
ipchains and iptables for
Firewalling and Routing

Jeff Muday
Instructional Technology Consultant

Department of Biology, Wake Forest University

The ipchains utility

• Used to filter packets at the Kernel level
• Best firewall/routing utility for the 2.2 Kernel
• Replaces ipfwadm command from 2.0 Kernel
• Works with TCP/IP packets only

– Protocols: TCP, ICMP, UDP
• Must understand TCP/IP thoroughly to take full

advantage to the utility.
• Used in concert with ipmasqadm to provide

masqueraded port forwarding.

Kernel Options

• CONFIG_FIREWALL
• CONFIG_IP_FIREWALL
• CONFIG_IP_MASQUERADE
• CONFIG_IP_MASQUERADE_ICMP
• CONFIG_IP_ALWAYS_DEFRAG
• CONFIG_IP_ADVANCED_ROUTER
• CONFIG_IP_ROUTE_VERBOSE
• CONFIG_IP_TRANSPARENT_PROXY

Problems…

• Not as flexible as iptables of Linux 2.4 Kernel
• Cannot resolve other network protocols

– Such as:
• AppleTalk
• IPX/SPX
• NetBeui

Security Advice: probably should only run non TCP
protocols on private internal network isolated by a
separate NIC

Using ipchains

• 3 Basic chains:
– Input

Handles all inbound packets

– Forward
Handles packets destined for other computers

– Output
Handles packets processed and sent out by local

machine

Using ipchains

• Each “chain” is a set of rules
• Rules are processed sequentially from first

to last
• User can create define “custom” chains,

which must be called by the user.
– In practice this is rarely used…

Understanding the “rules”

• Each chain has a Default policy target of
ACCEPT, DENY, REJECT, MASQ, REDIRECT,
or RETURN

• The “standard” policy is ACCEPT
• What does this mean?
• That any packet that goes through the chain is

interrogated by each “rule” and if the packet
reaches the end of the chain (passed by all rules)
the “default” policy is invoked on the packet

Targets defined

If a packet “matches” the rule it encounters it then
has a target action:
– ACCEPT – it is allowed to be processed
– DENY – it is filtered out and forgotten
– REJECT – it is filtered out and responds with an ICMP message

back to the sender of its rejection
– MASQ – the packet is allowed to be masqueraded for routing to

internal or external networks
– REDIRECT – the packet can be redirected to another port or user

defined chain
– RETURN – returns processing to the calling chain, much like a

subroutine return

Syntax: ipchains
ipchains CMD [chain] [rule-spec|num] [options]

Commands:
-A (append) appends another rule to the end of the specified

chain
-D (delete) deletes rule in a list. If n is not supplied, then the

first rule is assumed.
-R (replace) replaces rule in a list.
-I (insert) inserts a rule at position n. If n is not supplied,

then the rule is placed at the start of the chain.

Commands cont’d

-L (list) Lists all the rules in a particular chain. If
chainname is omitted, it lists all rules in all chains.

-F (flush) Clears all rules in the named chain, or it
chainname omitted, flushes all rules in all chains.

-N (create) creates a user specified chain
-X (delete user defined chain)
-P policy (set the default policy)

Common ipchains options
• -s [!] addr [[!] port] specifies source address
• -d [!] addr [[!] port] specifies destination address
• -p [!] {tcp | udp | icmp} specifies protocol
• -i [!] interface[+] specify interface + means to use all

interfaces matching a particular type
• -j target if a rule is matched, jump to a particular target

action such as ACCEPT, DENY, REJECT, etc.
• -l log the packet by klogd, often into /var/log/messages
• [!] –y only match TCP packets that are “initiating a

connection.

Recall TCP/IP nomenclature

• IP specifications are in the:
0.0.0.0/0 format
Examples:
192.168.1.0/24

(match any 192.168.1.1 through 192.168.1.254)

10.1.0.0/16
(matches a class B network 10.1.0.1 to 10.1.255.254)

Really simple firewall script
#!/bin/sh
MYNET=“10.100.1.0/24”

LOCAL=“127.0.0.1/32”
flush existing
/sbin/ipchains –F

allow all traffic on my network to be processed
/sbin/ipchains –A input –s $MYNET –d 0/0 –j ACCEPT
allow all loopback traffic

/sbin/ipchains –A input –s $LOCAL –d 0/0 –j ACCEPT
deny everything else
/sbin/ipchains –A input –s 0/0 –d 0/0 –j DENY

Cookbook: allow DNS
DNS=“64.89.114.157”
/sbin/ipchains –A input –p TCP –s $DNS domain –j ACCEPT
/sbin/ipchains –A input –p UDP –s $DNS domain –j ACCEPT

