MySQL Internals Manual

MySQL Internals Manual

Abstract

Thisisthe MySQL Internals Manual.

Document generated on: 2006-10-18 (revision: 3666)
Copyright 1998-2006 MySQL AB

This documentation is NOT distributed under a GPL license. Use of this documentation is subject to the following terms: Y ou may
create a printed copy of this documentation solely for your own personal use. Conversion to other formatsis allowed as long as the
actual content is not altered or edited in any way. Y ou shall not publish or distribute this documentation in any form or on any me-
dia, except if you distribute the documentation in a manner similar to how MySQL disseminatesit (that is, electronically for down-
load on awebsite with the software) or on a CD-ROM or similar medium, provided however that the documentation is dissemin-
ated together with the software on the same medium. Any other use, such as any dissemination of printed copies or use of this doc-
umentation, in whole or in part, in another publication, requires the prior written consent from an authorized representative of
MySQL AB. MySQL AB reserves any and all rights to this documentation not expressly granted above.

Please email <docs@rysql . con> for more information or if you are interested in doing a transation.

Table of Contents

1= = o= X
1. A Guided Tour Of The MySQL SOUrCE COUEuiieieiiiieiiieeeeii e 1
2 (== o= PP 1

1.2. The M@ Or DIFECLOIIESuceuieiiiei et e e e e e e enas 2
1.2.1. Major Directories: BUILDocvuiiiiiiciiii e e e 3

1.2.2. Major Directories: Clientoviiiiiiiiie e e 4

1.2.3. M Or DIr€CtOrieS: DOCSuieeeiiiieiiiiie ettt 4

1.2.4. Major DireCtorieS: MYISAMcccuuieieiiiieieiii ettt eeeans 5

1.2.5. MajOr DireCLONES: IMYSYS ..uieeiieiii et e et e et e et ettt e e et e e e e e e eannas 6

1.2.6. M Or DIr€CtONES.: SOl covuivreiiiei e e eaas 6

1.2.7. MajOr DIr€CIONES: VIO ..uuiiiiieeiicii et e e e e e e e e aaas 7

0 T I N o PP 8

1.4, The Open-SoUrCe DITECIOMESccuuuiiieiii e 8

1.5. The Internal and External Storage Engine Dir€Ctoriesocoevvivvvieiiineeiiiineeeennn, 9

1.6. The "OS SPeCifiC” DIFECIOMESccuuiiiiiii e 9
1.7.00dS@NA ENAS ... 10

1.8. A Chunk of Codein/ sql / sql _updat €. CC .covvvviiiiiiiiiiiiii e 10

1.9. The Skeleton Of The Server CoUec.uuiviiiiiiiieiiii e 11

L s o= o TP PPTRUPTP 20

2. COodING GUIEIINES ..ottt ettt e e e e e e enens 21
2.1. C/C++ Coding GUIAEIINESceuiiiiiieeie e 21
2.2.configure Support fOr PIUGINSc.iiiiiie e 30
2.2.1. confi gur e Command-Line Plugin Optionscccoevvviiiiiiicriineennnn, 30

2.2.2. AUtOLOOIS PIUGIN MBEIOS ... cvvieeiiieeei e e e 30

R I 0T @ o] 44 74 PP TOPPR 34
3.1, COUE AN CONCEPLS ...vueeeeeiiee ettt ettt e ettt e et et e e eaa e eenans 34
.11 DEfINITIONS ..ttt et e e 34

3.1.2. The OptimMIZEr COUEccuuieeiie e e 34

3.2. Primary OptimiZationScceuuiiiiieiiieee e e e e e e e e e e e e e e 35
3.2.1. Optimizing Constant REIGHIONScoevviiiiiiiie e 35

