigned | ong i p_address,

voi d **yer_cookie_ptr,

char *cert,

unsi gned i nt cert_len,

unsi gned i nt chain_I en,

unsi gned i nt chai n_pos);
Parameters.
ip_address The IP address of the client.

19
OpenOSP Interface Specification

4.6

4.7

ver_cookie_ptr A pointer to a verification ‘cooki€’ that the gpplication may fill
inwith a private value. OpenOSP will pass this vaue on all
subsequent callbacks across the application API.

cert A pointer to the certificate to be checked. The certificateisin
ASN.1 DER-encoded X.509 format.

cert_len The number of bytesin the certificate.

chain_len The total number of certificates in the chain, including the

clients certificate and the root certificate.

chain_pos The position of the supplied certificate in the client’s chain of
certificates; O indicates the client’s certificate.

POSP_CLIENT_DISCONNECT_CALLBACK

The settlement application provides this function so that OpenOSP can inform it when an OSP
client has disconnected. The application registers this function during initidization by
supplying the address of the function on the osp_client_verify_register() call.

OpenOSP then calls this callback function each time an OSP client disconnects from the server.
This alows the gpplication to free any resources associated with the client connection.

Thisfunction isaso called if the application denies a connection attempt by returning
OSP_ERR_DENIED from the client verification callback.

voi d (OSPAPI *POSP_CLI ENT_DI SCONNECT_CALLBACK)
(OSP_CLIENT_ID *client_id);

Parameters:

client_id A structure containing the client |P address and the * cooki€
from any earlier client verification.

osSp_non_repudiation_register

The settlement application calls this function to register a calback routine that will handle data
for non-repudiation. The gpplication does not need to support non-repudiation; if it does not
cal this function, the server will not provide this information.

OpenOSP then calls the callback routine each time it processes an SMIME-signed OSP request.
This alows the application to store a copy of the request data.

If the application issues more than one call to this function, the parameter provided in the most
recent call overrides those provided in previous cals. The application may deregister the
calback at any time by caling this function with anull pointer in place of the function pointer.

OSP_RC OSPAPI osp_non_repudi ation_register
(POSP_NON_REPUDI ATI ON_CALLBACK nr_cb);

20
OpenOSP Interface Specification

4.8

4.9

Parameters:

nr_cb A pointer to the settlement application’s non-repudiation
callback routine. See section 4.8,
POSP_NON_REPUDIATION_CALLBACK, for detailsof this
routine.

To deregister the existing calback routine, the application
supplies anull pointer.

POSP_NON_REPUDIATION_CALLBACK

The settlement application provides this function to handle non-repudiation data, and registers it
during initidization by supplying the address of the function on the
osp_non_repudiation register() call.

OpenOSP then calls this callback function each time it processes an SSMIME-signed OSP
request. The parameters to the function include a pointer to the request data buffer, which
contains al of the HTTP headers, the request itself, and the SSMIME signature. This allows the
settlement application to store a complete copy of the request.

voi d (OSPAPI *POSP_NON_REPUDI ATl ON_CALLBACK)
(char *puf fer,
unsi gned int buf _I en,
OSP_CLIENT_ID *client_id)

Parameters:

buffer A pointer to the complete HTTP request as it was received
from the client.

buf len The length of the supplied buffer.

client_id A structure containing the client |P address and the * cooki€

from any earlier client verification.

oSp_get _stack_ statistics
The settlement application calls this function to gather statistics about the number of
connections (both secure and non-secure) and requests received by OpenOSP since it was
initidized.

OSP_RC OSPAPI osp_get_stack_statistics(OSP_STATS *stats);

typedef struct osp_stats

{

unsi gned int ssl _conns; /'l secure connections received
unsi gned int nonssl _conns; /'l non-secure connections received
unsi gned int osp_requests; /1 total OSP requests received
unsi gned int scep_requests; [/ total SCEP requests received
} OSP_STATS
21

OpenOSP Interface Specification

Parameters:

stats

stats.sd_conns

stats.nonsd_conns

Stats.osp_requests

stats.scep_requests

A pointer to a statistics structure. OpenOSP fillsin this
structure with statistics information, as follows:

The total number of secure connections established with OSP
clients since OpenOSP was initidized.

The total number of non-secure connections established with
OSP clients since OpenOSP was initiaized.

The total number of OSP requests received from OSP clients
since OpenOSP was initidized.

The total number of SCEP requests received from SCEP clients
since OpenOSP was initidized. See [SCEP] for full details of
this protocal.

22
OpenOSP Interface Specification

5.1

5.2

Usage Metering API

The Usage Metering (UM) APl alows OpenOSP to pass usage information to your settlement
application. The information may be passed into a permanent storage facility (for later retrieval
by an offline settlement application), or directly to an external usage metering application.

OSp_um_register

The application calls this function to register a callback routine that will handle information
from OSP Usagel ndication messages. OpenOSP then callsthis UM callback routine each time
it receives a Usagel ndication from an OSP client.

If the application issues more than one call to this function, the parameter provided in the most
recent cal overrides those provided in previous calls.

The application may deregister the cdlback at any time by caling this function with a null
pointer in place of the function pointer. After deregistering the callback, the application will not
receive any further usage information unless it registers a new UM callback routine.

OSP_RC OSPAPI osp_um regi st er(POSP_UM CALLBACK um cb);
Parameters:

um_cb A pointer to the settlement application’ s usage metering
callback routine. See section 5.2, POSP_UM_CALLBACK,
for details of this routine.

To deregister the existing callback routine, the application
supplies anull pointer.

POSP_UM_CALLBACK

The application provides this function to handle information from OSP Usagel ndication
messages, and registers it during initialization by supplying the address of the function on the
osp_um_register() call.

OpenOSP then calls this function each time it receives a Usagel ndication from an OSP client.
The parameters passed to the routine provide usage information for a call that has been made
using the OSP server.

The settlement application must respond to the callback by calling osp_um_respons().

23
OpenOSP Interface Specification

OSP_RC (OSPAPI *POSP_UM CALLBACK) (OSP_CORRELATOR

char *timestanp,

char *role,

char *transaction_id,
OSP_CALL_I D *cal | _id,
OSP_ADDRESS *source_i nfo,
OSP_ADDRESS *source_alt _list,
OSP_ADDRESS *dest _i nfo,
OSP_ADDRESS *dest _alt_list,

OSP_USAGE_DETAI L
OSP_CLI ENT_I D

corr,

*use_detail _list,
*client_id);

For details of the data structures OSP_CALL_ID, OSP_ADDRESS, OSP_USAGE_DETAIL,
and OSP_CLIENT _ID, see section 3.4, Common data structures and types.

Parameters:

corr

timestamp

role

transaction_id

cdl_id

source _info

source at list

dest_info

A correlator to be passed back to OpenOSP on the subsequent
call to osp_um_response().

A null-terminated string containing the message' s timestamp.
Thisisin the format YYYY-MM-DDThh:mm:ssZ (the T and Z
are literal characters used as delimiters).

A null-terminated string describing the client’s role in the call.
This may take one of the following values:

source The client was the source.
destination The client was the destination.

other The client was a system other than the source
or the degtination.

A null-terminated string containing the transaction identifier
provided by the client from its previous authorization by the
server. Thiswas provided by the application on a previous
osp_ar_auth response() call.

A structure containing the H.323 cdll ID provided by the client.

A structure containing details about the source of the call, e.g.
the originating phone number.

A pointer to thefirst itemin alist of OSP_ADDRESS
structures, each of which contains alternate information about
the source of the call, e.g. the address of the source gateway.

A structure containing details about the destination of the cal,
e.g. the destination phone number.

24

OpenOSP Interface Specification

5.3

dest_alt_list

use detail_lis

dient id

A pointer to thefirst item in alist of OSP_ADDRESS
structures, each of which contains alternate information about
the destination, e.g. the address of the termination gateway.

A pointer to thefirst itemin alist of OSP_USAGE _DETAIL
structures, each of which contains the usage details of the call,
e.g. the duration of the call and the reason it ended.

A structure containing the client | P address and the ‘ cooki€’
from any earlier client verification.

OSp_um_response

When OpenOSP calls the settlement application’ s implementation of
POSP_UM_CALLBACK(), the application must respond by calling osp_um_response(). This
function uses the information provided to construct an OSP UsageConfir mation message, to be
sent to the OSP client from which the indication originated. This indicates acceptance or
reglection of the information in the indication.

OSP_RC OSPAPI osp_um response(OSP_CORRELATOR corr,

Parameters:

corr

status

audit_signa

sig_required

OSP_STATUS *status,
unsi gned i nt audi t _si gnal ,
unsi gned i nt sig_required);

The correlator supplied by OpenOSP on the corresponding
usage metering callback.

A pointer to an OSP_STATUS structure that specifies the
status code and description that should be used to form the
UsageConfirmation response.

This parameter controls the use of Cisco’'s AuditSignal
extenson to OSP. Set it to 0 if OpenOSP should not include an
AuditSignal element in the response. Otherwise, the following
vaues are vdid:

OSP_UM_AUDIT_START: include an AuditSignal
element in the response that tells the client to sign future
Usagel ndication messages using SMIME.

OSP_UM_AUDIT_STOP: include an AuditSignal
element in the response that tells the client not to sign
future Usagel ndication messages usng SMIME.

Set this parameter to 1 if the server should SMIME sign the
responsg, O if it should not.

For details of the OSP_STATUS structure, see section 3.4, Common data structures and types.

25

OpenOSP Interface Specification

6.1

Authorization and Routing API

The Authorization and Routing (AR) API alows OpenOSP to request authorization and routing
information from your application for acall. This AP isaso used to pass pricing and
capabilities information (gathered from OSP clients) to your application, for use in routing and
authorization decisions.

Authorization and pricing are grouped into the same API because both sets of functions need to
access the routing and pricing database.

Information from five different OSP requests and indications is handled at this API, and each
request or indication is associated with a different callback routine provided by the application.
The application can choose to support only a subset of these if appropriate.

AuthorizationRequest: OpenOSP can request the gpplication to provide authorization and
routing information for a call.

Authorizationlndication: OpenOSP can request the application to verify authorization
information received by a client that is accepting an incoming call.

ReauthorizationRequest: OpenOSP can request the application to extend the authorization
period for an existing call (for example if additional payments have been made to extend a
prepaid cal).

Pricingl ndication: OpenOSP can provide information to the application about the pricing
for calls routed through different gateways (for use by the application in determining the
best route for a call).

