
Traffic Control using tcng and HTB HOWTO

Version 1.0.1

Martin A. Brown

linux−ip.net
Network Administration

<martin@linux−ip.net>

April 2006

Revision History
Revision 1.0.1 2006−10−28 Revised by: MAB
Updating contact information
Revision 1.0 2003−04−16 Revised by: tab
Initial Release, reviewed by LDP
Revision 0.5 2002−04−01 Revised by: MAB
submit to tldp, rename/retitle with HOWTO
Revision 0.4 2002−03−31 Revised by: MAB
new example, bucket crash course
Revision 0.3 2002−03−16 Revised by: MAB
corrections and notes from Jacob Teplitsky, raptor and Joshua Heling
Revision 0.2 2002−03−15 Revised by: MAB
links, cleanup, publish
Revision 0.1 2002−03−14 Revised by: MAB
initial revision

© 2006, Martin A. Brown

Permission is granted to copy, distribute and/or modify this document under the terms of the
GNU Free Documentation License, Version 1.1 or any later version published by the Free
Software Foundation; with no invariant sections, with no Front−Cover Texts, with no
Back−Cover Text. A copy of the license is located at www.gnu.org/copyleft/fdl.html.

http://linux-ip.net/
mailto:martin@linux-ip.net
http://www.gnu.org/licenses/fdl.html

Table of Contents
1. Introduction...1

1.1. What is traffic control and how does it work?..1
1.2. What is htb?..2
1.3. What is tcng?...2

2. Requirements...4
2.1. kernel requirements...4
2.2. tc requirements..4
2.3. tcng requirements..4

3. Configuration examples..5
3.1. Using tcng to shape download only..5
3.2. Using a two−rate three−color meter...7

4. Miscellaneous Notes..9

5. Links and Further documentation..10

Traffic Control using tcng and HTB HOWTO

i

1. Introduction
This is a brief tutorial on using tcng (Traffic Control Next Generation) with HTB (Hierarchical Token
Bucket) to perform traffic shaping on a Linux machine.

This tutorial is intended for systems administrators who have

AT LEAST, a basic understanding of traffic control•
EITHER the capability to compile iproute2 and tcng from source

OR the capability of building RPMS from provided SRPMs

•

EITHER a modular kernel with support for htb and dsmark

OR capability to compile a kernel with support for htb and dsmark

•

This article is neither comprehensive nor authoritative. The author solicits positive and negative
feedback at <martin@linux−ip.net>. Corrections, additions, and further examples are always
welcome.

1.1. What is traffic control and how does it work?

Traffic control is the term given to the entire packet queuing subsystem in a network or network device.
Traffic control consists of several distinct operations. Classifying is a mechanism by which to identify packets
and place them in individual flows or classes. Policing is a mechanism by which one limits the number of
packets or bytes in a stream matching a particular classification. Scheduling is the decision−making process
by which packets are ordered and re−ordered for transmission. Shaping is the process by which packets are
delayed and transmitted to produce an even and predictable flow rate.

These many characteristics of a traffic control system can be combined in complex ways to reserve bandwidth
for a particular flow (or application) or to limit the amount of bandwidth available to a particular flow or
application.

One of the key concepts of traffic control is the concept of tokens. A policing or shaping implementation
needs to calculate the number of bytes or packets which have passed at what rate. Each packet or byte
(depending on the implementation), corresponds to a token, and the policing or shaping implementation will
only transmit or pass the packet if it has a token available. A common metaphorical container in which an
implementation keeps its token is the bucket. In short, a bucket represents the both the number of tokens
which can be used instantaneously (the size of the bucket), and the rate at which the tokens are replenished
(how fast the bucket gets refilled).

See Section 1.2 for an example of buckets in a linux traffic control system.

Under linux, traffic control has historically been a complex endeavor. The tc command line tool provides an
interface to the kernel structures which perform the shaping, scheduling, policing and classifying. The syntax
of this command is, however, arcane. The tcng project provides a much friendlier interface to the human by
layering a language on top of the powerful tc command line tool. By writing traffic control configurations in
tcng they become easily maintainable, less arcane, and importantly also more portable.

1. Introduction 1

http://tcng.sourceforge.net
http://luxik.cdi.cz/~devik/qos/htb/
http://luxik.cdi.cz/~devik/qos/htb/
mailto:martin@linux-ip.net

1.2. What is htb?

Hierarchichal Token Bucket is a classful qdisc written by Martin Devera with a simpler set of configuration
parameters than CBQ. There is a great deal of documentation on the author's site and also on Stef Coene's
website about HTB and its uses. Below is a very brief sketch of the HTB system.