3.2.2. OPtiMIZING JOINSunieeiiii et eeans 38

3.2.3. TranNSPOSILIONScevviieeiiiiie ettt 43

3.2.4. ORDER BY ClAUSES ...cevvvuieiiiiiieeiiiiie ettt e e e et e e e et e e eea e e eaaan e e eennns 45

3.2.5. GROUP BY and Related Conditionsc.veeeuiiiiiiiiiiieeiiieeeeeeeeeen, 46

CRCIN® 1@ o111 1 41T 1 o] 1< T 47
3.3.1. NULLsFilteringforref andeq_ref ACCESScocvvvvvviiiiiiiiiiiiieeeeeann, 47

3.3.2. Partitioning-Related OptimiZationsoveeeeuinieeiiiieeeii e 48

4. Important AlQorithms @and SETUCIUIESc.uuuiiiiiiieiiii e 56
O I o TC N B A=Y 0 T 56

4.2. How MySQL DoesSorting (f i | €SOrt) covviiiiiiiiii e, 57

= U [[0= o PP 58

4.4. How MySQL D0oesCachingcccuviviiiiiiiiicei e 58

4.5. How MySQL Uses the Join Buffer Cacheoviiiiiiiiiiiiii e 59

4.6. How MySQL Handles FLUSH TABLEScooiiiiiiiiiiieee e 60

A b (RS = o 60

4.8. FLOAT and DOUBLE datatypes and their representation.c.ccoevveiieennnnnn. 64

e I 0= o PP 69

4.10. Character/Collation SELSc.cuuiiiiiiiie e 70

4.11. Error flags and fUNCLIONSuiiiiiiiiiii e 74

4.12. Functionsin the my Sy s Libraryoooeuiiiiiiiiii e 75

I 2 110 7= 1o 1S 78

5. How MySQL Performs Different SEleCtScoviviiiiiii e, 79
5.1. Steps of SElECt EXECULIONcvviiiii e e e e e 79

MySQL Internals Manual

5.2.S€l €CT _IeSUIT ClaSS ciuvuiiiiiiii i 79
5.3. SI MPLE Or PRI MARY SELECT ...iiiiiiiiiiiiiieeeeii et 80
5.4. Structure Of COMPIEX SEIECEoovuiiiiiiii e 80
5.5. Non-Subquery UNI ON EXECULIONccuuniiiiiiiaeieii et eeii e e e e eenens 81
5.6. Derived Table EXECULIONc.uiiiiiiiiiieii e 82
B.7. SUBQUENTES ... e 82
5.8. SINGIE SEIECL ENQGINE ...ooviiiiiiiii e e e e e e e e e e e eaes 83
5.9, UNION ENQING .ouiiiiiiii et e e e e e e e et e e et e e eanaeeees 83
5.10. SPECial ENQINEScoviieiii e 84
5.11. EXPlain EXECULION ...ttt et 84
6. How MySQL Transforms SUDQUENTESunieiieiiiee e 85
6.1.1tem.in_subsel ect::select _transformercccoccoviiiiiiiiiiinnennnen, 85
6.1.1. Scalar | NSUDQUENYuiiieieeie et e e e e 85
6.1.2. ROW | NSUDQUETY ...cevnieiiieeie et e e e e e e e e e 87