Capabilitiesl ndication: OpenOSP can provide information to the application about the
capabilities of different gateways (for use by the application in determining the best route
for acall).

OSp_ar_register

The application calls this function to register callback routines that will handle each of the five
OSP requests described above. The application does not need to support al five; it can provide
callback routines for only the requests it needs to handle.

OpenOSP then calls the appropriate callback routine each time it receives a request of atype for
which the application has registered.

If the application issues more than one cdll to this function, the parameters provided in the most
recent call override those provided in previous cals.

The application may deregister one or more of the callbacks at any time by calling this function
with null pointersin place of the appropriate function pointers (and repeating the existing
callback function pointers for any callbacks that it still wishesto handle).

26
OpenOSP Interface Specification

OSP_RC OSPAPI osp_ar_register(POSP_AR_AUTH_RQ CALLBACK ar_cb,
POSP_AR_AUTH_I ND_CALLBACK ai _cb,
POSP_AR REAUTH_RQ CALLBACK ra_ch,
POSP_AR_PRI CI NG | ND_CALLBACK pi _cb,
POSP_AR_CAPS_| ND_CALLBACK cp_chb);

Parameters:

ar_cb A pointer to the authorization request callback routine, or a null
pointer if the application does not support authorization
requests. See section 6.2,
POSP_AR_AUTH_RQ_CALLBACK, for details of this
routine.

a_cb A pointer to the authorization indication calback routine, or a
null pointer if the gpplication does not support authorization
indications. See section 6.4,
POSP_AR_AUTH_IND_CALLBACK, for details of this
routine.

ra_cb A pointer to the reauthorization request callback routine, or a
null pointer if the application does not support reauthorization
requests. See section, 6.6,
POSP_AR_REAUTH_RQ_CALLBACK for details of this
routine.

pi_cb A pointer to the pricing indication callback routine, or anull
pointer if the application does not support pricing indications.
See section 6.8, POSP_AR_PRICING_IND_CALLBACK, for
details of this routine.

cp_ch A pointer to the capabilities indication calback routine, or a
null pointer if the gpplication does not support capabilities
indications. See section 6.10,
POSP_AR_CAPS IND_CALLBACK, for details of this
routine.

POSP_AR_AUTH_RQ CALLBACK

The application provides this function to handle information from OSP AuthorizationRequest
messages, and registers it during initidization by supplying the address of the function on the
osp_ar_register() cal.

OpenOSP then calls this callback routine each time it receives an AuthorizationRequest from
an OSP client. The parameters passed to the routine provide information about the request.

The application must respond to the callback by calling osp_ar_auth_response().

27
OpenOSP Interface Specification

OSP_RC (OSPAPI *POSP_AR_AUTH_RQ CALLBACK)

(OSP_CORRELATOR
char
OSP_CALL ID
OSP_ADDRESS
OSP_ADDRESS
OSP_ADDRESS
OSP_ADDRESS

OSP_SERVI CE_I NFO

char
OSP_TOKEN
OSP_AUTH_I NFO
OSP_CLIENT_ID

corr,
*timestanp,
*call _id_Ilist,

*source_i nfo,
*source_alt _list,
*dest _i nfo,

*dest _alt_list,
*service,

*max_dests,
*token_|ist,

*aut hentication_list,
*client_id);

For details of the data structures OSP_CALL_ID, OSP_ADDRESS, OSP_SERVICE_INFO,
OSP_TOKEN, OSP_AUTH_INFO and OSP_CLIENT _ID, see section 3.4, Common data

structures and types.

Parameters:

corr

timestamp

cdl_id ligt

source_info

source at list

dest_info

dest_dlt list

service

A correlator to be passed back to OpenOSP on the subsequent

call to osp_ar_auth_response().

A null-terminated string containing the message' s timestamp.
Thisisasdtring in the format YYYY-MM-DDThh:mm:ssZ (the T
and Z are literal characters used as delimiters).

A pointer to thefirst item in alist of OSP_CALL_ID
structures, each of which contains an H.323 call 1D provided

by the client.

A structure containing details about the source of the call, e.g.

the originating phone number.

A pointer to thefirst itemin alist of OSP_ADDRESS
structures, each of which contains aternate information about
the source of the call, e.g. the address of the source gateway .
This may contain subscriber information, in which case the
settlement application should authenticate and authorize the

subscriber.

A dtructure containing details about the destination of the cal,

e.g. the destination phone number.

A pointer to the first itemin alist of OSP_ADDRESS
structures, each of which contains alternate information about
the destination, e.g. the address of the termination gateway.

A pointer to an OSP_SERVICE_INFO structure describing the
type of servicerequested. A null pointer indicates basic
internet telephony service, which is the only type of service

currently defined by [OSP].

28

OpenOSP Interface Specification

max_dests The maximum number of destinations to be returned.

token_list A pointer to thefirst itemin alist of OSP_TOKEN structures,
each of which contains a authorization token.

authentication_list A pointer to thefirst item in alist of OSP_AUTH_INFO
structures, each of which contains a subscriber authentication
token.

client_id A structure containing the client | P address and the ‘ cooki€’

from any earlier client verification.

osp_ar_auth_response

When OpenOSP calls the settlement application’ s implementation of

POSP_AR AUTH_RQ CALLBACK(), the application must respond by calling
osp_ar_auth_response(). This function uses the information provided to construct an OSP
AuthorizationResponse message, to be sent to the OSP client from which the request
originated. This provides routing information to alow the OSP client to route the requested
cdl, and authorization information for the call.

OSP_RC OSPAPI osp_ar_aut h_response(OSP_CORRELATOR corr,

OSP_STATUS *status,

char *transaction_id,
OSP_TOKEN *token_li st,
OSP_DESTI NATI ON *dest _|i st

unsi gned i nt sig_required);

For details of the data structures OSP_STATUS, OSP_DESTINATION and OSP_TOKEN, see
section 3.4, Common data structures and types.

Parameters:

corr The correlator supplied by OpenOSP on the corresponding
authorization request callback.

status A pointer to an OSP_STATUS structure that specifies the
status code and description that should be used to form the
AuthorizationResponse response.

transaction_id A null-terminated string containing an identifier assigned by
the application to this authorization. The format of this
parameter is defined by the application; OpenOSP does not
make use of it, but passesit back to the application on
subsequent calls in order to identify the transaction.

token list A pointer to thefirgt item in alist of OSP_TOKEN structures,

each of which contains an authorization token that is valid for
any of the destinations in the dest_list parameter.

29
OpenOSP Interface Specification

6.4

dest_list A pointer to thefirst item in alist of OSP_DESTINATION
structures, each of which contains details of a destination to
which service has been authorized.

sig_required Set this parameter to 1 if the server should SMIME sign the
response, O if it should not.

POSP_AR_AUTH_IND_CALLBACK

The application provides this function to handle information from OSP
Authorizationl ndication messages, and registers it during initiaization by supplying the
address of the function on the osp_ar_register() call.

OpenOSP then calls this function each time it receives an Authorizationl ndication from an
OSP client (requesting the application to verify authorization information received by a client
that is accepting an incoming call). The parameters passed to the routine provide information
about the indication.

The application must respond to the callback by calling osp_ar_auth_confirm().

OSP_RC (OSPAPI *POSP_AR_AUTH_| ND_CALLBACK)
(OSP_CORRELATOR corr,

char *timest anp,

char *role,

OSP_CALL_I D *cal | _id,
OSP_ADDRESS *sour ce_i nfo,
OSP_ADDRESS *source_alt _list,
OSP_ADDRESS *dest _i nf o,
OSP_ADDRESS *dest _alt_list,
OSP_SERVI CE_I NFO *servi ce,
OSP_TOKEN *aut h_t oken_li st,

OSP_CLI ENT_I D *client_id);

For details of the data structures OSP_CALL_ID, OSP_ADDRESS, OSP_SERVICE_INFO,
OSP_TOKEN, and OSP_CLIENT _ID, see section 3.4, Common data structures and types.

Parameters:

corr A correlator to be passed back to OpenOSP on the subsequent
cal to osp_ar_auth_confirm().

timestamp A null-terminated string containing the message’ s timestamp.

role A null-terminated string describing the client’srolein the call.

This may take one of the following values:
source The client is the source.
destination The client is the destination.

other The client is a system other than the source
or the destination.

30
OpenOSP Interface Specification

6.5

cdl_id

source_info

source dt list

dest_info

dest_alt_list

service

auth_token list

dient_id

A structure containing the H.323 call ID provided by the client.

A pointer to a structure containing details about the source of
the cdll, e.g. the originating phone number.

A pointer to thefirst itemin alist of OSP_ADDRESS
structures, each of which contains alternate information about
the source of the call, e.g. the address of the source gateway.

Pointer to a structure containing details about the destination of
the call, e.g. the destination phone number.

A pointer to thefirst item in alist of OSP_ADDRESS
structures, each of which contains aternate information about
the destination, e.g. the address of the termination gateway.

A pointer to an OSP_SERVICE_INFO structure describing the
type of service requested. A null pointer indicates basic
internet telephony service, which is the only type of service
currently defined by [OSP].

A pointer to the first itemin alist of OSP_TOKEN structures,
each of which contains an authorization token.

A structure containing the client 1P address and the ‘ cooki€’
from any earlier client verification.

osp_ar_auth_confirm

When OpenOSP calls the settlement application’ s implementation of
POSP_AR_AUTH_IND_CALLBACK(), requesting the application to verify authorization
information received by a client that is accepting an incoming call, the application must respond
by cdling osp_ar_auth_confirm(). This function uses the information provided to construct an
OSP AuthorizationConfirmation message, to be sent to the OSP client from which the
indication originated. Thisindicates whether or not the authorization in the indication is valid.

OSP_RC OSPAPI osp_ar _auth_confirm OSP_CORRELATOR corr,

Parameters:

corr

status

OSP_STATUS *stat us,

char *valid_after,
char *valid_until,
unsi gned i nt sig_required);

The correlator supplied by OpenOSP on the corresponding
authorization indication callback.

A pointer to an OSP_STATUS structure that specifies the

status code and description that should be used to form the
AuthorizationConfir mation response.

31

OpenOSP Interface Specification

6.6

valid_after A null-terminated string containing the time that authorization
begins, anull pointer means immediately.

vaid_until A null-terminated string containing the time that authorization
ends; anull pointer means that it is indefinite.

sig_required Set this parameter to 1 if the server should SMIME sign the
responsg, O if it should not.