Cookbook: allow user to browse
Web and use FTP

allow connections that are NOT connection
initiation attempts
/sbin/ipchains –A INPUT –p TCP ! –y –j ACCEPT

/sbin/ipchains –A input –p TCP –s 0/0 ftp-data \
-d $MYIP 1024:5999 –j ACCEPT

/sbin/ipchains –A input –p TCP –s 0/0 ftp-data \
-d $MYIP 6255: -j ACCEPT

now, block everything but the loopback
/sbin/ipchains –A input –i ! lo \

–p ! ICMP –j DENY -l

Masquerading
• Kernel must be compiled to support it!
• Enable forwarding

– Echo 1 > /proc/sys/net/ipv4/ip_forward
• Modify /etc/sysconfig/network

– IP_FORWARD=yes
• Script:

#!/bin/sh
MYNET=192.168.1.0/24
/sbin/ipchains –A input –i eth1 –s $MYNET –j ACCEPT
/sbin/ipchains –A forward –s $MYNET –j MASQ
/sbin/ipchains –A forward –j DENY -l

Port forwarding
• It is fairly easy to forward a port BEHIND the firewall to

the outside world. All you need is the ipmasqadm
command
– You can easily forward ssh, Web, telnet ports to a machine behind

the firewall. Note: FTP requires insmod of a masquerade module
/sbin/ipmasqadm portfw –a –p tcp \
–L $MYIP $MYWEBPORT \
–R $SERVERIP $SERVERWEBPORT
example suppose your firewall internal IP is
192.168.1.1 and your private web server is
192.168.1.10
/sbin/ipmasqadm portfw –a –p tcp \

-L 192.168.1.1 80 –R 192.168.1.10 80

ipchains: saving, restoring

• Typically, we will use ipchains rules issued
from scripts. But, if we create an ad-hoc
firewall by issuing commands interactively,
ipchains suite has two commands of
interest:
– ipchains-save – outputs a stream to stdio of the

current ruleset
– ipchains-restore – reads stdin previous created

by the ipchains-save command.

Using ipchains-save and
ipchains-restore

• Example: saving current chains
/sbin/ipchains-save > /etc/ipchains.conf

• Example: restoring saved chains
/sbin/ipchains-restore < /etc/ipchains.conf

You might choose to use the restore in the
/etc/rc.local initialization sequence.

Summary: ipchains

• Discussed the purpose of ipchains command
• Listed the kernel options required to make

ipchains function
• Presented syntax of the command
• Wrote a simple firewall script
• Showed how masquerading can be

established

iptables for Firewalling and
Routing

• More advanced/flexible than ipchains
• Generally available on distributions which

ship with the Linux 2.4 kernel
– RedHat 7.1, 7.2; Mandrake 8.0, 8.1
– SUSE 7.2, TurboLinux 7

The iptables utility

• Used to filter packets at the Kernel level
• Best firewall/routing utility for the 2.4

Kernel
• Works with TCP/IP packets only

– Protocols: TCP, ICMP, UDP
• Must understand TCP/IP thoroughly to take

full advantage to the utility.

Kernel/Network options
• CONFIG_NETFILTER
• CONFIG_IP_NF_CONNTRACK
• CONFIG_IP_NF_FTP
• CONFIG_IP_NF_IPTABLES
• CONFIG_IP_NF_MATCH_STATE
• CONFIG_IP_NF_MATCH_LIMIT
• CONFIG_IP_NF_MATCH_UNCLEAN
• CONFIG_IP_NF_FILTER
• CONFIG_IP_NF_TARGET
• CONFIG_IP_NF_TARGET_REJECT
• CONFIG_IP_NF_NAT
• CONFIG_IP_NF_TARGET_MASQUERADE
• CONFIG_IP_NF_TARGET REDIRECT
• CONFIG_IP_NF_TARGET_LOG

iptables

• Three major tables
– Filter table, NAT table, Mangle table

• Each table has a series of Rule chains
• The Filter table is analgous to the ipchains

command. Like ipchains, it has three chains:
– INPUT, FORWARD, and OUTPUT

• iptables is better than ipchains:
– it does not need auxillary commands to handle routing

and port forwarding

iptables continued

• NAT table
– Handles network address translation
– Contains three chains:

• PREROUTING, OUTPUT, and POSTROUTING

• Mangle table
– Used for packet mangling
– Has two chains:

• PREROUTING and OUTPUT

Other similarities to ipchains

• All table chain rules are processed in a
sequential manner. That means each chain
is order dependent.

• User defined chains are allowed in each
table. These user defined chains are
analogous to subroutines in normal program
code – they must be called, and possibly
returned from.

Rules of the iptables game

• Each “rule” has a “target”, “commands”,
and “options” like ipchains, but different
syntactic structure

Common iptables targets

• ACCEPT – a match allows packet to pass
• DROP – silently drops packet (like DENY)
• REJECT – drops the packet, but sends an ICMP

signal back to acknowledge rejection
• MASQUERADE – prepares a packet for

masquerade, and can only be used in
POSTROUTING chain of NAT table.