B6.2. 1temallany SubSel ECt ..o 88
6.3.1tem si ngl er oW _SUDSEl €CT .iieeiiiii i 89
7. MySQL Client/Server ProtOCOIiiiuiiiiiiee e 0
8 T o= o T NN)£ 90
42 @ o= 2. [90
RS R = = 11T 01T PP 91
7.4. ThePacket HEaOErc..iiviiii e 91
7.5, PaCKEL TYPES ..ottt ettt et anaas 91
7.6. Handshake Initialization Packetcc.iiiiiiiiiiii e 92
7.7. Client Authentication PaCKetcc.uiiiiiiiiiiiiii e 93
7.8. Passord FUNCLIONSooiieeiieiii e eaees 94
7.9. ComMMANG PaCKELuiiiiiiie e 94
7.10. Types Of RESUIT PaCKELSccuuiiiiiiiie e 95
A8 O [o (= AP 95
A (o = o PP 96
7.13. Result Set Heatder PaCKELiiiiiiiiiiiii e 97
A R T o I == ot PP 98
715, EOF PACKEL ...t e 99
7.16. ROW DataPaCketoovuuiiiiiiii et 100
7.17. Row Data Packet: Binary (Tentative DesCription)cccevuvveeiiiinieeeiiinnenens 101
7.18. Prepared Statement Initialization Packet (Tentative Description) 101
7.19. OK for Prepared Statement Initialization Packet (Tentative Description) 102
7.20. Parameter Packet (Tentative DeSCription)cccccuveeeieiiiieeiiieein e eeeeeaenn 102
7.21. Long Data Packet (Tentative DeSCription)cccuoveeeveiiiieeieein e eeeeeeeaenn 102
7.22. Execute Packet (Tentative DESCIiptioNn)uveeieiiieiiiiiieeeiiee e 103
7.23. COMPIESSION ...ttt ettt ettt e ettt e et e e et et e e e eene e e e eennaeeees 104
8. Prepared Statements and Stored ROULINGEScouuniiiiiiiiieiiee e 105
8.1. Statement Re-execution REQUITEMENEScouuriieriieeiieiii e e 105
8.2. Preparation of aPrepared Statementco.uvvviiiiiiiiiiii e 106
8.3. Execution of aPrepared Statementcovuveviiiiiiiiieii e 107
8.4. Execution of a Stored Procedure Stalementvveveiveiieiiiiinieeiiieeeeiieeees 109
9. REPIICALION ...t e e ettt e e e e 110
9.1 MaINCOUR FIIES ... e 110
S I I 0T = T o= Y o o P 110
9.3. RePlICAioN TAr€AASuviiiiieiei e e 113
9.3.1. The Slave /O Threadoooieiiiiiiii e 113

9.3.2. TheSlave SQL Threadcc.uviviniieiiee e 114

9.3.3. WhY 2 ThreadS?uiiiiiiiiieeii e e 114
9.34.TheBi nl 0g DUNP Threadcooviiiiii e, 115

9.4. How Replication DealSWith...c..iiiiiiiiiii e 116
9.4.1. aut o_i ncrenment Columns, LAST | NSERT I D() covevevvvveinieennnenne. 116
9.4.2. User VariableS (SINCEA.L) ..ovvniiii et 116
9.4.3. SyStEM Variahl €S ... 116
9.4.4. SOME FUNCHIONS ...t eees 116

MySQL Internals Manual

9.4.5. Non-repeatable UDF FUNCLIONSccvvviiiiiieii e 116
9.4.6. Prepared StAEMENESvvve e e 116
9.4.7. Temporary TallES ... ciiiiieie e 116

9.4.8. LOAD DATA [LOCAL] | NFI LE(SINCE4.0) .ovvevveveeeeeeeeeeieeeeeenen 117

9.5. How a Slave Asks Its Master to Send ItSBinary LOgcc.uveveiiiiiiiiiiiieineeenn. 117
9.6. Network PacketSin Detailcoouviiiiiiiiii e 118
9.7. Replication Event Format in Detailcc.oveviiiiiiiiii e 118
9.7.1. The CommOon HEBAENveiiiiiiieiiiii e 118

9.7.2. The “Post-headers’ (Event-specific Headers)cccoevviiiiiiiiiiiiiinnenes 119

0.8, PlaANS < 124
10. My | SAMSIOIagE ENQINE ... cuniiiiiii ettt ettt e e e e e e eaa e 125
10.1. My | SAMRECOIM SETUCKUIeveee et e et e e e e e e e eans 125
05000 1 1 oo (1 o1 o o PSP 125
10.1.2. Physical Attributes of COlUMNScocvvviiiiiiiiii e 127
10.1.3. Whereto Look For More Informationcccoovviiveiiiiiiiniiiieees 131