For details of the data structure OSP_STATUS, see section 3.4, Common data structures and
types.

POSP AR REAUTH RQ CALLBACK

The application provides this function to handle OSP ReauthorizationRequest messages, and
registers it during initialization by supplying the address of the function on the osp_ar_register()
cal.

OpenOSP then calls this callback routine each time it receives aReauthorizationRequest from
an OSP client. The parameters passed to the routine provide information about the request.

The application must respond to the callback by caling osp_ar_reauth_response().

typedef OSP_RC (OSPAPI *POSP_AR REAUTH RQ CALLBACK)

(OSP_CORRELATOR corr,
char *tinmestanp,
char *rol e,
OSP_CALL_ID *cal | _id,
OSP_ADDRESS *source_i nfo,
OSP_ADDRESS *source_alt _list,
OSP_ADDRESS *dest _i nf o,
OSP_ADDRESS *dest _alt_list,
char *transaction_id,
OSP_USAGE_DETAIL *use_detail _list,
OSP_TOKEN *aut h_t oken_li st,
OSP_CLI ENT_I D *client_id);

For details of the data structures OSP_CALL_ID, OSP_ADDRESS, OSP_USAGE_DETAIL,
OSP_TOKEN, and OSP_CLIENT _ID, see section 3.4, Common data structures and types.

Parameters:

corr A correlator to be passed back to OpenOSP on the subsequent
call to osp_ar reauth response().

timestamp A null-terminated string containing the message’ s timestamp.

role A null-terminated string describing the client’srolein the call.

This may take one of the following values:
source The client is the source.
destination The client is the destination.

32
OpenOSP Interface Specification

6.7

cdl_id

source_info

source at list

dest_info

dest_alt_list

transaction id

use detal_list

auth_token list

dient id

other The client is a system other than the source
or the degtination.

Structure containing the H.323 call 1D provided by the client.

Pointer to a structure containing details about the source of the
cdl, eg. the originating phone number.

A pointer to thefirst itemin alist of OSP_ADDRESS
structures, each of which contains alternate information about
the source of the call, e.g. the address of the source gateway.

Pointer to a structure containing details about the destination of
the call, e.g. the degtination phone number.

A pointer to thefirst itemin alist of OSP_ADDRESS
structures, each of which contains alternate information about
the degtination, e.g. the address of the termination gateway.

A null-terminated string containing the transaction identifier
provided by the client from its previous authorization by the
Server.

A pointer to thefirst item in alist of OSP_USAGE_DETAIL
structures, each of which contains usage details of the call, e.g.
the duration of the call and the reason it ended.

A pointer to thefirst itemin alist of OSP_TOKEN structures,
each of which contains an authorization token.

A structure containing the client |P address and the * cooki€
from any earlier client verification.

osp_ar_reauth_response

When OpenOSP calls the settlement application’ s implementation of
POSP_AR_REAUTH_RQ_CALLBACK(), the application must respond by calling
osp_ar_reauth_response(). This function uses the information provided to construct an OSP
ReauthorizationResponse message, to be sent to the OSP client from which the request
originates. This indicates acceptance or rejection of the request.

OSP_RC OSPAPI osp_ar_reaut h_response(OSP_CORRELATOR corr,

OSP_STATUS *st at us,

char *transaction_id,
OSP_DESTI NATI ON *dest _Ili st,

unsi gned i nt sig_required);

For details of the data structures OSP_STATUS and OSP_DESTINATION, see section 3.4,
Common data structures and types.

33

OpenOSP Interface Specification

6.8

Parameters:

corr The correlator supplied by OpenOSP on the corresponding
reauthorization request callback.

status A pointer to an OSP_STATUS structure that specifies the
status code and description that should be used to form the
ReauthorizationResponse response.

transaction_id A null-terminated string containing an identifier assigned by
the gpplication to this reauthorization. The format of this
parameter is defined by the application; OpenOSP does not
make use of it, but passesit back to the application on
subsequent callsin order to identify the transaction.

dest_list A pointer to the first item in alist of OSP_DESTINATION
structures, each of which contains details of a destination to
which service has been authorized.

sig_required Set this parameter to 1 if the server should SMIME sign the

response, O if it should not.

POSP_AR_PRICING_IND_CALLBACK

The application provides this function to handle OSP Pricingl ndication messages, and registers
it during initidization by supplying the address of the function on the osp_ar_register() call.

OpenOSP then calls this callback routine each time it receives a Pricingl ndication from an
OSP client. The parameters passed to the routine provide information about the indication.

The application must respond to the callback by caling osp_ar_pricing_confirm().

OSP_RC (OSPAPI *POSP_AR_PRI CI NG_| ND_CALLBACK)
(OSP_CORRELATOR corr,

char *timestanp,
OSP_ADDRESS *source_i nf o,
OSP_ADDRESS *dest _i nfo,
char *currency,
char *amount ,

char *increment,
char *unit,
OSP_SERVI CE_|I NFO *servi ce,
char *valid_after,
char *valid_until,

OSP_CLI ENT_I D *client_id);

For details of the data structures OSP_ADDRESS, OSP_SERVICE_INFO and
OSP_CLIENT_ID, see section 3.4, Common data structures and types.

Parameters:

corr A correlator to be passed back to OpenOSP on the subsequent
cal to osp_ar_pricing_confirm().

34
OpenOSP Interface Specification

6.9

timestamp

source_info

dest_info

currency

amount

increment

unit

service

valid_after

valid_unti

dient_id

A null-terminated string containing the message’ s timestamp.

Pointer to a structure containing details about the source of the
cdl, e.g. the originating phone number.

Pointer to a structure containing details about the destination of
the call, e.g. the destination phone number.

A null-terminated string describing the currency used for
pricing.

A null-terminated string containing the price of the number of
units specified in ‘increment.’

A null-terminated string containing the number of usage units
that are available for the specified amount of currency.

A null-terminated string containing the units of use by which
pricing is measured, for example, seconds, packets, bytes.

A pointer to an OSP_SERVICE_INFO structure describing the
type of service. A null pointer indicates basic internet
telephony service, which isthe only type of service currently
defined by [OSP].

A null-terminated string containing the time that new pricing
begins; anull pointer means immediately.

A null-terminated string containing the duration of pricing
vdidity; anull pointer means that it is indefinite.

A structure containing the client | P address and the ‘ cooki€
from any earlier client verification.

Example: If ‘currency’ is*USD,” ‘amount’ is ‘0.5, ‘increment’ is‘60,” and ‘unit’ is‘s,” this
indicates a cost of 50 cents per minute to the destination specified in ‘dest_info.’

osp_ar_pricing_confirm

When OpenOSP calls the settlement application’s implementation of
POSP_AR_PRICING_IND_CALLBACK(), the application must respond by calling
osp_ar_pricing_confirm(). This function uses the information provided to construct an OSP
PricingConfirmation message, to be sent to the OSP client from which the indication
originated. This indicates acceptance or rgjection of the information in the indication.

OSP_RC OSPAPI osp_ar_pricing_confirm OSP_CORRELATOR corr,

OSP_STATUS *status,
unsi gned i nt sig_required);
35

OpenOSP Interface Specification

6.10

Parameters:

corr The correlator supplied by OpenOSP on the corresponding
pricing indication callback.

status A pointer to an OSP_STATUS structure that specifies the
status code and description that should be used to form the
PricingConfirmation response.

sig_required Set this parameter to 1 if the server should SMIME sign the
responsg, O if it should not.

POSP_AR_CAPS_IND_CALLBACK

The application provides this function to handle OSP Capabilitiesl ndication messages, and
registers it during initialization by supplying the address of the function on the osp_ar_register()
cal.

OpenOSP then calls this callback routine each time it receives a Capabilitiesl ndication from
an OSP client. The parameters passed to the routine provide information about the indication.

The application must respond to the callback by calling osp_ar_caps_confirm().
OSP_RC (OSPAPI *POSP_AR_CAPS_| ND_CALLBACK)

(OSP_CORRELATOR corr,
OSP_DEVI CE_I NFO *dev_info_list,

char *osp_version,
OSP_CAPS *caps_list,
OSP_RESOURCE *resource_list,

OSP_CLI ENT_I D *client_id);

For details of the data structure OSP_CLIENT _ID, see section 3.4, Common data structures and
types.

Parameters:

corr A correlator to be passed back to OpenOSP on the subsequent
call toosp_ar_caps_confirm().

dev_info ligt A pointer to thefirst item in alist of OSP_DEVICE_INFO
structures, each of which describes an address type that is
supported by the client.

0osp_version A null-terminated string containing the highest version of the
OSP protocol that the client supports.

caps list A pointer to the first item in alist of OSP_CAPS structures,

each of which describes an OSP service supported by the client
e.g. Authorizationl ndication, Usagel ndication.

36
OpenOSP Interface Specification

resource_list A pointer to the first item in alist of OSP_RESOURCE
structures, each of which describes a protocol that is supported
by the client.

client_id A structure containing the client | P address and the ‘ cooki€
from any earlier client verification.

6.10.1 OSP_DEVICE_INFO

This structure provides data corresponding to the Devicel nfo element described in [OSP].

typedef struct osp_device_info
{
struct osp_device_info *next;
char *type;
char *dat a;
} OSP_DEVI CE_I NFO,

Members:

next A pointer to the next item if this structureisin alist, or anull
pointer if there are no further items.

type A null-terminated string describing the type of the device. The
following vaues are vdid: €164, h323, url, email, trangport,
serialnumber, or customerld.

data A null-terminated string containing the data supplied in the

Devicel nfo element.
6.10.2 OSP_CAPS
This structure contains the name of a single OSP service.

typedef struct osp_caps

{

struct osp_caps *next;

char *cap_nane;
} OSP_CAPS;
Members:
next A pointer to the next item if this Structureisin alist, or anull

pointer if there are no further items.
cap_name A null-terminated string that contains the name of a particular

OSP service; for example, AuthorizationRequest or
Usagel ndication.

6.10.3 OSP_RESOURCE

This structure provides data corresponding to the Resour ces element described in [OSP).

37
OpenOSP Interface Specification

typedef struct osp_resource

{

struct osp_resource *next;

OSP_DATA_RATE *data_rate;

char *al most _out ;
OSP_SUPP_PROTOCOL *supp_protocol _list;

} OSP_RESOURCE;
Member s:

next

data rate

amost_out

supp_protocol_list

A pointer to the next item if this structureisin alist, or anull
pointer if there are no further items.

