TCP Keepalive HOWTO

Fabio Busatto

<fabio.busatto@sikurezza.org>
2007-05-04

Revision History
Revision 1.0 2007-05-04 Revised by: FB
First release, reviewed by TM.

This document describes the TCP keepalive implementation in the linux kernel, introduces the overall concept
and points to both system configuration and software development.



mailto:fabio.busatto@sikurezza.org

TCP Keepalive HOWTO

Table of

1. Introduction

Contents

1.1. Copyright and License........c.ccceeuereeeueenee.
1.2, DiSCIAIMIEE .eueeeeeieeeeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeens

1.3. Credits / Contributors
1.4. Feedback.
1.5. Translations

2. TCP keepalive overview.

3. Using TCP keepalive under Linux

3.1. Configuring the kernel
3.1.1. The procfs interface
3.1.2. The sysctl interface

3.2. Making changes persistent to reboot

4. Programming applications

4.1. When your code needs keepalive support

5. Adding support to third—party software

5.1. Modifying source code........cccceevueeueennenne
5.2. libkeepalive: library preloading.



1. Introduction

Understanding TCP keepalive is not necessary in most cases, but it's a subject that can be very useful under
particular circumstances. You will need to know basic TCP/IP networking concepts, and the C programming
language to understand all sections of this document.

The main purpose of this HOWTO is to describe TCP keepalive in detail and demonstrate various application
situations. After some initial theory, the discussion focuses on the Linux implementation of TCP keepalive
routines in the modern Linux kernel releases (2.4.x, 2.6.x), and how system administrators can take advantage
of these routines, with specific configuration examples and tricks.

The second part of the HOWTO involves the programming interface exposed by the Linux kernel, and how to
write TCP keepalive—enabled applications in the C language. Pratical examples are presented, and there is an
introduction to the 1ibkeepal ive project, which permits legacy applications to benefit from keepalive
with no code modification.

1.1. Copyright and License

This document, TCP Keepalive HOWTO, is copyrighted (c) 2007 by Fabio Busatto. Permission is granted to
copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.1 or any later version published by the Free Software Foundation; with no Invariant Sections, with
no Front—Cover Texts, and with no Back—Cover Texts. A copy of the license is available at
http://www.gnu.org/copyleft/fdl.html.

Source code included in this document is released under the terms of the GNU General Public License,
Version 2 or any later version published by the Free Software Foundation. A copy of the license is available at

http://www.gnu.org/copyvleft/epl.html.

Linux is a registered trademark of Linus Torvalds.

1.2. Disclaimer

No liability for the contents of this document can be accepted. Use the concepts, examples and information at
your own risk. There may be errors and inaccuracies that could be damaging to your system. Proceed with
caution, and although this is highly unlikely, the author does not take any responsibility.

All copyrights are held by their by their respective owners, unless specifically noted otherwise. Use of a term
in this document should not be regarded as affecting the validity of any trademark or service mark. Naming of
particular products or brands should not be seen as endorsements.

1.3. Credits / Contributors

This work is not especially related to any people that I should thank. But my life is, and my knowledge too:
so0, thanks to everyone that has supported me, prior to my birth, now, and in the future. Really.

A special thank is due to Tabatha, the patient woman that read my work and made the needed reviews.

1. Introduction 1


http://www.gnu.org/copyleft/fdl.html
http://www.gnu.org/copyleft/gpl.html

TCP Keepalive HOWTO

1.4. Feedback

Feedback is most certainly welcome for this document. Send your additions, comments and criticisms to the

following email address: <fabio.busatto@sikurezza.org>.

1.5. Translations

There are no translated versions of this HOWTO at the time of publication. If you are interested in translating
this HOWTO into other languages, please feel free to contact me. Your contribution will be very welcome.

1. Introduction


mailto:fabio.busatto@sikurezza.org

2. TCP keepalive overview

In order to understand what TCP keepalive (which we will just call keepalive) does, you need do nothing
more than read the name: keep TCP alive. This means that you will be able to check your connected socket
(also known as TCP sockets), and determine whether the connection is still up and running or if it has broken.