10.2. ThE . MY FIl8 tortiiiiie e e s 131
10.2.1. MYT SAMEIIES .. 137

10.3. Myl SAMCompressed DataFile Layoutoccuveiiiiiiiiiiiiiiieieecieeeeeeen, 137
10.3.1. HUffmMan COMPIrESSIONucviiiiii e e e e e e e e e e e e e e e 137
10.3.2. Themyi sanpPack Programc.cceveeuieeeineeeneeeiieeeieeesneeeneeeanaens 138
10.3.3. Record and Blob Length ENCOdingccocvvniiiiiiiineiiiiiieeccii e 138
10.3.4. Code Tree REPIrESENLAIONccvuueeierieeeieiie e et et 138
10.3.5. Usageof the Index Fileooieuiiiiiiii e 138
10.3.6. Myi SamPaCK TrICKS ..iuviiiiici e 139
10.3.7. Detailed Specification of the Decoding:ccccevvviiiiiiiiiiiiieciieeiis 139

11. 1 NNODB StOrag@ ENQINEeeviieiiiii et e e e e e e e e e aanaees 141
12.2. 1 NNODB RECOI SEIUCIUIEevve e e e e e e e e e eenes 141
11.1.1. High-Altitude PICTUrEoovniiiiie e 141
11.1.2. Whereto Look For More Informationccooviiuiiiiiiniiiiniiiiieeeis 145

11.2. 1 NNODB Page SIIUCKTUIE ...uuieiiiie e e e e aa e 145
11.2.1. High-AltItUdE VIBW ... 145
10,22, EXAMPIE e 149
11.2.3. Whereto Look For More Informationccoovviiiiiiiiiiiniiiineees 150

12. Writing @ Custom SEOrage ENGINGcooevunieiiiieeieie ettt 151
2280 I g 0o (0o (o) o PP PT 151
L12.2. OVEIVIEIW eueiiiiii ettt e e et e e et e e et e e e et e e e et s 151
12.3. Creating Storage ENgine SOUrCE FleSovvvniiiiiiiiii e 152
12.4. Creating the handl €5t 0N ...o.viiii e 152
12.5. Handling Handler INStantiaionoveeeiiiiieeiiiieecci e 155
12.6. Defining Filename EXIENSIONSuiiiiiiieeieii e 156
12.7. Creating TADIESciiei e 156
12.8.0peNiNG A TEDIE . .cuniiiie e 157
12.9. Implementing Basic Table SCanNingcocvvieiiiiieiii e 158
12.9.1. Implementing thest or e_| ock() Methodcccoovvvviviiiiiiiiininnns 158
12.9.2. Implementing the ext er nal _| ock() Methodccccoeeviiiiiiiiinnnnnn. 159
12.9.3. Implementing ther nd_i ni t () Methodcccooviiiiiiiiiiiii, 159
12.9.4. Implementing thei nf o() Method ..o 160
12.9.5. Implementing theext r a() Methodccocooiiiiiiiiiiii 160
12.9.6. Implementing ther nd_next () Methodcoocviviiiiiiiiiiiieees 160
12.10. CloSiNg @TaDIE oovniii e 162
12.11. Adding Support for | NSERT to aStorage ENginec..oveevivinieiiiineeeeiinnnn. 162
12.12. Adding Support for UPDATE to a Storage ENginec..veevevineeiiiineeeeninnne. 163
12.13. Adding Support for DELETE to a Storage ENginecoooevviieiiiiiieiinneennnn. 164
12.14. Supporting Non-Sequential REAASoveuiiiiiiiiiiice e 164
12.14.1. Implementing the posi ti on() Methodccooveiiiiiiiiiiieees 164
12.14.2. Implementing ther nd_pos() Methodccoceeviiiiiiiiiiiiiicees 164
12.15. SUPPOItING INAEXINGceeeiiiieeiii e 165
12.15.1. INAEXING OVEIVIEWceviiiieiiiiie ettt 165