A pointer to thefirst itemin alist of OSP_DATA_RATE
structures, each of which contains details of a supported data
rate.

A null-terminated string indicating whether or not the
originating client is almost out of resources. Thisfield should
take one of the values “true” and “false”.

A pointer to the firgt itemin alist of OSP_SUPP_PROTOCOL
structures, each of which contains details of a supported
protocol.

6.10.4 OSP_SUPP_PROTOCOL

This structure provides data corresponding to the Suppor tedPr otocol element described in

[OSP].

typedef struct osp_supp_protocol

{

struct osp_supp_protocol *next;

OSP_PROTOCOL_TYPE
OSP_DATA_RATE
} OSP_SUPP_PROTOCOL;

Members:

next

type

data rates

6.10.5 OSP_DATA_RATE

*type;
*data_rates;

A pointer to the next item if this Structureisin alist, or anull
pointer if there are no further items.

A null-terminated string describing the type of protocol. The
following vaues are valid: H323, SIP, SS7 or Other.

A pointer to thefirst itemin alist of OSP_DATA_RATE
structures, each of which contains details of an available data
rate for this protocol.

This structure provides data corresponding to the DataRate element described in [OSP].

38

OpenOSP Interface Specification

6.11

typedef struct osp_data_rate

{
struct osp_data_rate *next;
char *num_channel s;
char *pbandwi dt h;

} OSP_DATA RATE;

M embers:

next A pointer to the next item if this Structureisin alist, or anull
pointer if there are no further items.

num_channgls A null-terminated string indicating the number of channels
available. This parameter may be null, which indicates that the
number of channels was not specified.

bandwidth A null-terminated string indicating the bandwidth, in bitsy/sec,

of each channdl, or the total bandwidth if the number of
channelsis not specified.

osp_ar_caps_confirm

When OpenOSP cdlls the settlement application’ s implementation of
POSP_AR_CAPS_CALLBACK(), the application must respond by calling

osp_ar_caps _confirm(). This function uses the information provided to construct an OSP
CapabilitiesConfir mation message, to be sent to the OSP client from which the indication
originated. This alows the application to specify the OSP capabilities that clients should use to
communicate with the server.

OSP_RC OSPAPI osp_ar_caps_confirm OSP_CORRELATOR corr,
OSP_STATUS *status,
char *osp_version,
OSP_SERVI CE *service_list,
OSP_CERTI FI CATE *cert _|ist,
char *devi ce_i d,
unsi gned i nt sig_required);

Parameters:

corr The correlator supplied by OpenOSP on the corresponding
capabilities indication callback.

status A pointer to an OSP_STATUS structure that specifies the
status code and description that should be used to form the
CapabilitiesConfir mation response.

0osp_version A null-terminated string containing the negotiated version of
the OSP protocol that will be used.

sarvice list A pointer to the first itemin alist of OSP_SERVICE
structures, each of which contains details of a particular service
supported by the OSP server.

39
OpenOSP Interface Specification

cert_list

device id

sig_required

6.11.1 OSP_SERVICE

A pointer to thefirst itemin alist of OSP_CERTIFICATE
structures, each of which contains a public key certificate. The
first certificate in the list is the certificate that the server will
use to sign any authorization tokens that it supplies. Thisis
followed by any intermediate certificates, in order, and the list
concludes with the root authority’ s certificate.

Server device identifier.

Set this parameter to 1 if the server should SMIME sign the
responsg, O if it should not.

This structure provides data corresponding to the OSPSer vice element described in [OSP)].

typedef struct osp_service

{

struct osp_service *next;

char
OSP_SERVI CE_URL
unsi gned i nt
} OSP_SERVI CE
M embers:

next

capability

url_list

sig_required

*capability;
*url _list;
sig_required;

A pointer to the next item if this Structure isin alist, or anull
pointer if there are no further items.

A null-terminated string containing the name of an OSP service
supported by the server e.g. Authorizationlndication,
Usagel ndication.

A pointer to thefirgt itemin alist of OSP_SERVICE URL
structures, each of which contains a URL that the client may
use to obtain the OSP service specified in the ‘ capability’
member. This member may be null.

1 indicates that the client should sign requests for the service
specified in *capability” when it sends them to the URLs
identified in ‘url_list.” This member is otherwise set to zero.

6.11.2 OSP_SERVICE_URL

This structure contains a single URL that points to an OSP server.

typedef struct osp_service_url

{

struct osp_service_url *next;

char
} OSP_SERVI CE_URL;

*ur |

40

OpenOSP Interface Specification

Member s:

next A pointer to the next item if this Structure isin alist, or anull
pointer if there are no further items.

url A null-terminated string that contains a URL, which identifies
aparticular OSP server.

6.11.3 OSP_CERTIFICATE
This structure provides data corresponding to the Certificate element described in [OSP].
typedef struct osp_certificate

{

struct osp_certificate *next;

char *encodi ng;
i nt cert_len;
char *cert_data;

} OSP_CERTI FI CATE;

Members:
next A pointer to the next item if this Sructureisin alist, or anull
pointer if there are no further items.
encoding A null-terminated string that describes the encoding in which
the certificate is stored. One of the following:
cdata (XML CDATA format)
base64
cert_len The size in bytes of the certificate data.
cert_data A string containing the certificate data.
41

OpenOSP Interface Specification

7.1

7.2

Subscriber Authentication API

The Subscriber Authentication (SA) API alows OpenOSP to request your application to
authenticate subscribers and check whether they are entitled to use the facilities of the OSP
server (for example to authenticate users with mobile telephones who are caling from outside
their usua network, and to verify whether they are permitted to do so).

OSp_sa register

The application calls this function to register a callback routine that will handle information
from OSP Subscriber AuthenticationRequest messages. OpenOSP then callsthis SA callback
routine each time it recelves a Subscriber AuthenticationRequest from an OSP client.

If the application issues more than one call to this function, the parameter provided in the most
recent call overrides those provided in previous calls.

The application may deregister the callback at any time by calling this function with a null
pointer in place of the function pointer. After deregistering the callback, the application will not
receive any further subscriber authentication requests unless it registers anew SA callback
routine.

OSP_RC OSPAPI osp_sa_register(POSP_SA CALLBACK sa_ch);
sa _cb A pointer to the settlement application’s SA callback routine.
See section 7.2, POSP_SA_CALLBACK, for details of this
routine.

To deregister the existing callback routine, the application
supplies anull pointer.

POSP_SA_CALLBACK

The application provides this function to handle information from OSP
Subscriber AuthenticationRequest messages, and registers it during initiaization by supplying
the address of the function on the osp_sa register() call.

OpenOSP then calls this function each time it receives a Subscriber AuthenticationRequest
from an OSP client.

The settlement application must respond to the callback by calling osp_sa response().

OSP_RC (OSPAPI *POSP_SA CALLBACK) ((OSP_CORRELATOR corr,

char *ti mest anp,
OSP_ADDRESS *source_i nfo,
OSP_ADDRESS *source_alt_list,
OSP_ADDRESS *dest _i nf o,

OSP_SERVI CE_| NFO *servi ce,
OSP_AUTH_I NFO *subs_aut hen_i nf o,
OSP_CLI ENT_I D *client_id);

42
OpenOSP Interface Specification

For details of the datastructuresOSP_ADDRESS, OSP_SERVICE_INFO, OSP_AUTH_INFO
and OSP_CLIENT _ID, see section 3.4, Common data structures and types.

Parameters:

corr A correlator to be passed back to OpenOSP on the subsequent
call to osp_sa response().

timestamp A null-terminated string containing the message’ s timestamp.

source_info Pointer to a structure containing details about the source of the
cdl, eg. the originating phone number.

source_at_list A pointer to the first item in alist of OSP_ADDRESS
structures, each of which contains aternate information about
the source of the call, e.g. the address of the source gateway.

dest_info Pointer to a structure containing details about the destination of
the cdl, e.g. the destination phone number.

service A pointer to an OSP_SERVICE_INFO describing the type of
sarvice requested. A null pointer indicates basic internet
telephony service, which isthe only type of service currently
defined by [OSP].

subs_authen_info A pointer to an OSP_AUTH_INFO structure containing a
subscriber authentication token. This parameter may be
NULL, which indicates that the corresponding
Subscriber AuthenticationRequest did not include a
subscriber authentication token.

client_id A structure containing the client 1P address and the ‘ cooki€’

from any earlier client verification.

0OSp_Sa_response

When OpenOSP calls the settlement application’ s implementation of
POSP_SA_CALLBACK(), the application must respond by calling osp_sa response(). This
function uses the inf ormation provided to construct a Subscriber AuthenticationResponse
message, to be sent to the OSP client from which the request originated.

OSP_RC OSPAPI osp_sa_response(OSP_CORRELATOR corr,
OSP_STATUS *status,
OSP_TOKEN *subs_t oken_li st,

OSP_CREDI T_AMOUNT *credit_anount,
OSP_CREDI T_TIME *credit_time,
unsi gned i nt sig_required);

For details of the data structures OSP_STATUS and OSP_TOKEN, see section 3.4, Common
data structures and types.

43
OpenOSP Interface Specification

7.3.1

7.3.2

Parameters:

corr The correlator supplied by OpenOSP on the corresponding
subscriber authentication callback.

status A pointer to an OSP_STATUS structure that specifies the
status code and description that should be used to form the
Subscriber AuthenticationResponse response.

subs token list A pointer to thefirst item in alist of OSP_TOKEN structures,
each of which contains a subscriber authentication token.

credit_amount A pointer to an OSP_CREDIT_AMOUNT structure indicating
the amount of prepaid credit remaining for the authenticated
subscriber.

credit_time A pointer to an OSP_CREDIT_TIME structure indicating the

length of time for which the authenticated prepaid subscriber
can maintain a call to the destination that was specified by the
corresponding Subscriber AuthenticationRequest.

sig_required Set this parameter to 1 if the server should SMIME sign the
responsg, O if it should not.

OSP_CREDIT_AMOUNT

This structure provides data describing the amount of credit remaining for a prepaid subscriber.

typedef struct osp_credit_anount
{
char *currency;
char *amount
} OSP_CREDI T_AMOUNT;

Members:

currency A null-terminated string specifying the currency in which the
amount is expressed, for example “USD”.

amount A null-terminated string specifying the amount of credit

remaining as a decima number.