2.1. What is TCP keepalive?

The keepalive concept is very simple: when you set up a TCP connection, you associate a set of timers. Some
of these timers deal with the keepalive procedure. When the keepalive timer reaches zero, you send your peer
a keepalive probe packet with no data in it and the ACK flag turned on. You can do this because of the
TCP/IP specifications, as a sort of duplicate ACK, and the remote endpoint will have no arguments, as TCP is
a stream—oriented protocol. On the other hand, you will receive a reply from the remote host (which doesn't
need to support keepalive at all, just TCP/IP), with no data and the ACK set.

If you receive a reply to your keepalive probe, you can assert that the connection is still up and running
without worrying about the user—level implementation. In fact, TCP permits you to handle a stream, not
packets, and so a zero—length data packet is not dangerous for the user program.

This procedure is useful because if the other peers lose their connection (for example by rebooting) you will
notice that the connection is broken, even if you don't have traffic on it. If the keepalive probes are not replied
to by your peer, you can assert that the connection cannot be considered valid and then take the correct action.

2.2. Why use TCP keepalive?

You can live quite happily without keepalive, so if you're reading this, you may be trying to understand if
keepalive is a possible solution for your problems. Either that or you've really got nothing more interesting to
do instead, and that's okay too. :)

Keepalive is non—invasive, and in most cases, if you're in doubt, you can turn it on without the risk of doing
something wrong. But do remember that it generates extra network traffic, which can have an impact on
routers and firewalls.

In short, use your brain and be careful.

In the next section we will distinguish between the two target tasks for keepalive:

¢ Checking for dead peers
¢ Preventing disconnection due to network inactivity

2.3. Checking for dead peers

Keepalive can be used to advise you when your peer dies before it is able to notify you. This could happen for
several reasons, like kernel panic or a brutal termination of the process handling that peer. Another scenario
that illustrates when you need keepalive to detect peer death is when the peer is still alive but the network
channel between it and you has gone down. In this scenario, if the network doesn't become operational again,
you have the equivalent of peer death. This is one of those situations where normal TCP operations aren't
useful to check the connection status.

2. TCP keepalive overview 3



TCP Keepalive HOWTO

Think of a simple TCP connection between Peer A and Peer B: there is the initial three—way handshake, with
one SYN segment from A to B, the SYN/ACK back from B to A, and the final ACK from A to B. At this
time, we're in a stable status: connection is established, and now we would normally wait for someone to send
data over the channel. And here comes the problem: unplug the power supply from B and instantaneously it
will go down, without sending anything over the network to notify A that the connection is going to be
broken. A, from its side, is ready to receive data, and has no idea that B has crashed. Now restore the power
supply to B and wait for the system to restart. A and B are now back again, but while A knows about a
connection still active with B, B has no idea. The situation resolves itself when A tries to send data to B over
the dead connection, and B replies with an RST packet, causing A to finally to close the connection.

Keepalive can tell you when another peer becomes unreachable without the risk of false—positives. In fact, if
the problem is in the network between two peers, the keepalive action is to wait some time and then retry,
sending the keepalive packet before marking the connection as broken.

| A | | B |
| | | |
N N
|——=>———> > SYN —————————————— >So—m>———>———|
[ S SYN/ACK ———————————— Cem=kmm=d===|
|——=>———> > ACK —————————————— >o—m>———>———|
| |
| system crash —--—-> X
|
| system restart —-—>
| |
|—==>———> > PSH —————————————— >So—m>———>———|
| ———<—— =< =< ——— RST —————————————— <———<——=<———

2.4. Preventing disconnection due to network inactivity

The other useful goal of keepalive is to prevent inactivity from disconnecting the channel. It's a very common
issue, when you are behind a NAT proxy or a firewall, to be disconnected without a reason. This behavior is
caused by the connection tracking procedures implemented in proxies and firewalls, which keep track of all
connections that pass through them. Because of the physical limits of these machines, they can only keep a
finite number of connections in their memory. The most common and logical policy is to keep newest
connections and to discard old and inactive connections first.

Returning to Peers A and B, reconnect them. Once the channel is open, wait until an event occurs and then
communicate this to the other peer. What if the event verifies after a long period of time? Our connection has
its scope, but it's unknown to the proxy. So when we finally send data, the proxy isn't able to correctly handle
it, and the connection breaks up.