Vi

MySQL Internals Manual

12.15.2. Getting Index Information During CREATE TABLE Operations 165
12.15.3. Creating INAEX KEYS ...ovvniiiiiiii e e 166
12.15.4. Parsing Key INfOrmationoooveuuieiiiiiieeeiieeeei e 166
12.15.5. Providing Index Information to the Optimizerccoooeeveviiieeiinnnnen. 166
12.15.6. Preparing for Index Usewithi ndex_ i ni t () .ooeeoereeeiniiiiniiiiieis 168
12.15.7. Cleaning up With i ndeX_end() ..ccoeeeiiiiiiiiiiiiee e 168
12.15.8. Implementing thei ndex_read() Methodcccocevveviiiiiiiieninnnns 168
12.15.9. Implementing thei ndex_read i dx() Methodcceerennnins 168
12.15.10. Implementing thei ndex_next () Methodccccooeeiiiiiiieiinnnnen. 169
12.15.11. Implementing thei ndex_prev() Methodccccooeeviiiiieiinnnnnn. 169
12.15.12. Implementing thei ndex_first () Methodcccoevviiiiiiiinnnes 169
12.15.13. Implementing thei ndex_| ast () Methodccoooiiiiiiiies 169
12.16. SUPPOIting TranNSACHIONSuueieiceieeee e e e e e e e e e e e e e eaenas 169
12.16.1. TransaCtion OVEIVIEWccceeuinieeiiiiiie et e et et e e 170
12.16.2. Starting @ TranSaCtiONceeeveieeiiiie e 170
12.16.3. Implementing ROLLBACKooiiiiiiieiiiie e 172
12.16.4. Implementing COMMIToiiiiiiiieii e 172
12.16.5. Adding Support for SAVEPOINESccvuriiiiiiiiiieei e 172
12.17. APL REFEIENCE ... i 173
L2.07. 0 D8S XL et 173
I R o o= 174
A Ao 1= (TSP 175
12.17.4. AEIEIE TOW ovvneiiiiii et e e e e 176
12.17.5. delet tahle ..uueeiiiieeee e 177
12.17.6. €XterNal_IOCKuiiiiieiis e 178
i O G = L - R TP TPPT PR 179
12.17.8. INEX_ENA .oieiieii e 179
12.07.9. INAEX_FITSE covviieeiiii e 180
A 0 A 1 o L= | o PP 181
12.07. 00, INAEX_IASE ceveiieeieie et 181
12.27.02. INAEX_ NEXE .ouieeiee et e e e e e e e e e e 182
I 0 1 o L= G o=, A 183
12.17.14. INAEX_FEA0_TOX oevvueeeiiieeeeiii e 183
12.27.25. INAEX_TEAAeeeiieeie et 184
0 A L 1 o PSP 185
A o o = TSP 186
I 0 1 S T = o o P 187
12.17.19. reCOrAdS iN FNJE .vvueveeeeeieeei eaanaees 188
12.27.20. INA_INIT 1oieeie e 189

Iy g 1 o B 1= PR 189
12.07.22. INO_POS ettt ettt e aa 190
12.17.23. Start_SIME coeeee e 191
2 g B (o = 3 o G 192
I s S TN o = = 1 194
12.07.26. WITEE TOW vttt ettt e et e e e e aa s 195

L3 EITON MBSSAJES ...ttt ettt ettt ettt e e 197
13.1. Adding New Error Messagesto MYSQLoouniiiiiiiiiiieeiecei e 197
13.2. Adding Storage Engine Error MESSAESc.uvvvveniiiiiiieeeeeeeeee e e e e e 200
A. MySQL Source Code DistribUtionoiiiiiiiiiieiiieci e e 202
N I B 1o (o Y T] o [202
A.L1. Thebdbh DIFECLOIYiiieiiieeiii e 203
A.12. TheBi t Keeper DIreCIONYc.uuiiiieiiieiiiiiieeeii et 203
A.L3. TheBUI LD DITECIONY ..ucivvviieeiiiiieeeiieeeeeiie s e e et s e e et e e et e e eeaen s 203
A.LA. Thecl i ent DIFeCLONYcceuiieiiiieie e 204
A.L5. Theconf i g DIFECIOMY ..cccvniiii e e 204
A.16. Thecnd-line-uti| s DIreCtOry ...coooveviviiiiieiiiieir e 204
A.L7.Thedbug DIrCIOMYciieeeiieiiii e 206
A.L8. TheDOCS DIFECIOMYoiieeiieeieiie ettt 206