OSP_CREDIT_TIME

This structure provides data describing the call duration that is available for a prepaid
subscriber, given the call destination and the subscriber’ s remaining credit.

typedef struct osp_credit_tine

{

char *anmount ;
char *increnent;
char *unit;

} OSP_CREDI T_TI ME;

44
OpenOSP Interface Specification

Member s:

amount A null-terminated string containing a number which, when
multiplied by ‘increment,’ gives the number of units of service
available.

increment A null-terminated string containing a number which, when
multiplied by ‘amount,’ gives the number of units of service
available.

unit A null-terminated string containing the units of use by which
available credit time is expressed, for example seconds or
minutes.

45
OpenOSP Interface Specification

8.1

8.2

Security API

The Security API isimplemented by the Crypto and Certificates Manager (CCM). It isused by
the OpenOSP stack and the sample application to

create and verify signatures
retrieve the server’s certificate authority (CA) certificate.

If the OSP server is aso acting as a CA for SCEP clients, then the APl will also be used to
create certificates.

ccm_init

The OpenOSP stack calls this function to initialize the CCM component. Apart from performing
its own internal initidization during this call, CCM aso configures various aspects of the SSL
library. The SSL library is configured to retrieve certificates usng CCM'’s certificate store and
to use the configured certificate, private key, cipher list and client verification mode.

OSP_RC ccm_init(SSL_CTX *ssl _ctx,
PCCM_SSL_VERI FY_CALLBACK ssl _verify_ch);

Parameters:
ssl_ctx A pointer to the SSL_CTX structure to configure.
ss_verify _cb A callback function that CCM will call to verify clients that

connect viaSSL.

PCCM_SSL_VERIFY_CALLBACK

The OpenOSP stack provides this function to receive calbacks from CCM when aclient is
attempting to connect via SSL. The callbacks are used to implement part of the client
verification functionality that OpenOSP provides to the application. See section 4.5,
POSP_CLIENT_VERIFY_CALLBACK, for adescription of the client verification facilities
that are available to the application.

int (*PCCM_SSL_VERI FY_CALLBACK) (SSL *ssl,
char *cert,
unsigned int cert_Ilen,
unsi gned int chain_|en,
unsi gned int chain_pos);

Parameters:

sl A pointer to the SSL connection structure associated with the
connection being made.

cert One of the certificates in the client’s certificate chain, in ASN.1

DER-encoded X.509 format.

46
OpenOSP Interface Specification

8.3

8.4

cert_len The size in bytes of the certificate data.
chain_len The number of certificates in the client’s certificate chain.

chain_pos The position of the supplied certificate in the chain, with O
being the client’s certificate.

ccm_term

The OpenOSP stack calls this function to terminate the CCM component.
OSP_RC ccm term(void);

Parameters:

None.

ccm_pkes7_sign

OpenOSP uses this function to sign OSP responses, if required by the application, and to sign
SCEP responses. The application may also use this function to sign tokens and other data.

The caller supplies a distinguished name that identifies the certificate and private key that are to
be used for the signing operation. This distinguished name corresponds to one of the identities
st up in the OpenOSP configuration file.

OSP_RC ccm _pkcs7_sign(char *subj _name,
char *sdat a,
unsi gned i nt sdata_| en,
unsi gned i nt di gest,
STACK_OF(X509_ATTRI BUTE) *auth_attribs,
unsi gned i nt flags,
char **si g_buf,
unsi gned i nt *sig_len);
Parameters:
subj_name The distinguished name of the identity to sign as.
sdata A pointer to the data that is to be signed.
sdata len The number of bytes to be signed.
digest The digest dgorithm to be used. The following values are
vdid:

CCM_DIGEST_SHA1: the SHA-1 digest.
CCM_DIGEST_MD?5: the MD5 digest.

CCM_DIGEST_DEFAULT: CCM’s default digest, which
isMD5.

47
OpenOSP Interface Specification

8.5

auth_attribs

flags

sig_buf

sig len

A ligt of authenticated attributes to include in the resulting
PK CS#7 SignedData structure. The X509 ATTRIBUTE type
and the STACK_OF(...) macro are imported from OpenSSL.

Flags that control the behavior of the function. This parameter
may be zero, or it may take the following value:

CCM_FLAG_PKCS7_D: the resulting structure should be
detached (in other words, it contains no data).

Receives a pointer to a buffer containing the resulting ASN.1
DER-encoded PKCS#7 SignedData structure. The caller must
free this memory.

Receives the number of bytesin the returned PK CSH7
SignedData structure.

ccm_pkecs7_verify

OpenOSP uses this function to verify signed OSP requests and SCEP requests. The application
may aso use this function to verify signatures on tokens and ather data.

OSP_RC ccm pkcs7_verify(char *p7_asnl,
unsi gned i nt p7_asnl_I en,
char *indat a_buf,
unsi gned i nt indata_l en,
unsi gned i nt flags,
STACK_OF(X509_ATTRI BUTE) **auth_attribs,
char **yver _buf,
unsi gned i nt *ver _| en,
char **cert _buf,
unsi gned i nt *cert_len);
Parameters:
p7_asnl A pointer to the ASN.1 DER-encoded PKCS#7 SignedData
structure that is to be verified.
p7_asnl len The number of bytes in the PK CS#7 SignedData structure.
indata_buf Raw data to be verified (required only if a detached
SignedData structure is supplied).
indata len The number of bytes of raw data supplied.
flags Flags that control the behavior of the function. This parameter

may be zero, or it may be any combination (logica OR) of the
following vaues:

CCM_FLAG_PKCS7_D: signifies a detached PK CS#7
SignedData structure.

48

OpenOSP Interface Specification

8.6

auth_attribs

ver_buf

ver_len

cert_buf

cert_len

CCM_FLAG_SELF SIGNED: dlows asingle self-signed
certificate in the certificate chain, as found in an SCEP
PKCSReg message. A single self-signed certificate that is
not a CA certificate would normally fail the certificate
verification process.

Receives alist of authenticated attributes from the supplied
PKCS#7 SignedData structure. The X509 ATTRIBUTE type
and the STACK_OK(...) macro are imported from OpenSSL.

Recelves a pointer to a buffer containing the raw data that was
verified. The caller must free this memory. This parameter
may be anull pointer.

Receives the number of bytes of raw data that were verified.
This parameter may be a null pointer.

Receives a pointer to a buffer containing the single self-signed
certificate, if present. Thisisin ASN.1 DER-encoded X.509
format, and isreturned only if CCM_FLAG_SELF SGNED is
specified. The caler must free this memory. This parameter
may be a null pointer.

Receives the number of bytesin the single self-signed
certificate, if present. This parameter may be a null pointer.

ccm_pkcs7_encrypt

OpenOSP uses this function to encrypt SCEP responses. The application may aso use this
function to encrypt tokens and other data.

The caller supplies a distinguished name that identifies the certificate and private key that are to
be used for the encryption operation. This distinguished name corresponds to one of the
identities set up in the OpenOSP configuration file.

OSP_RC ccm pkcs7_encrypt (char *subj _name,
char *cert,
unsi gned i nt cert_len,
char *edat a,
unsi gned i nt edat a_| en,
unsi gned i nt ci pher,
char **enc_buf,
unsi gned i nt *enc_l en);
Parameters:
subj_name The distinguished name of the identity to encrypt as.

cert

The certificate to use for encryption, in ASN.1 DER-encoded
X.509 format. Thisisused only if subj_nameisanull pointer.

49
OpenOSP Interface Specification

cert_len The number of bytesin the supplied certificate. Thisis used
only if subj_nameisanull pointer.

edata A pointer to the raw data to be encrypted.

edata len The number of bytes to be encrypted.

cipher The cipher dgorithm to be used. The following values are
vaid:

CCM_CIPHER_DES CBC: the DES-CBC cipher.
CCM_CIPHER_RC2_CBC: the RC2-CBC cipher.
enc_buf Receives a pointer to a buffer containing the resulting ASN.1
DER-encoded PKCS#7 EnvelopedData structure. The caller
must free this memory.

enc_len Receives the number of bytesin the returned PK CSH7
EnvelopedData structure.

ccm_pkcs7_decrypt

OpenOSP uses this function to decrypt SCEP requests. The application may also use this
function to decrypt tokens and other data.

OSP_RC ccm pkcs7_decrypt (char *p7_asnl
unsi gned i nt p7_asnl_| en,
char *subj _nane,
char **dec_buf,

unsigned int *dec_Ilen);

Parameter s:

p7_asnl A pointer to the ASN.1 DER-encoded PK CS#7 Envel opedData
structure that is to be decrypted.

p7_asnl _len The number of bytes in the PK CS#7 EnvelopedData structure.

subj_name The distinguished name of the identity to decrypt as (a
PKCS#7 Envel opedData structure may be encoded to enable
decryption by multiple parties).

dec_buf Receives a pointer to a buffer containing the decrypted data.
The caler must free this memory.

dec len Receives the number of bytes in the decrypted data.

50
OpenOSP Interface Specification

8.8

8.9

8.10

ccm_get_cert

Thisfunction is called by OpenOSP to obtain certificates from the CCM certificate store. In
particular, it is used to obtain the server’ s certificate authority (CA) certificate, which is

returned in response to an SCEP GetCACert request. The application may aso use thisfunction
to obtain certificates if required.

OSP_RC ccm get _cert (char *subj _name,
char **cert _buf,
unsigned int *cert_len);

Parameters:

subj_name The distinguished name of the entity whose certificate is to be
returned.

cert_buf Receives a pointer to a buffer containing the required X.509
certificate, in ASN.1 DER-encoded form.

cert_len Receives the number of bytes in the certificate.

ccm_get_cert_chain

Thisfunction is called by the sample application to obtain the full certificate chain used for
token signing. The certificate chain is returned to clients in OSP CapabilitiesConfirmation
messages.

OSP_RC ccm get _cert _chai n(char *subj _name,
OSP_CERTI FI CATE **cert _chain);

Parameters:

subj_name The distinguished name of the entity whose certificate is to be
returned.

cert_chain Receives a pointer to a null-terminated list of

OSP_CERTIFICATE structures, containing all of the
certificates in the specified entity’ s certificate chain. The caller
must free this memory by calling ccm_free _cert_chain().

ccm_free cert_chain

Thisfunction is caled by the sample application to free a certificate chain that was previoudy
obtained from acall to ccm_get_cert_chain().

void ccm free_cert_chai n(OSP_CERTI FI CATE *chai n);

Parameters:
chain A pointer to a null-terminated list of OSP_CERTIFICATE
structures that are to be freed.
51

OpenOSP Interface Specification

8.11

8.12

ccm_request_new_cert

Thisfunction is caled by OpenOSP to issue a new certificate on behalf of an SCEP client.