• SNAT – a packet’s source address is prepared for
use routing. Can only be used in the
POSTROUTING chain of the NAT table

Common iptables targets cont’d

• DNAT – like SNAT, but used to prepare the
destination address for routing. This is used only
in the PREROUTING chain of the NAT table

• LOG – if a packet matches this rule, it triggers
another packet which is sent to a logging target.

• User chain – a user defined sub chain
• RETURN – a target for the END of a user defined

chain. Analogous to a RETURN statement in a
program subroutine.

Syntax: iptables

iptables [-t table] CMD [chain] [rule-spec|num] [options]

Common iptables Commands

• -A (--append)
• -D (--delete)
• -R (--replace)
• -I (--insert)
• -L (--list)
• -F (--flush)

Common iptables commands
cont’d

• -N (--new-chain)
• -X (--delete-chain)
• -E (--rename-chain)
• -P (--policy)
• -C (--check)

Common iptables options

-p [!] protocol
-s [!] addr[/mask] (source)
-d [!] addr[/mask] (destination)
--destination-port [!] port (destination port)
--icmp-type [!] type
-i [!] interface[+] (specify interface)
-o [!] interface[+] (specify outbound interface)
-j target (ACCEPT, REJECT, DROP, etc.)
[!] --syn (matches if TCP packets are initiating a connection)

Packet state match rules

• With iptables, you have the ability to establish
rules regarding matches based on packet states

iptables –m state –state [!] [state1,state2…]
• State Module Matches

– NEW – matches packets that initiate a new connection
– ESTABLISHED – matches packets that belong to an

established connection.
– RELATED – matches packets related to another

connection
– INVALID – matches packets that are invalid or could

not be fully resolved

ipchains converted to iptables

• If you already have an ipchains firewall, it
is fairly easy to convert ipchains rules to
iptables

• Example:
allow all connections to my ssh server
/sbin/ipchains –A input –s 0/0 –d $MYIP –p tcp \

–-dport 22 –j ACCEPT
CONVERTS to iptables
/sbin/iptables –t filter –A INPUT –s 0/0 –d $MYIP \

–p tcp –-destination-port 22 –j ACCEPT

Simple firewall
/sbin/iptables –t filter –A INPUT –m state \
--state ESTABLISHED, RELATED –j ACCEPT
/sbin/iptables –t filter –A INPUT –p udp \

–s $DNS –source-port domain –j ACCEPT

Masquerading and NAT with
iptables

• Enable forwarding
echo 1 > /proc/sys/net/ipv4/ip_forward

• Instruct kernel to drop packets that come in
on mismatched interfaces
echo 1 > /proc/sys/net/ipv4/conf/all/rp_filter

• Rules
/sbin/iptables –t nat –A POSTROUTING –o $EXTIF –j MASQUERADE
/sbin/iptables –t nat –A POSTROUTING –o $EXTIF –j SNAT –to $MYIP

Port forwarding with iptables

• Syntax:
iptables –t nat –A PREROUTING [-p protocol] \
–d $MYIP –dport original_port \
–j DNAT –to destaddr:port

Example: enable port forwarding to our web server on the
private network 192.168.1.10

/sbin/iptables –t nat –A PREROUTING \
–p tcp –d $MYIP –dport http \

–j DNAT –to 192.168.1.10:80

Summary: iptables

• iptables is a powerful packet filtering and
routing tool

• Listed the kernel options required to make
iptables function properly

• Studied the syntax and function of the
iptables command

• Presented a how-to on simple port
forwarding

	ipchains and iptables for Firewalling and Routing
	The ipchains utility
	Kernel Options
	Problems…
	Using ipchains
	Using ipchains
	Understanding the “rules”
	Targets defined
	Syntax: ipchains
	Commands cont’d
	Common ipchains options
	Recall TCP/IP nomenclature
	Really simple firewall script
	Cookbook: allow DNS
	Cookbook: allow user to browse Web and use FTP
	Masquerading
	Port forwarding
	ipchains: saving, restoring
	Using ipchains-save and ipchains-restore
	Summary: ipchains
	iptables for Firewalling and Routing
	The iptables utility
	Kernel/Network options
	iptables
	iptables continued
	Other similarities to ipchains
	Rules of the iptables game
	Common iptables targets
	Common iptables targets cont’d
	Syntax: iptables
	Common iptables Commands
	Common iptables commands cont’d
	Common iptables options
	Packet state match rules
	ipchains converted to iptables
	Simple firewall
	Masquerading and NAT with iptables
	Port forwarding with iptables
	Summary: iptables