Vii

MySQL Internals Manual

A.L9. TheeXt 1 a DIrECIOIY ...uiiveniiii e e 206
A.L10. The heap DIFECIOIYcccuuiiiiieiiieeee e e e e 207
A.L11. Thei NCl Ude DIrCLOMYivieiiieeiii et 208
A.1.12. Thei NN0oDaSE DIFECIONYcccvuuiiiiiiiiieeiiie e 208
A.113. Thel i brrysql DIireCtoryoceeeiiiiiiiiieee e 208
A.L14. Thel i brmysql 1 DIr€CtOrY ...ooveeeeiiee e 209
A.115. Thel i brrysql d DIireCtOrycovueviiiiiiiiieii e 209
A.L16. The MBN DIFECLONY ..vvvnieieieii e e e e e e e aas 209
A.L17. Themyi SAMDITECIONYiiiiiiie e 209
A.1.18. Thenyi sanmmr g DIr€CLOrYcoeveeviiiiiiiiieeeii e 211
A.119. Themysql -t €St DIFECLONY ...cceuiieiniiiiiieii e 212
A.1.20. The My SYS DIFECLOIY ..ccuiieiiiiii e 213
A.L121. The Ndb DIireCtOrY ..o.uuiveeiei e e 217
A.1.22. Thenet War € DIr€CLOIYc.uveveuieeiieieiie e e e e e e 218
A.1.23. The NEW RPMS DIFECIOMY ...eeeviieiiiiiieeeii et 218
A.124. ThE OS2 DIFECLOMY ...uniiieiiieeeeii ettt 219
A.L125. The pst aCk DIreCIOMYcceuuiieiiiii e 219
A.1.26. Ther egeX DIFCIOrYccciiiiii e 219
A.L27. The SCCS DIFECLOIY .vuevviieeiiieeieee et e e e e e e e e e e e e e aanas 219
A.128. TheSCri Pt s DIr€CIONY ..uvivveieeiieeii e e e 220
A.1.29. Theserver -t 00l S DIF€CIONYc.uuiviviiiiiiiiiiii e 220
A.1.30. The SOl DIFECIOMYoiieiiiieeiiei et 221
A.1.31. Thesql - bench DIreCtoryooeeuiiiiiiiiiiiiei e 225
A.1.32. Thesql - comDN DIr€CLOrYcvuvvveiieiie e 225
A.L133. The SSL DIrECIOMY ..vvvnieiiiieei e e e e e e 225
A.L34. The st ri NgS DIrECIONY ...ocvvuieeeieeee e e 225
A.135. Thesupport-fil es DIreCtOryccoooveviiiiiiiiiieiiiie e, 227
A.136. Thet ST S DIF€CIOMY ...ccvvuiiiiiii e 227
A.137.Thet 001 S DIFECLOMY ...ccuuiiiiieiii e 228
A.1.38. The VC++Fi | €S DIFeCLOrYccvuiiveiiieiiei e 228
A.L139. The VI O DIFECLOMY vvvniiiiiee e e e e 229
A.L40. TheZI i D DIFECIOIY .vuiieeiiii e e e e e 230
B. | nnoDB Source Code DistribDULIONc..iiiieiiiiiei e 231
g0 L PP 241

viii

List of Figures

12.1. MySQL architecture

Preface

Thisisamanua about MySQL internals. MySQL development personnel change it on an occasional
basis. We don't guarantee that it's al true or up-to-date. We do hope it will show you how MySQL's pro-
grammers work, and how MySQL's server works as a result.