Because the normal implementation puts the connection at the top of the list when one of its packets arrives

and selects the last connection in the queue when it needs to eliminate an entry, periodically sending packets
over the network is a good way to always be in a polar position with a minor risk of deletion.

2. TCP keepalive overview 4



~ ~
| m==rem=rma=bams |
| skt ==e |
| === bams |
| |
| |
| |
|=—=>- PSH —>-———|

|

TCP Keepalive HOWTO

7777777777 SYN —————————————>—— > — > |
777777777 SYN/ACK ———————————<———<———<——|
77777777777 ACK —————————————>———>———>———|

<-—- connection deleted from table

<-—- invalid connection

2. TCP keepalive overview



3. Using TCP keepalive under Linux

Linux has built—in support for keepalive. You need to enable TCP/IP networking in order to use it. You also
need procfs support and sysct 1 support to be able to configure the kernel parameters at runtime.

The procedures involving keepalive use three user—driven variables:

tcp_keepalive_time
the interval between the last data packet sent (simple ACKs are not considered data) and the first
keepalive probe; after the connection is marked to need keepalive, this counter is not used any further
tcp_keepalive_intvl
the interval between subsequential keepalive probes, regardless of what the connection has exchanged
in the meantime
tcp_keepalive_probes
the number of unacknowledged probes to send before considering the connection dead and notifying
the application layer

Remember that keepalive support, even if configured in the kernel, is not the default behavior in Linux.
Programs must request keepalive control for their sockets using the set sockopt interface. There are
relatively few programs implementing keepalive, but you can easily add keepalive support for most of them
following the instructions explained later in this document.

3.1. Configuring the kernel

There are two ways to configure keepalive parameters inside the kernel via userspace commands:

® procfs interface
¢ sysctl interface

We mainly discuss how this is accomplished on the procfs interface because it's the most used, recommended
and the easiest to understand. The sysctl interface, particularly regarding the sy sct 1(2) syscall and not the
sysctl(8) tool, is only here for the purpose of background knowledge.

3.1.1. The procf£s interface

This interface requires both sysctl and procfs to be built into the kernel, and procfs mounted
somewhere in the filesystem (usually on /proc, as in the examples below). You can read the values for the
actual parameters by "catting" filesin /proc/sys/net/ipv4/ directory:

# cat /proc/sys/net/ipv4/tcp_keepalive_time
7200

# cat /proc/sys/net/ipv4/tcp_keepalive_intvl
75

# cat /proc/sys/net/ipv4/tcp_keepalive_ probes
9

3. Using TCP keepalive under Linux 6



TCP Keepalive HOWTO

The first two parameters are expressed in seconds, and the last is the pure number. This means that the
keepalive routines wait for two hours (7200 secs) before sending the first keepalive probe, and then resend it
every 75 seconds. If no ACK response is received for nine consecutive times, the connection is marked as
broken.

Modifying this value is straightforward: you need to write new values into the files. Suppose you decide to
configure the host so that keepalive starts after ten minutes of channel inactivity, and then send probes in
intervals of one minute. Because of the high instability of our network trunk and the low value of the interval,
suppose you also want to increase the number of probes to 20.

Here's how we would change the settings:

# echo 600 > /proc/sys/net/ipv4/tcp_keepalive_time
# echo 60 > /proc/sys/net/ipv4/tcp_keepalive_intvl

# echo 20 > /proc/sys/net/ipv4/tcp_keepalive_probes

To be sure that all succeeds, recheck the files and confirm these new values are showing in place of the old
ones.

Remember that procfs handles special files, and you cannot perform any sort of operation on them because
they're just an interface within the kernel space, not real files, so try your scripts before using them, and try to
use simple access methods as in the examples shown earlier.

You can access the interface through the sysctl(8) tool, specifying what you want to read or write.