CCM does the processing asynchronoudly and returns the resulting certificate on a callback. As
long as ccm_request_new_cert() returns OSP_SUCCESS, the new certificate callback is called
regardless of whether or not the certificate was issued successfully.

OSP_RC ccm request _new_cert (char *reg_asnl
unsi gned i nt reg_asnl_len
char *trans_id
char *ca_nane,
PCCM_NEW CERT_CALLBACK cert _ch,
voi d *corr)
Parameters:
regq_asnl A pointer to a buffer that contains a PKCS #10 certificate
request, in ASN.1 DER-encoded form.
req asnl len The number of bytesin the request.
trans id A SCEP transaction 1D, represented as a string of ASCII hex

digits. Thisvaueis checked againgt the MD5 digest of the
public key in the certificate request and an error is returned if
the two do not match. This parameter may be a null pointer if
the check is not required.

ca_name The distinguished name of the certificate authority that isto
issue the new certificate.

cert_cb A callback function that CCM will call when it has completed
the process of issuing a new certificate.

corr A correlator that CCM will pass back when it calls the supplied
calback function.

PCCM_NEW_CERT_CALLBACK

The OpenOSP stack provides this function to receive a callback from CCM when the process of
issuing a new certificate is complete. The callback provides the newly-issued certificate and the
OpenOSP stack returns it to awaiting SCEP client.

int (*PCCM_NEW CERT_CALLBACK) (void *corr
char *x509_asnl,
unsigned int x509_asnl_|en);

Parameters:

corr The correlator passed to ccm_request_new_cert().

52
OpenOSP Interface Specification

8.13

x509 asnl If anew certificate was successfully issued, this parameter
pointstoit, in ASN.1 DER-encoded X.509 format. The
memory is valid only for the duration of this function cal and
isfreed by CCM. If the certificate was not issued successfully,
this parameter is anull pointer.

x509_asnl len The length of the newly-issued certificate.

ccm_random

This function is called by OpenOSP and the sample application to obtain random bytes for
various purposes. The OpenOSP sample implementation of this function provides an
abstraction from OpenSSL’s random number generator.

If a hardware random number generator is available, ccm_random() can be easily modified to
access that directly. Alternatively, OpenSSL’s RAND API could be redirected to the hardware
random number source if thisis more convenient.

void ccm random(void *buffer,
i nt buf _I en);

Parameters:
buffer A pointer to a buffer that will receive random bytes.
buf len The number of bytes of random data to be placed in the
supplied buffer.
53

OpenOSP Interface Specification

9

9.1

9.2

9.3

9.4

Resource API

The core OpenOSP stack uses the Resource API for memory management and to control thread
creation and destruction. The APl isimplemented by the Resource Manager (RM) and provides

functionsto
alocate and free memory for interna data structures

allocate, reallocate, and free memory for general use

determine whether a new thread can be created and indicate that a thread is to be ended,

giving RM control over the total number of threads in existence.
rm_init
OpenOSP calls this function to initidlize the RM component.
OSP_RC rm_init(void);

Parameters:

None.

rm_term

OpenOSP cdls this function to terminate the RM component.
void rm termvoid);

Parameters:

None.

rm_get_mem

This function provides genera purpose memory alocation to the OpenOSP stack and its

associated components. |If the function succeeds, the return value is a pointer to a memory

block of at least the requested size. If the function fails, the return vaue is anull pointer.
voi d* rm_get_mem(unsigned int size);

Parameters:

gze The number of bytes of memory required.

rm_release_mem

This function allows the OpenOSP stack or one of its associated components to rel ease memory

that was obtained with a call to rm_get_mem().

54
OpenOSP Interface Specification

9.5

9.6

OSP_RC rm rel ease_nmem(void *mem;
Parameters:

mem A pointer to the memory that is no longer required.

rm_realloc_mem

The OpenOSP stack or an external application calls this function to change the amount of
memory previoudy alocated in acal to rm_get_mem().

If the function succeeds, the return value is a pointer to amemory block of at least the specified
size. In this case, the new memory block contains a copy of the contents of the origind memory
block (thisis truncated if the new memory block is smaller) and the origina block is released
automaticaly. If the function fails, the return value isanull pointer and the original memory
block remains valid.

void* rmreall oc_mem(void *mem
unsigned int new_size);

Parameters:
mem A pointer to the previoudy-allocated memory.
new_size The number of bytes required for the new memory block.

rm_get_structure

The OpenOSP stack calls this function to obtain memory for itsinternal data structures. If the
function succeeds, the return value is a pointer to a memory block of at least the specified size.
If the function fails, the return valueis anull pointer.

This function adlows RM to limit the total number of structures of each type that arein
existence, if required.

voi d* rm get_structure(unsigned int size,
unsi gned int type);

Parameters:
gze The number of bytes of memory required.
type The type of interna structure for which the memory will be

used. The following values are valid:
RM_THREAD_INFO: athread information structure;
RM_CONN_INFO: a connection information structure;

RM_TRANS INFO: atransaction information structure.

55
OpenOSP Interface Specification

9.7

9.8

9.9

rm_release_structure

The OpenOSP stack calls this function to release memory that was obtained with a call to
rm_get_structure().

OSP_RC rmrel ease_structure(void *mem
unsigned int type);
Parameters:
mem A pointer to the memory that is no longer required.
type The type of internal structure that is being freed. Any of the

‘type’ vaues specified for rm_get structure() are valid here.

rm_request_thread create

The OpenOSP stack calls this function to request permission from RM to create a new thread.
Thisdlows RM to limit the total number of threads of each type that are in existence, if
required.

OSP_RC rm request _thread_create(int type);
Parameters.

type The type of thread that the caller wishes to create. The
following values are valid:

RM_WORKER_THREAD: an internal OpenOSP thread;

RM_LAM_THREAD: an internal LDAP access manager
(LAM) thread.

rm_notify thread exit

The OpenOSP stack cdlls this function to notify RM that a thread is about to exit. Thisalows
RM to keep its thread counts up-to-date.

OSP_RC rmnnotify_thread_exit(int type);
Parameters:

type The type of thread that is about to exit. Any of the ‘type’ values
specified for rm_request_thread create() are valid here.

56
OpenOSP Interface Specification

10 Secure Sockets Layer (SSL) API

The SSL AP is used to communicate with OSP clientsusing SSL or TLS. It isa subset of the
API defined by the OpenSSL open source SSL / TLS implementation. If you intend to use a
different SSL / TLS implementation with OpenOSP, the implementation must provide this API.

Unless otherwise indicated, al of the SSL library functions return 1 on success and 0 on failure.

10.1 Configuration functions

This section describes the SSL API functions that OpenOSP uses during initialization and
termination to set up the SSL library.

10.1.1 SSL_library_init
This function initializes the SSL library.
int SSL_library_init(void);
Parameters:

None.

10.1.2 SSL_load_error_strings

This function ingtructs the library to load into memory a set of plain-text descriptions of error
codes that ERR_print_errors fp() can use later.

void SSL_| oad_error_strings(void);
Parameters:

None.

10.1.3 CRYPTO_set_mem_functions

This function sets the alocation, redllocation and freeing functions that the SSL library should
use for memory management. If this function is not called, the SSL library should default to
using the standard C functions malloc(), realloc() and free().

voi d CRYPTO_ set _nmem functions(char *(*malloc_fn)(),
char *(*realloc_fn)(),
void (*free_fn)());

Parameters:

malloc_fn A pointer to the replacement function for malloc(). The
prototype is the same as that of the standard C routine.

57
OpenOSP Interface Specification

realloc_fn A pointer to the replacement function for realloc(). The
prototype is the same as that of the standard C routine.

free fn A pointer to the replacement function for free(). The prototype
is the same as that of the standard C routine.

10.1.4 CRYPTO_set_id_callback
This function sets a callback that the SSL library should use to find the current thread 1D.
voi d CRYPTO set _i d_cal | back(unsigned |ong (*func)(void));
Parameters:

func The callback function. This takes no parameters and returns
the current thread ID.

10.1.5 CRYPTO_set_locking_callback

This function sets a callback that the SSL library should use to lock memory accessesin a
multithreaded environment. The SSL library should define CRYPTO_NUM_LOCKS to be the
number of locks that it requires so that OpenOSP may initialize them at startup.

voi d CRYPTO set | ocki ng_cal | back(void (*func)(int node, int type, const char
*file, int line));

Par ameters:
func The callback function. This takes the following parameters:

mode: thisis set to CRYPTO_LOCK if the SSL library
wishes to lock the specified lock; CRYPTO_UNLOCK
otherwise.

type: a zero-based index identifying the lock to manipulate.

file anull-terminated string containing the name of the file
in which the caller’ s source code resides (for debug

purposes only).

line: the line number on which the caller’ s source code
resides (for debug purposes only).

58
OpenOSP Interface Specification

10.1.6 SSLv23_server_method
This function returns a library-defined pointer to a set of ‘methods’ that may be passed to
SSL_CTX_new(). These methods define the SSL library’ sinternal functions that are to be used
for handshaking and data transfer using SSLv3 and TLSv1.
SSL_METHOD *SSLv23_server _met hod(voi d)

Parameters:

None.

10.1.7 SSL_CTX_new

This function returns a pointer to anew (library-defined) SSL_CTX structure. If the function
fails, the return vaue isanull pointer.

Only one SSL_CTX dtructure is created by OpenOSP; it containsthe SSL / TLS session ID
cache and is also used as a template for new SSL structures created with SSL_new().

SSL_CTX *SSL_CTX_new(SSL_METHOD *net h) ;
Parameters:

meth A pointer to a method structure, obtained from
SSLv23 server_method().

10.1.8 SSL_CTX free
This function frees al the memory associated with an SSL_CTX structure.
void SSL_CTX_free(SSL_CTX *ctx);

Parameters:

ctx A pointer to the SSL_CTX structure to be freed.

10.1.9 SSL_CTX_set_options

This functions allows various options to be set that affect the operation of connections based on
aparticular SSL_CTX structure. The return value is the new state of the options flags.