Chapter 1. A Guided Tour Of The MySQL
Source Code

Hi, welcometo chapter 1. What we're about to do in this chapter is pick up the latest copy of the
MySQL source code off the Internet. Then we'll get alist of the directories and comment on why they're
there. Next we'll open up some of the files that are vital to MySQL 's working, and comment on specific
linesin the source code. WE'l close off with afew pictures of file formats.

1.1. BitKeeper

We want to download the latest, the very latest, version of the MySQL server. So we won't click
“Downloads’ on the MySQL Developer Zone page — that's usually afew weeks old. Instead we'll get
BitKeeper (tm), which isarevision control package, vaguely like CVS or Perforce. Thisiswhat
MySQL's devel opers use every day, so what we download with BitK eeper is usually less than aday old.
If you've ever submitted a bug report and gotten the response “thanks, we fixed the bug in the source
code repository” that means you can get the fixed version with BitKeeper.

First, log on to www.bitkeeper.com and register. Oneway is:
» Click “Downloads’” which takes you to the downloads page ht-
tp://bitkeeper.com/Products.BK _Pro.Evaluation.html

» Click on “Software download form” which takes you to ht-
tp://www.bitmover.com/cgi-bin/license.cgi

e Fill inadl thefields, including the Platform name, which was “Linux/x86 ..." for us, but you'll be
okay with other choices. Like MySQL, BitKeeper is available on many platforms, so the details will
vary here.

* Submit the form.
Then you'll have to wait until Bitkeeper mails you some more instructions, which are actually quite
simple. Thereis no fee to use BitKeeper for downloads of open-source code repositories like MySQL's.

After you have BitKeeper, you'll be ableto clone. That is, you'll be able to get a copy of the source code,
using a statement that looks like this:

shel | > bk cl one

.. that is,

bk cl one <MySQ. machi ne: /directory name> <your directory nanme>

.. thatis,

» Start ashell

e Onthe shell, make adirectory named (say) mysqgl-5.0:

shel | > nkdir $HOVE/ nysql - 5. 0
shel | >cd $HOVE
shel | > bk cl one bk://nysql.bkbits.net/nmysql-5.0 nysql-5.0

http://bitkeeper.com/Products.BK_Pro.Evaluation.html
http://bitkeeper.com/Products.BK_Pro.Evaluation.html
http://www.bitmover.com/cgi-bin/license.cgi
http://www.bitmover.com/cgi-bin/license.cgi

A Guided Tour Of The MySQL Source Code

(The $HOME directory is usually your persona areathat you're allowed to write to. If that's not the
case, replace $HOME with your personal choice whenever it appears.)

Thereisalot of code, so the first time you do this the download will take over an hour. That'sif you're
lucky. Glitches can occur, for example the 'bk' command fails due to afirewall restriction.

If you're glitch-prone, you'll need to read the manual: Section 2.8.3, Installing from the Devel opment
Source Tree.

On later occasions, you'll be doing what's called a“bk pull” instead of a“bk clone”, and it will go faster.
Typically a“bk pull” takes 10 minutes and is glitch-free.

Directories, Alphabetical Order

After bk clone finishes and says “ Clone completed successfully” you'll have 40 new sets of files on your
computer, asyou'll be ableto seewith| s or di r.

BUI LD
Bi t Keeper

SSL
VC++Fi | es
bdb

client
cmd-line-utils
config
dbug
extra
heap

i ncl ude

i nnobase
i bmysq

I'i bnysqgl _r
I'i bnysql d
man

nyi sam

nyi sammr g
nmysql -t est
nysys

ndb

net war e
0s2

pst ack
regex
scripts
server-tool s

sq

sql - bench

sql - conmon
strings
support-files
tests

t ool s

Vi o

zlib

These will all be installed as directories below the SHOME directory. At first al these directory names
might intimidate you, and that's natural. After all, MySQL is abig project. But we're here to show you
that there's order in this apparent chaos.