# sysctl \
> net.ipv4.tcp_keepalive_time \
> net.ipv4.tcp_keepalive_ intvl \
> net.ipv4.tcp_keepalive_probes
net.ipvéd.tcp_keepalive_time = 7200
net.ipvéd.tcp_keepalive_intvl = 75
net.ipvé4.tcp_keepalive_probes = 9

Note that sysct1 names are very close to procfs paths. Write is performed using the —w switch of sysctl

(8):

# sysctl -w \
> net.ipvé4.tcp_keepalive_ time=600 \
> net.ipvé4.tcp_keepalive_intvl=60 \
> net.ipv4.tcp_keepalive_probes=20
net.ipvéd.tcp_keepalive_time = 600
net.ipvéd.tcp_keepalive_intvl = 60
net.ipvé4.tcp_keepalive_probes = 20

Note that sysctl (8) doesn't use sysct 1(2) syscall, but reads and writes directly in the procfs subtree, so
you will need procfs enabled in the kernel and mounted in the filesystem, just as you would if you directly

3. Using TCP keepalive under Linux 7



TCP Keepalive HOWTO

accessed the files within the procfs interface. Sysctl(8) is just a different way to do the same thing.

3.1.2. The sysct1 interface

There is another way to access kernel variables: sysct1(2 ) syscall. It can be useful when you don't have
procfs available because the communication with the kernel is performed directly via syscall and not
through the procfs subtree. There is currently no program that wraps this syscall (remember that sysctl(8)
doesn't use it).

For more details about using sysct1(2) refer to the manpage.

3.2. Making changes persistent to reboot

There are several ways to reconfigure your system every time it boots up. First, remember that every Linux
distribution has its own set of init scripts called by init (8). The most common configurations include the
/etc/rc.d/ directory, or the alternative, /etc/init .d/. In any case, you can set the parameters in any
of the startup scripts, because keepalive rereads the values every time its procedures need them. So if you
change the value of t cp_keepalive_intvl when the connection is still up, the kernel will use the new
value going forward.

There are three spots where the initialization commands should logically be placed: the first is where your
network is configured, the second is the rc.local script, usually included in all distributions, which is
known as the place where user configuration setups are done. The third place may already exist in your
system. Referring back to the sysctl (8) tool, you can see that the —p switch loads settings from the
/etc/sysctl.conf configuration file. In many cases your init script already performs the sysctl —p (you
can "grep" it in the configuration directory for confirmation), and so you just have to add the lines in
/etc/sysctl.conf to make them load at every boot. For more information about the syntax of
sysctl.conf(5), refer to the manpage.

3. Using TCP keepalive under Linux



4. Programming applications

This section deals with programming code needed if you want to create applications that use keepalive. This is
not a programming manual, and it requires that you have previous knowledge in C programming and in
networking concepts. I consider you familiar with sockets, and with everything concerning the general aspects
of your application.

4.1. When your code needs keepalive support

Not all network applications need keepalive support. Remember that it is TCP keepalive support. So, as you
can imagine, only TCP sockets can take advantage of it.

The most beautiful thing you can do when writing an application is to make it as customizable as possible,
and not to force decisions. If you want to consider the happiness of your users, you should implement
keepalive and let the users decide if they want to use it or not by using a configuration parameter or a switch
on the command line.

4.2. The setsockopt function call

All you need to enable keepalive for a specific socket is to set the specific socket option on the socket itself.
The prototype of the function is as follows:

int setsockopt (int s, int level, int optname,
const void *optval, socklen_t optlen)

The first parameter is the socket, previously created with the socket(2); the second one must be
SOL_SOCKET, and the third must be SO_KEEPALIVE . The fourth parameter must be a boolean integer
value, indicating that we want to enable the option, while the last is the size of the value passed before.

According to the manpage, O is returned upon success, and —1 is returned on error (and errno is properly
set).

There are also three other socket options you can set for keepalive when you write your application. They all
use the SOL_TCP level instead of SOL__SOCKET, and they override system—wide variables only for the
current socket. If you read without writing first, the current system—wide parameters will be returned.

® TCP_KEEPCNT: overrides tcp_keepalive_probes
e TCP_KEEPIDLE: overrides tcp_keepalive_time
® TCP_KEEPINTVL: overrides tcp_keepalive_intvl

4.3. Code examples

This is a little example that creates a socket, shows that keepalive is disabled, then enables it and checks that
the option was effectively set.