Conceptually, HTB is an arbitrary number of token buckets arranged in a hierarchy (yes, you probably could
have figured that out without my sentence). Let's consider the simplest scenario. The primary egress queuing
discipline on any device is known as the root qdisc.

The root qdisc will contain one class (complex scenarios could have multiple classes attached to the root
qdisc). This single HTB class will be set with two parameters, a rate and a ceil. These values should be
the same for the top−level class, and will represent the total available bandwidth on the link.

In HTB, rate means the guaranteed bandwidth available for a given class and ceil is short for ceiling,
which indicates the maximum bandwidth that class is allowed to consume. Any bandwidth used between
rate and ceil is borrowed from a parent class, hence the suggestion that rate and ceil be the same in
the top−level class.

A number of children classes can be made under this class, each of which can be allocated some amount of
the available bandwidth from the parent class. In these children classes, the rate and ceil parameter values
need not be the same as suggested for the parent class. This allows you to reserve a specified amount of
bandwidth to a particular class. It also allows HTB to calculate the ratio of distribution of available bandwidth
to the ratios of the classes themselves. This should be more apparent in the examples below.

Hierarchical Token Bucket implements a classful queuing mechanism for the linux traffic control system, and
provides rate and ceil to allow the user to control the absolute bandwidth to particular classes of traffic as
well as indicate the ratio of distribution of bandwidth when extra bandwidth becomes available (up to ceil).

Keep in mind when choosing the bandwidth for your top−level class that traffic shaping only helps if you are
the bottleneck between your LAN and the Internet. Typically, this is the case in home and office network
environments, where an entire LAN is serviced by a DSL or T1 connection.

In practice, this means that you should probably set the bandwidth for your top−level class to your available
bandwidth minus a fraction of that bandwidth.

1.3. What is tcng?

Traffic Control Next Generation (tcng) is a project by Werner Almesberger to provide a powerful, abstract,
and uniform language in which to describe traffic control structures. The tcc parser in the tcng distribution
transforms tcng the language into a number of output formats. By default, tcc will read a file (specified as an
argument or as STDIN) and print to STDOUT the series of tc commands (see iproute2 below) required to
create the desired traffic control structure in the kernel.

Consult the parameter reference for tcng to see the supported queuing disciplines. Jacob Teplitsky, active on
the LARTC mailing list and a contributor to the tcng project, wrote the htb support for tcng.

The tcc tool can produce a number of different types of output, but this document will only consider the
conventional and default output. Consult the TCNG manual for more detailed information about the use of

Traffic Control using tcng and HTB HOWTO

1. Introduction 2

http://luxik.cdi.cz/~devik/qos/htb/
http://www.docum.org/
http://www.docum.org/
http://tcng.sourceforge.net/
http://linux-ip.net/gl/tcng/node159.html
http://lartc.org/#mailinglist
http://linux-ip.net/gl/tcng/

tcng.

The tcsim tool is a traffic control simulator which accepts tcng configuration files and reads a control
language to simulate the behaviour of a kernel sending and receiving packets with the specified control
structures. Although tcsim is a significant portion of the tcng project, tcsim will not be covered here at all.

Traffic Control using tcng and HTB HOWTO

1. Introduction 3

2. Requirements
There are a few requirements in order for the kernel to support HTB and DSMARK, tc to support HTB and
DSMARK, and tcng itself.

Specifically, support for HTB in the kernel and tc is absolutely required in order for this tutorial to be
remotely useful (refer to the title if htere is any doubt in your mind). DSMARK support is, strictly speaking,
optional, although some examples (class selection path, in particular, but maybe others) may not operate
without dsmark support.

2.1. kernel requirements

The kernel requirements are very easy to meet. Kernel 2.4.20 and newer include support for HTB and dsmark,
so simply be certain that these options are turned on in the QoS/Fair Queuing portion of your kernel
configuration. For a brief summary of the options to select in kernel configuration, visit the DiffServ project
kernel configuration notes.

For kernels older than 2.4.20, the following tarball containing a patch should be applied to your 2.4.17 or
newer kernel tree.

2.2. tc requirements

The tc command is a part of the iproute2 utility suite. For general documentation on iproute2, see
http://linux−ip.net/ and the iproute2 manual. The software itself is available directly from Alexey
Kuznetsov'z FTP archive but commonly also via packages supplied with your linux distribution. If your
distribution can make use of RPMS, you can download this SRPM and compile it on your own system.