Il ong SSL_CTX set_options(SSL_CTX *ctx, long larg);

Parameters:
ctx A pointer to the SSL_CTX structure on which to operate.
larg The options to set. This may be zero, or it may take the

following vaue:

SSL_OP_NO _SSLv2 disables SSLv2 support

59
OpenOSP Interface Specification

10.1.10 SSL_CTX_sess_set_cache_size
This function sets the size of the session cache for a particular SSL_CTX structure. The session
cacheis used by the SSL library to implement SSL / TLS session re-use. The return value is the
previous size of the session cache.

| ong SSL_CTX_ sess_set_cache_size (SSL_CTX *ctx,

| ong larg);

Parameters:

ctx A pointer to the SSL_CTX structure on which to operate.
larg The maximum number of sessions alowed in the cache.

10.1.11 SSL_CTX_set_cipher_list

This function sets the list of ciphers that the SSL library should use for connections based on a
particular SSL_CTX structure.

int SSL_CTX set_cipher_Ilist(SSL_CTX *ctx,

char *str);
Parameters:
ctx A pointer to the SSL_CTX dtructure on which to operate.
str A null-terminated string containing a colon-separated list of

cipher descriptions, in decreasing order of preference. Each
cipher description defines a paticular combination of key
exchange method, type of certificates, encryption method and
type of message authentication code (MAC). The following
cipher descriptions are valid:

DES-CBC-SHA: unlimited-bit RSA key exchange, RSA
certificates, 56-bit DES encryption in CBC mode and a
SHA-1 MAC.

EXP-DES-CBC-SHA: 512-bit RSA key exchange, RSA
certificates, 40-bit DES encryption in CBC mode and a
SHA-1 MAC.

EDH-DSS-DES-CBC-SHA: unlimited-bit ephemera
Diffie-Hellman key exchange, DSA certificates, 56-hit
DES encryption in CBC mode and a SHA-1 MAC.

EXP-EDH-DSS-DES-CBC-SHA: 512-bit ephemeral
Diffie-Hellman key exchange, DSA certificates, 40-hit
DES encryption in CBC mode and a SHA-1 MAC.

NULL-MDS5: unlimited-bit RSA key exchange, RSA
certificates, no encryption and an MD5 MAC.

60
OpenOSP Interface Specification

NULL-SHA: unlimited-bit RSA key exchange, RSA
certificates, no encryption and a SHA-1 MAC.

10.1.12 SSL_CTX use_PrivateKey

This function instructs the SSL library to use the private key contained in the specified file for
connections based on the specified SSL_CTX structure.

int SSL_CTX use_PrivateKey_file(SSL_CTX *ctx,
EVP_PKEY *pkey);

Parameters:
ctx A pointer to the SSL_CTX gtructure on which to operate.
pkey The private key to use. The EVP_PKEY typeis defined by

OpenSSL.

10.1.13 SSL_CTX use_certificate

This function instructs the SSL library to use the X.509 certificate contained in the specified file
for connections based on the specified SSL_CTX structure.

int SSL_CTX use_certificate_file(SSL_CTX *ctx,

X509 *x);

Par ameters:

ctx A pointer to the SSL_CTX structure on which to operate.

X The certificate to use. The X509 type is defined by OpenSSL.

10.1.14 SSL_CTX set_verify

OpenOSP calls this function to set the certificate verification mode and specify a callback
routine that the SSL library will call to verify each certificate during the SSL / TLS handshake.

void SSL_CTX set_verify(SSL_CTX *ctx,
i nt node,
int (*callback)(int ok, X509_STORE_CTX *store_ctx));

Parameters:
ctx A pointer to the SSL_CTX structure on which to operate.
mode The certificate verification mode to use. The following values

arevalid:
SSL_VERIFY_NONE: no verification is performed.

SSL_VERIFY_PEER: verification is performed.

61
OpenOSP Interface Specification

If SSL_VERIFY_PEER is used, it may aso be ORed with one
or both of the following values:

SSL_VERIFY_FAIL_IF_NO_PEER_CERT: the
verification will fall if the client does not present a
certificate.

SSL_VERIFY_CLIENT_ONCE: the server will not ask for
the client’s certificate if a previous session is re-used.

callback A pointer to a callback function that the SSL library will cdll
with details of each certificate received from a client during the
SSL / TLS handshake. Note that this function definition is
specific to OpenSSL, and its implementation within OpenOSP
will need to be changed appropriately if another SSL library is
used. The parameters are as follows:

ok: 1 indicates that the SSL library has determined that the
certificate is consistent and within-date. O indicates that
the SSL library has identified a problem with the
certificate.

store _ctx: a pointer to a certificate store. The type of this
parameter, X509 _STORE_CTX, is defined by the SSL
library; please refer to the OpenSSL code for details on
what it contains.

The callback function returns 1 if it accepts the certificate and O
otherwise.

10.1.15 SSL_CTX_set_cert_store

This function instructs the SSL library to use the X.509 certificate store specified for
connections based on the specified SSL_CTX structure.

void SSL_CTX set_cert_store(SSL_CTX *ctx,
X509 _STORE *store);

Parameters:
ctx A pointer to the SSL_CTX structure on which to operate.
X The storeto use. The X509 _STORE type is defined by

OpenSSL.

10.1.16 SSL_CTX set_session_id_context

Thisfunction sets the session ID context for connections based on the specified SSL_CTX
structure.

62
OpenOSP Interface Specification

int SSL_CTX set_session_id_context(SSL_CTX *ctx,
const unsigned char *sid_ctx,
unsigned int sid_ctx_Ilen);

Parameters:

ctx A pointer to the SSL_CTX structure on which to operate.
sid_ctx The session ID context.

sid _ctx_len The size of the context in bytes.

10.1.17 SSL_CTX_set_tmp_dh_callback

This function sets the callback for generating temporary DH keys for the specified SSL_CTX
structure.

void SSL_CTX set _tnp_dh_cal | back(SSL_CTX *ctx,
DH *(*cb) (SSL *ssl,
int is_export,
int keylength));

Parameters:
ctx A pointer to the SSL_CTX dtructure on which to operate.
cb The callback function.

10.1.18 SSL_CTX_set_tmp_rsa_callback

This function sets the callback for generating temporary RSA keys for the specified SSL_CTX
structure.

void SSL_CTX set_tnp_dh_cal | back(SSL_CTX *ct x,
RSA *(*cb) (SSL *ssl,
int is_export,
int keylength));

Parameters:
ctx A pointer to the SSL_CTX structure on which to operate.
cb The callback function.

10.1.19 RAND_set _rand_method

This function alows the caller to specify an aternate set of random number functions, e.g. to
support an externa random number generator. Note that the supplied RAND _bytes()
replacement function must never fall, i.e. if thereis afailurein the externa RNG, then it should
call onto a backup such as the default OpenSSL RNG function.

voi d RAND_set _rand_met hod(RAND_METHOD *net h) ;

63
OpenOSP Interface Specification

Parameters:

meth Pointer to the structure containing the new RNG functions.
The type of this parameter is defined by the SSL library.

10.1.20 RAND load_file
This function loads the random state information from file.

int RAND_| oad_file(const char *file_nane,
long bytes_to_read);

Parameters:
file_name Name of the random state file.
bytes to read Number of bytes to read from the file, or —1 for the entire file.

10.1.21 RAND write file
This function writes the random state information to file.

int RAND write_file(const char *file_nane);

Parameters:

file_ name Name of the random state file.

10.2 Operational functions

This section describes the SSL API functions that OpenOSP uses during normal operation.
These include functions that create anew SSL connection context and implement SSL / TLS
handshaking and data transfer.

10.2.1 SSL_new

This function returns a pointer to a new (library-defined) SSL structure, using the supplied
SSL_CTX structure as atemplate. If the function fails, the return value is a null pointer.

An SSL structure contains al of the SSL library’s state information relating to asingle
SSL / TLS connection.

SSL *SSL_new(SSL_CTX *ctx);
Parameters:

ctx A pointer to the SSL_CTX structure to use as atemplate.

64
OpenOSP Interface Specification

10.2.2 SSL_free
This function frees al the memory associated with an SSL structure.
void SSL_free(SSL *ssl);
Parameter s:

ssl A pointer to the SSL structure to be freed.

10.2.3 SSL_set_fd

This function associates an SSL structure with a socket. All data sent or received using this
SSL structure will go viathe specified socket.

int SSL_set fd(SSL *s,
int fd);

Parameters:
ssl A pointer to the SSL structure.
fd The file descriptor of the socket to be associated with the SSL

Structure.

10.2.4 SSL_accept
This function initiates the SSL / TLS handshake. If the handshake is completed successfully,
this function returns 1; if there was an error, it returns—1. For a non-blocking socket, the
handshake does not complete immediately. In this case, SSL_accept() returns 0 and OpenOSP
then calls SSL_get_error() to find out what to do next.
int SSL_accept(SSL *ssl);

Parameters:

sl A pointer to the SSL structure on which to operate.

10.2.5 SSL_get_error

This function provides information on what OpenOSP should do after caling SSL_accept(),
SSL_read() or SSL_write().

int SSL_get_error(SSL *ssl,
int ret_code);

Parameter s:
sl A pointer to the SSL structure on which to operate.
ret_code The return code obtained from SSL_accept(), SSL_read() or

SSL_write().

65
OpenOSP Interface Specification

Return codes:

SSL_ERROR_NONE The operation completed successfully (only possible if
‘ret_code’ is greater than zero).

SSL_ ERROR_ZERO_RETURNThe connection was closed cleanly.

SSL_ ERROR_WANT_READ The operation did not complete and OpenOSP should select()
on the associated socket for aread operation.

SSL_ERROR_WANT_WRITEThe operation did not complete and OpenOSP should select()
on the associated socket for a write operation.

SSL_ERROR_SYSCALL An 1/O error occurred.

SSL_ERROR_SSL An SSL protocol error occurred.

10.2.6 SSL_write

This function sends data over the SSL / TL'S connection associated with the specified SSL
structure. After caling this function, OpenOSP calls SSL_get_error() to find out what to do

next.
int SSL_write(SSL *ssl,
const char *buf,
i nt nurm ;
Parameters:
ss| A pointer to the SSL structure on which to operate.
buf A pointer to the data to be sent.
num The number of bytes to be sent.

10.2.7 SSL_read

This function receives data from the SSL / TL'S connection associated with the specified SSL
structure. After calling this function, OpenOSP calls SSL_get_error() to find out whet to do
next. If thereturn value is greater than zero, it indicates the number of bytes that have been
received into the supplied buffer.

int SSL_read(SSL *ssl,

char *buf,
i nt num ;
Parameters:
ssl A pointer to the SSL structure on which to operate.
buf A pointer to the buffer into which received data should be

placed.