/* ——— begin of keepalive test program —-—— */

#include <stdio.h>

4. Programming applications 9



TCP Keepalive HOWTO

#include <stdlib.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>

int main (void) ;

int main ()
{
int s;
int optval;
socklen_t optlen = sizeof (optval);

/* Create the socket */

if((s = socket (PF_INET, SOCK_STREAM, IPPROTO TCP)) < 0) {
perror ("socket () ") ;
exit (EXIT_FAILURE) ;

/* Check the status for the keepalive option */

if (getsockopt (s, SOL_SOCKET, SO_KEEPALIVE, &optval, &optlen) < 0) {
perror ("getsockopt () ") ;
close(s);
exit (EXIT_FAILURE) ;

}

printf ("SO_KEEPALIVE is %s\n", (optval ? "ON" : "OFF"));

/* Set the option active */

optval = 1;

optlen = sizeof (optval);

if (setsockopt (s, SOL_SOCKET, SO_KEEPALIVE, &optval, optlen) < 0) {
perror ("setsockopt () ") ;
close(s);
exit (EXIT_FAILURE) ;

}

printf ("SO_KEEPALIVE set on socket\n");

/* Check the status again */

if (getsockopt (s, SOL_SOCKET, SO_KEEPALIVE, &optval, &optlen) < 0) {
perror ("getsockopt () ") ;
close(s);
exit (EXIT_FAILURE) ;

}

printf ("SO_KEEPALIVE is %s\n", (optval ? "ON" : "OFF"));

close (s);

exit (EXIT_SUCCESS) ;

/* ——— end of keepalive test program --- */

4. Programming applications 10



5. Adding support to third—party software

Not everyone is a software developer, and not everyone will rewrite software from scratch if it lacks just one
feature. Maybe you want to add keepalive support to an existing application because, though the author might
not have thought it important, you think it will be useful.

First, remember what was said about the situations where you need keepalive. Now you'll need to address
connection—oriented TCP sockets.

Since Linux doesn't provide the functionality to enable keepalive support via the kernel itself (as BSD-like
operating systems often do), the only way is to perform the set sockopt (2) call after socket creation. There
are two solutions:

e source code modification of the original program
® set sockopt (2) injection using the library preloading technique

5.1. Modifying source code

Remember that keepalive is not program—related, but socket—related, so if you have multiple sockets, you can
handle keepalive for each of them separately. The first phase is to understand what the program does and then
search the code for each socket in the program. This can be done using grep(1), as follows:

# grep 'socket *(' *.c

This will more or less show you all sockets in the code. The next step is to select only the right ones: you will
need TCP sockets, so look for PF__INET (or AF_INET), SOCK_STREAM and IPPROTO_TCP (or more
commonly, 0) in the parameters of your socket list, and remove the non—matching ones.

Another way to create a socket is through accept(2). In this case, follow the TCP sockets identified and
check if any of these is a listening socket: if positive, keep in mind that accept(2) returns a socket
descriptor, which must be inserted in your socket list.

Once you've identified the sockets you can proceed with changes. The most fast & furious patch can be done
by simply adding the set sockopt(2 ) function just after the socket creation block. Optionally, you may
include additional calls in order to set the keepalive parameters if you don't like the system defaults. Please be
careful when implementing error checks and handlers for the function, maybe by copying the style from the
original code around it. Remember to set the optwval to a non—zero value and to initialize the opt len
before invoking the function.

If you have time or you think it would be really cool, try to add complete keepalive support to your program,
including a switch on the command line or a configuration parameter to let the user choose whether or not to
use keepalive.

5.2. libkeepalive: library preloading

There are often cases where you don't have the ability to modify the source code of an application, or when
you have to enable keepalive for all your programs, so patching and recompiling everything is not
recommended.

5. Adding support to third—party software 11



TCP Keepalive HOWTO

The libkeepalive project was born to help add keepalive support for applications since the Linux kernel
doesn't provide the ability to do the same thing natively (like BSD does). The libkeepalive project homepage

is _http://libkeepalive.sourceforge.net/

It consists of a shared library that overrides the socket system call in most binaries, without the need to
recompile or modify them. The technique is based on the preloading feature of the ld.so(8) loader included in
Linux, which allows you to force the loading of shared libraries with higher priority than normal. Programs
usually use the socket(2) function call located in the g1 ibc shared library; with libkeepalive you can wrap
it and inject the set sockopt (2) just after the socket creation, returning a socket with keepalive already set
to the main program. Because of the mechanisms used to inject the system call, this doesn't work when the
socket function is statically compiled into the binary, as in a program linked with the gee(1 ) flag —static.