If you need to compile iproute2 yourself, use the patch to tc from this tarball at Martin Devera's HTB site in
order to provide support for HTB in tc.

Your tc will also need to support dsmark, the diffserv marking mechanism. Fortunately, this is a simple
change to the Config file from the iproute2 source package. Simply change TC_CONFIG_DIFFSERV=n
to TC_CONFIG_DIFFSERV=y and recompile.

The SRPM creates a tc binary with support for dsmark and for HTB, both of which are required for this
example.

2.3. tcng requirements

Support for tcng is the easiest part of the process. Simply untar the tcng source and run ./configure
−−no−tcsim before compiling.

If you are on an RPM−based system, you can use the SPEC file in tcng/build/tcng.spec to build for
your distribution, or you can download and compile this SRPM. The SRPM produces two packages, tcc and
tcc−devel. You need only tcc to create configurations.

In order to run the tcc parser, you will also need to have the cpp package installed. tcc uses cpp.

2. Requirements 4

http://diffserv.sourceforge.net/#24
http://diffserv.sourceforge.net/#24
http://luxik.cdi.cz/~devik/qos/htb/v3/htb3.6-020525.tgz
http://linux-ip.net/
http://linux-ip.net/gl/ip-cref/
ftp://ftp.inr.ac.ru/ip-routing/
ftp://ftp.inr.ac.ru/ip-routing/
http://linux-ip.net/traffic-control/iproute-2.4.7-7.src.rpm
http://luxik.cdi.cz/~devik/qos/htb/v3/htb3.6-020525.tgz
http://luxik.cdi.cz/~devik/qos/htb/
http://linux-ip.net/traffic-control/iproute-2.4.7-7.src.rpm
http://linux-ip.net/traffic-control/tcng-9d-1.src.rpm

3. Configuration examples
Examples shown here will be modified examples of downloadable configurations available in this directory.

These examples can be used as standalone configuration files to be fed into a tcc parser, or they can be used in
conjunction with the example SysV startup script. The startup script is a modification of a script posted on the
LARTC mailing list by raptor.

If you are going to use the above startup script, take a look at this example /etc/sysconfig/tcng:

Example 1. /etc/sysconfig/tcng

− tcng meta−configuration file
(I never meta−configuration file I didn't like)
#
−− 2003−03−15 created; −MAB
−− 2003−03−31 modified to allow ENVAR override; −MAB
#
−− this directory will hold all of the tcng configurations
used on this host
#
TCCONFBASEDIR=${TCCONFBASEDIR:−/etc/sysconfig/tcng−configs}

−− this is the active, desired tcng configuration
note, that, because tcng provides the #include construct,
the modularity of configuration can be built into the
configuration files in $TCCONFBASEDIR
#
TCCONF=${TCCONF:−$TCCONFBASEDIR/global.tcc}

tcstats=${tcstats:−no} # −− will suppress statistical output
tcstats=${tcstats:−yes} # −− will throw the "−s" option to tc

tcdebug=${tcdebug:−0} # −− for typical startup script usage
tcdebug=${tcdebug:−1} # −− for a bit of information about what's happening
tcdebug=${tcdebug:−2} # −− for debugging information
#
#
−− an additional measure to take, you can override the default tc and tcc
command line utilities by specifying their pathnames here, for example:
#
tc=/usr/local/bin/tc
tcc=/usr/local/tcng/bin/tcc
#
#

3.1. Using tcng to shape download only

Many general concepts will be introduced with this example. This example can be compiled to its tc output
with the command tcc class−selection−path.tcc.

Example 2. /etc/sysconfig/tcng/class−selection−path.tcc

3. Configuration examples 5

http://linux-ip.net/code/tcng/
http://linux-ip.net/code/tcng/tcng.init
http://mailman.ds9a.nl/pipermail/lartc/2002q4/005411.html
http://mailman.ds9a.nl/pipermail/lartc/2002q4/005411.html

/*
 * Simply commented example of a tcng traffic control file.
 *
 * Martin A. Brown <martin@linux−ip.net>
 *
 * Example: Using class selection path.
 *
 * (If you are reading the processed output in HTML, the callouts are
 * clickable links to the description text.)
 *
 */

#include "fields.tc"
#include "ports.tc"

#define INTERFACE eth0

dev INTERFACE {
 egress {

 /* In class selection path, the filters come first! DSmark */

 class (<$ssh>) if tcp_sport == 22 && ip_tos_delay == 1 ;
 class (<$audio>) if tcp_sport == 554 || tcp_dport == 7070 ;
 class (<$bulk>) \
 if tcp_sport == PORT_SSH || tcp_dport == PORT_HTTP ;
 class (<$other>) if 1 ;