66
OpenOSP Interface Specification

num The number of bytes available in the supplied buffer.

10.2.8 SSL_renegotiate

This function initiates a renegotiation on the SSL / TL'S connection associated with the specified

SSL structure. The renegotiation does not necessarily complete immediately, but subsequent
calsto SSL_read() and SSL_write() will automatically send or receive outstanding
renegotiation messages until the renegotiation is complete.

int SSL_renegotiate(SSL *ssl);
Parameters:

sl A pointer to the SSL structure on which to operate.

10.2.9 SSL_shutdown

This function sends a notification to the client that the SSL / TL'S connection associated with the

specified SSL structure is about to go down. A return value of O indicates that further calls to
SSL_shutdown() are required.

int SSL_shutdown(SSL *ssl);

Parameters:
sl A pointer to the SSL structure on which to operate.
10.2.10 SSL_set_app_data

This function allows OpenOSP to associate arbitrary data with an SSL structure.

int SSL_set_app_data(SSL *ssl,
voi d *data);

Parameters:
sl A pointer to the SSL structure on which to operate.
data An OpenOSP-defined vaue.

10.2.11 SSL_get_app_data

This function alows OpenOSP to retrieve the data that it previoudy associated with an SSL
structure using SSL_set_app_data(). The return value is the data.

void *SSL_get _app_data(SSL *ssl);

Parameters:

ssl A pointer to the SSL structure on which to operate.

67
OpenOSP Interface Specification

10.2.12 ERR_print_errors_fp

This function prints error information to the specified file in aformat defined by the SSL
library. OpenOSP calls this function when an SSL library call returns an error code.

void ERR print_errors_fp(FILE *fp);
Parameters:

fp A file pointer that identifies the file to which error information
should be printed.

10.2.13 RAND_bytes

This function returns the requested number of random bytes.

i nt RAND_bytes(unsi gned char *buf,

int num;
Parameters:

buf buffer to receive the random data.
num Number of bytes to return.

68
OpenOSP Interface Specification

References

The following references provide further information on relevant subjects:

PO OpenOSP Product Overview, version 1.2
Data Connection Limited, September 2000
M SM-0005-0102
OosP Teaecommunications and Internet Protocol Harmonization Over

Networks (TIPHON); Open Settlement Protocol (OSP) for Inter-
Domain pricing, authorization and usage exchange.
ETSI TS 101 321 V2.1.0 (2000-05).

SCEP Cisco Systems' Simple Certificate Enrollment Protocol (SCEP)
Cisco Systems, August 2000
http://search.ietf .org/internet-drafts/draft-nourse-scep-03.txt
SSL The SSL Protocol Version 3.0

Netscape Communications Corporation, November 1996
http://oem.netscape.com/eng/ssl 3/draft302.txt

TLS RFC 2246: The TLS Protocol Version 1.0
T. Dierksand C. Allen, January 1999
http://www.ietf.org/rfc/rfc2246.txt

HTTP/1.0 RFC 1945: Hypertext Transfer Protocol — HTTP/1.0
T. Berners Lee, R. Fidding and H. Frystyk, May 1996
http://www.ietf .org/rfc/rfc1945.txt

HTTP/1.1 RFC 2616: Hypertext Transfer Protocol — HTTP/1.1
R. Fidding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach
and T. Berners-Lee, June 1999
http://www.ietf.org/rfc/rfc2616.txt

SMIME RFC 2311: SMIME Verson 2 Message Specification
S. Dusse, P. Hoffman, B. Ramsdell, L. Lundblade and L. Repka,
March 1998
http://www.ietf.org/rfc/rfc2311.txt

XML Extensible Markup Language (XML) 1.0
W3C, February 1998
http://www.w3.0rg/ TR/REC-xml|

PKCS #7 PKCS #7: Cryptographic Message Syntax Standard (version 1.5)
RSA Laboratories, November 1993
http://www.rsasecurity.com/rsal abs/pkcs/pkcs-7/index.html

PKCS#10 PKCS #10: Certification Request Syntax Standard (version 1.0)
RSA Laboratories, November 1993
http://www.rsasecurity.com/rsal abs/pkcs/pkcs-10/index.html

69
OpenOSP Interface Specification

http://search.ietf.org/internet-drafts/draft-nourse-scep-03.txt
http://oem.netscape.com/eng/ssl3/draft302.txt
http://www.ietf.org/rfc/rfc2246.txt
http://www.ietf.org/rfc/rfc1945.txt
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2311.txt
http://www.w3.org/TR/REC-xml
http://www.rsasecurity.com/rsalabs/pkcs/pkcs-7/index.html
http://www.rsasecurity.com/rsalabs/pkcs/pkcs-10/index.html

	Contents
	1 Introduction
	1.1 Typographical conventions

	2 OpenOSP Interfaces Overview
	2.1 OSP APIs
	2.1.1 OSP API Parameters And Sequences

	2.2 Utility APIs

	3 Common Information for OSP APIs
	3.1 Callback mechanism
	3.2 Initialization sequence
	3.3 Termination sequence
	3.4 Common data structures and types
	3.4.1 OSP_ADDRESS
	3.4.2 OSP_CALL_ID
	3.4.3 OSP_CLIENT_ID
	3.4.4 OSP_CORRELATOR
	3.4.5 OSP_DESTINATION
	3.4.6 OSP_TOKEN
	3.4.7 OSP_USAGE_DETAIL
	3.4.8 OSP_TERM_CAUSE
	3.4.9 OSP_USAGE_STATISTICS
	3.4.10 OSP_USAGE_STATISTICS_PF
	3.4.11 OSP_USAGE_STATISTICS_MMVS
	3.4.12 OSP_STATUS
	3.4.13 OSP_SERVICE_INFO
	3.4.14 OSP_PROTOCOL_TYPE
	3.4.15 OSP_AUTH_INFO

	3.5 Return codes
	3.6 Signal Handling
	3.7 C implementation

	4 Control API
	4.1 osp_init
	4.2 osp_listen
	4.3 osp_term
	4.4 osp_client_verify_register
	4.5 POSP_CLIENT_VERIFY_CALLBACK
	4.6 POSP_CLIENT_DISCONNECT_CALLBACK
	4.7 osp_non_repudiation_register
	4.8 POSP_NON_REPUDIATION_CALLBACK
	4.9 osp_get_stack_statistics

	5 Usage Metering API
	5.1 osp_um_register
	5.2 POSP_UM_CALLBACK
	5.3 osp_um_response

	6 Authorization and Routing API
	6.1 osp_ar_register
	6.2 POSP_AR_AUTH_RQ_CALLBACK
	6.3 osp_ar_auth_response
	6.4 POSP_AR_AUTH_IND_CALLBACK
	6.5 osp_ar_auth_confirm
	6.6 POSP_AR_REAUTH_RQ_CALLBACK
	6.7 osp_ar_reauth_response
	6.8 POSP_AR_PRICING_IND_CALLBACK
	6.9 osp_ar_pricing_confirm
	6.10 POSP_AR_CAPS_IND_CALLBACK
	6.10.1 OSP_DEVICE_INFO
	6.10.2 OSP_CAPS
	6.10.3 OSP_RESOURCE
	6.10.4 OSP_SUPP_PROTOCOL
	6.10.5 OSP_DATA_RATE

	6.11 osp_ar_caps_confirm
	6.11.1 OSP_SERVICE
	6.11.2 OSP_SERVICE_URL
	6.11.3 OSP_CERTIFICATE

	7 Subscriber Authentication API
	7.1 osp_sa_register
	7.2 POSP_SA_CALLBACK
	7.3 osp_sa_response
	7.3.1 OSP_CREDIT_AMOUNT
	7.3.2 OSP_CREDIT_TIME

	8 Security API
	8.1 ccm_init
	8.2 PCCM_SSL_VERIFY_CALLBACK
	8.3 ccm_term
	8.4 ccm_pkcs7_sign
	8.5 ccm_pkcs7_verify
	8.6 ccm_pkcs7_encrypt
	8.7 ccm_pkcs7_decrypt
	8.8 ccm_get_cert
	8.9 ccm_get_cert_chain
	8.10 ccm_free_cert_chain
	8.11 ccm_request_new_cert
	8.12 PCCM_NEW_CERT_CALLBACK
	8.13 ccm_random

	9 Resource API
	9.1 rm_init
	9.2 rm_term
	9.3 rm_get_mem
	9.4 rm_release_mem
	9.5 rm_realloc_mem
	9.6 rm_get_structure
	9.7 rm_release_structure
	9.8 rm_request_thread_create
	9.9 rm_notify_thread_exit

	10 Secure Sockets Layer (SSL) API
	10.1 Configuration functions
	10.1.1 SSL_library_init
	10.1.2 SSL_load_error_strings
	10.1.3 CRYPTO_set_mem_functions
	10.1.4 CRYPTO_set_id_callback
	10.1.5 CRYPTO_set_locking_callback
	10.1.6 SSLv23_server_method
	10.1.7 SSL_CTX_new
	10.1.8 SSL_CTX_free
	10.1.9 SSL_CTX_set_options
	10.1.10 SSL_CTX_sess_set_cache_size
	10.1.11 SSL_CTX_set_cipher_list
	10.1.12 SSL_CTX_use_PrivateKey
	10.1.13 SSL_CTX_use_certificate
	10.1.14 SSL_CTX_set_verify
	10.1.15 SSL_CTX_set_cert_store
	10.1.16 SSL_CTX_set_ session_id_context
	10.1.17 SSL_CTX_set_ tmp_dh_callback
	10.1.18 SSL_CTX_set_ tmp_rsa_callback
	10.1.19 RAND_set_rand_method
	10.1.20 RAND_load_file
	10.1.21 RAND_write_file

	10.2 Operational functions
	10.2.1 SSL_new
	10.2.2 SSL_free
	10.2.3 SSL_set_fd
	10.2.4 SSL_accept
	10.2.5 SSL_get_error
	10.2.6 SSL_write
	10.2.7 SSL_read
	10.2.8 SSL_renegotiate
	10.2.9 SSL_shutdown
	10.2.10 SSL_set_app_data
	10.2.11 SSL_get_app_data
	10.2.12 ERR_print_errors_fp
	10.2.13 RAND_bytes

	References