After downloading and installing libkeepalive, you will able to add keepalive support to your programs
without the prerequisite of being root, simply setting the LD_PRELOAD environment variable before
executing the program. By the way, the superuser can also force the preloading with a global configuration,
and the users can then decide to turn it off by setting the KEEPALIVE environment variable to of f.

The environment is also used to set specific values for keepalive parameters, so you have the ability to handle
each program differently, setting KEEPCNT, KEEPIDLE and KEEPINTVL before starting the application.

Here's an example of libkeepalive usage:

S test
SO_KEEPALIVE is OFF

$ LD_PRELOAD=libkeepalive.so \
> KEEPCNT=20 \

> KEEPIDLE=180 \

> KEEPINTVL=60 \

> test

SO_KEEPALIVE is ON

TCP_KEEPCNT = 20
TCP_KEEPIDLE = 180

TCP_KEEPINTVL = 60

And you can use strace (1) to understand what happens:

$ strace test

execve ("test", ["test"], [/* 26 vars */]) = 0

[..]

open("/lib/libc.so.6", O_RDONLY) = 3

[..]

socket (PF_INET, SOCK_STREAM, IPPROTO_TCP) = 3
getsockopt (3, SOL_SOCKET, SO_KEEPALIVE, [0], [4]) = O
close (3) =0

[..]

_exit (0) =72

$ LD_PRELOAD=libkeepalive.so \

> strace test

execve ("test", ["test"], [/* 27 vars */]) = 0

[..]

open ("/usr/local/lib/libkeepalive.so", O_RDONLY) = 3

5. Adding support to third—party software 12


http://libkeepalive.sourceforge.net/

TCP Keepalive HOWTO

[..]

open ("/lib/libc.so.6", O_RDONLY) = 3
[..]

open ("/lib/libdl.so.2", O_RDONLY) = 3
[..]

socket (PF_INET, SOCK_STREAM, IPPROTO_TCP)
setsockopt (3, SOL_SOCKET, SO_KEEPALIVE, [1

= 3
1,
, SOL_TCP, TCP_KEEPCNT, [20], 4)

) =0

4
setsockopt (3 =0
setsockopt (3, SOL_TCP, TCP_KEEPIDLE, [180], 4) = 0
setsockopt (3, SOL_TCP, TCP_KEEPINTVL, [60], 4) = 0

[..1]
getsockopt (3, SOL_SOCKET, SO_KEEPALIVE, [1], [4]) = O
[..1]

getsockopt (3, SOL_TCP, TCP_KEEPCNT, [20], [4]) = 0
[..1]

getsockopt (3, SOL_TCP, TCP_KEEPIDLE, [180], [4]) = 0
[..1]

getsockopt (3, SOL_TCP, TCP_KEEPINTVL, [60], [4]) = 0
[..1]

close (3) =0

[..1]

_exit (0) =72

For more information, visit the libkeepalive project homepage: _http://libkeepalive.sourceforge.net/

5. Adding support to third—party software

13


http://libkeepalive.sourceforge.net/

	Table of Contents
	1. Introduction
	1.1. Copyright and License
	1.2. Disclaimer
	1.3. Credits / Contributors
	1.4. Feedback
	1.5. Translations

	2. TCP keepalive overview
	2.1. What is TCP keepalive?
	2.2. Why use TCP keepalive?
	2.3. Checking for dead peers
	2.4. Preventing disconnection due to network inactivity

	3. Using TCP keepalive under Linux
	3.1. Configuring the kernel
	3.1.1. The procfs interface
	3.1.2. The sysctl interface

	3.2. Making changes persistent to reboot

	4. Programming applications
	4.1. When your code needs keepalive support
	4.2. The setsockopt function call
	4.3. Code examples

	5. Adding support to third-party software
	5.1. Modifying source code
	5.2. libkeepalive: library preloading