 /* section in which we configure the qdiscs and classes */

 htb () {
 class (rate 600kbps, ceil 600kbps) {
 $ssh = class (rate 64kbps, ceil 128kbps) { sfq; } ;

 $audio = class (rate 128kbps, ceil 128kbps) { sfq; } ;
 $bulk = class (rate 256kbps, ceil 512kbps) { sfq; } ;
 $other = class (rate 128kbps, ceil 384kbps) { sfq; } ;
 }
 }
 }
}

The tcng language provides support for C−style include directives which can include any file. Files
are included relative to the current directory or the tcng library (normally
/usr/lib/tcng/include). Strictly speaking, it is not necessary to #include ports.tc and
fields.tc, because tcc will include these by default.
The use of #include can allow for flexible definition of variables and inclusion of common traffic
control elements.
See also the tcng manual on includes.

These are CPP directives. The #define can be used to create macros or constants. For more on their
use, you should see the tcng manual on variables.

The egress keyword is synonymous with the dsmark keyword. The example here uses class
selection path. It is the use of the egress keyword in this configuration which requires dsmark
support in the kernel and tc.

Class selection path is one approach to traffic shaping. In class selection path, the packet is marked

Traffic Control using tcng and HTB HOWTO

3. Configuration examples 6

mailto:martin@linux-ip.net
http://linux-ip.net/gl/tcng/node35.html
http://linux-ip.net/gl/tcng/node111.html
http://linux-ip.net/gl/tcng/node32.html
http://linux-ip.net/gl/tcng/node32.html

(DiffServ mark) upon entry into the router. The router may take any number of actions or apply any
number of policing, scheduling or shaping actions on the packet as a result of this initial classification.
Consult the tcng manual on class selection path for further details.

This example shows the use of names for the ports instead of numbers. This is one of the
conveniences of tcng afforded by the automatic inclusion of ports.tc. The ports are named in
accordance with IANA port names. See IANA's registered ports for these names or examine the file
ports.tc.
Names and numbers are equally acceptable and valid.

Note this peculiar construct which classifies any packet which have not yet been classified. Any
packet which has not been classified by the above classifiers is put into the class "$other" here. The
if 1 construct can be used to classify the remainder of unclassified traffic.

This is the creation of the root qdisc which is attached to device, eth0 in this case. Consult the
reference material in the tcng appendix on queuing discipline parameters for valid parameters to each
qdisc. Any qdisc parameters can be inserted into the parentheses in the same fashion as the class
parameters further below in the example. If no parameters need be specified, the parentheses are
optional.

The top level class in this example sets the maximum bandwidth allowed through this class. Let's
assume that eth0 is the inside network interface of a machine. This limits the total bandwidth to 600
kilobits per second transmitted to the internal network.
The parameters rate and ceil should be familiar to anybody who has used HTB. These are HTB
specific parameters and are translated properly by the tcc utility. See the table on tcng rate and speed
specification.

This is the assignment of a class to a variable. This is commonly done as part of class selection path.

As suggested by Martin Devera on the HTB homepage, an embedded SFQ gives each class a fair
queuing algorithm for distribution of resources to the contenders passing packets through that class.
Note the absence of any parameters to the embedded queuing discipline.
If no queuing discipline is specified for leaf classes, they contain the default, a pfifo_fast qdisc. The
inclusion of a stochastic fair queuing qdisc in the leaf classes inhibits the ability of a single connection
to dominate in a given class.

3.2. Using a two−rate three−color meter

Example 3. /etc/sysconfig/tcng/two−rate−three−color−meter.tcc

/*
 * Simply commented example of a tcng traffic control file.
 *
 * Martin A. Brown <martin@linux−ip.net>
 *
 * Example: Using a meter.
 *
 * (If you are reading the processed output in HTML, the callouts are
 * clickable links to the description text.)
 *
 */

#define EXCEPTION 192.168.137.50
#define INTERFACE eth0

Traffic Control using tcng and HTB HOWTO

3. Configuration examples 7

http://linux-ip.net/gl/tcng/node32.html
http://www.iana.org/assignments/port-numbers
http://linux-ip.net/gl/tcng/node159.html
mailto:martin@linux-ip.net

$meter = trTCM(cir 128kbps, cbs 10kB, pir 256kbps, pbs 10kB);

dev eth0 {
 egress {
 class (<$full>) if ip_src == EXCEPTION ;
 class (<$fast>) if trTCM_green($meter) ;
 class (<$slow>) if trTCM_yellow($meter) ;
 drop if trTCM_red($meter) ;
 htb {
 class (rate 600kbps, ceil 600kbps) {
 $fast = class (rate 256kbps, ceil 256kbps) { sfq; } ;
 $slow = class (rate 128kbps, ceil 128kbps) { sfq; } ;
 $full = class (rate 600kbps, ceil 600kbps) { sfq; } ;
 }
 }
 }
}

This is the declaration of the meter to be used for classifying traffic. The underlying technology used
to implement this meter is policing. See the tcng manual on meters for the different types of meters.
This meter is a two−rate three−color meter, the most complex meter available in the tcng language.
This meter returns the colors green, yellow and red, based on the rates offered in the committed and
peak buckets. If the metered rate exceeds the committed rate, this meter will turn yellow, and if the
metered rate exceeds the peak rate, this meter will turn red.
The variable $meter can be operated on by functions applicable to the meter type. In this case, there
are three functions available for testing $meter's state, trTCM_green, trTCM_yellow, and
trTCM_red. For efficiency, consider also the accelerated counterparts.

In this example, the IP 192.168.137.50 is specifically excluded from the policing control applied to
traffic departing on eth0.

Up to the committed information rate (cir), packets will pass through this class. Tokens will be
removed from the cir/cbs bucket.
The meter is green.

Traffic flow exceeding the cir/cbs bucket will be classified here. The pir/pbs bucket (pir is
peak information rate, pbs is peak burst size). This allows a particular flow to be guaranteed one
class of service up to a given rate, and then be reclassified above that rate.
The meter is yellow.

Traffic flow exceeding the pir/pbs bucket will be classified here. A common configuration causes
traffic to be dropped above peak rate, although traffic could be re−classified into a best−effort class
from a guaranteed class.
The meter is red.

Traffic Control using tcng and HTB HOWTO

3. Configuration examples 8

http://linux-ip.net/gl/tcng/node53.html
http://linux-ip.net/gl/tcng/node58.html

4. Miscellaneous Notes
Thankfully, tcng does away with one of the minor annoyances of tc. The following table maps the syntax and
convention of these tools with English equivalents.

Table 1. Speed/Rate syntax: tcng vs. tc

tcng English tc
bps bit(s) per second bit
Bps byte(s) per second bps (argh!)
kbps kilobit(s) per second kbit
kBps kilobyte(s) per second kbps
Mbps megabit(s) per second mbit or Mbit
MBps megabyte(s) per second mbps or Mbps
pps packet per second ??
Note that this means a slight adjustment for longtime users of tc, but a much better choice for intuitive
usablity for English speakers.

For example, we can use conventional expressions of rate in tcng configurations: 100Mbps, 128kbps, and
even 2Gpps. See also the tcng manual on units.

In order for traffic control to be effective, it is important to understand where the bottlenecks are. In most
cases, you'll want to perform the traffic control at or near the bottleneck.

4. Miscellaneous Notes 9

http://linux-ip.net/gl/tcng/node21.html

5. Links and Further documentation
the linux DiffServ project•
HTB site (Martin "devik" Devera)•
Traffic Control Next Generation (tcng)

TCNG manual (Werner Almesberger)

•

iproute2 (Alexey Kuznetsov)

iproute2 manual (Alexey Kuznetsov)

•

Research and documentation on traffic control under linux (Stef Coene)•
LARTC HOWTO (bert hubert, et. al.)•
guide to IP networking with linux (Martin A. Brown)•

5. Links and Further documentation 10

http://diffserv.sourceforge.net/
http://luxik.cdi.cz/~devik/qos/htb/
http://tcng.sourceforge.net/
http://linux-ip.net/gl/tcng/
ftp://ftp.inr.ac.ru/ip-routing/
http://linux-ip.net/gl/ip-cref/
http://www.docum.org/
http://lartc.org/howto/
http://linux-ip.net/

	Table of Contents
	1. Introduction
	1.1. What is traffic control and how does it work?
	1.2. What is htb?
	1.3. What is tcng?

	2. Requirements
	2.1. kernel requirements
	2.2. tc requirements
	2.3. tcng requirements

	3. Configuration examples
	3.1. Using tcng to shape download only
	3.2. Using a two-rate three-color meter

	4. Miscellaneous Notes
	5. Links and Further documentation