1.2. The Major Directories

1. BU LD

2. client

A Guided Tour Of The MySQL Source Code

3. Docs

4. nyi sam
5. nysys
6. sql

7. vio

The orderly approach isto look first at the most important directories, then we'll look at the whole list in
our second pass. So, firgt, let'slook at what you'll find in just seven of the directories: BUILD, client,
Docs, myisam, mysys, sql, and vio.

1.2.1. Major Directories: BUILD

The first major directory we'll look at isBUILD. It actually has very littlein it, but it's useful, because
one of the first things you might want to do with the source code is: compile and link it.

The example command line that we could useis

BUI LD/ conpi | e- pent i um debug - - prefi x=$HOVE/ nysql - bi n

It invokes a batch filein the BUILD directory. When it's done, you'll have an executable MySQL server
and client.

Or, um, well, maybe you won't. Sometimes people have trouble with this step because there's something
missing in their operating system version, or whatever. Don't worry, it really does work, and there are
people around who might help you if you have trouble with this step. Search for "build" in the archives
of lists.mysgl.com.

We, when we're done building, tend to install it with the following sequence:

shel | > make
shel | > make install
shel | > $HOME/ nysql - bi n/ bi n/ nysql _i nstal | _db\
- - basedi r =$HOVE/ nysq| - bi n\
- - dat adi r =$HOVE/ nysql - bi n/ var
This puts the new MySQL installation files on
shel | > $HOVE/ nysql - bi n/ | i bexec the server

-- for
shel | > $HOVE/ nysql - bi n/ bi n -- for the nysqgl client
shel | > $HOVE/ nysql - bi n/ var -- for the databases

1.2.1.1. gdb (GNU debugger)

Once you've got something that runs, you can put a debugger on it. We recommend use of the GNU de-
bugger

http://ww. gnu. or g/ sof t war e/ gdb/ docunent at i on/

And many developers use the graphical debugger tool DDD - Data Display Debugger

http://ww. gnu. or g/ sof t war e/ ddd/ manual /

These are free and common, they're probably on your Linux system already.

3

http://www.gnu.org/software/gdb/documentation/
http://www.gnu.org/software/ddd/manual/

A Guided Tour Of The MySQL Source Code

There are debuggers for Windows and other operating systems, of course — don't feel left out just be-
cause we're mentioning a Linux tool name! But it happens that we do alot of things with Linux
ourselves, so we happen to know what to say. To debug the mysqgld server, say:

shel |l > ddd --gdb --args \
$HOVE/ nysql - bi n/ I'i bexec/ mysql d \
- - basedi r =$HOVE/ nysql - bi n \
- - dat adi r =$HOVE/ nysql - bi n/ var\
- - ski p- net wor ki ng

From this point on, it may be tempting to follow along through the rest of the "guided tour" by setting
breakpoints, displaying the contents of variables, and watching what happens after starting a client from
another shell. That would be more fun. But it would require a detour, to discuss how to use the debug-
ger. So we'll plow forward, the dull way, noting what's in the directories and using atext editor to note
what'sin theindividual files.

1.2.1.2. Running a Test with the Debugger

Torun atest named sone. t est with the debugger in embedded mode you could do this:
1. Runlibnysqgl d/ exanpl es/test_run --gdb sone.test.Thiscreatesal i brrysql d/
exanpl es/ t est - gdbi ni t filewhich contains the required parametersfor nysql t est .

2. Makeacopy of thet est - gdbi ni t file(call it, for example, sone- gdbi ni t). Thet est -
gdbi ni t filewill beremoved aftert est - run - - gdb hasfinished.

3. Loadl i bnysql d/ exanpl es/ nysql t est _enbedded into your favorite debugger, for ex-
ample: gdb nysql t est _enbedded.

4. Inthedebugger, for examplein gdb, do: - - sou sone- gdbi ni t

Now some. t est isrunning, and you can seeif it's passing or not.

If you just want to debug some queries with the embedded server (not the test), it's easier to just run
['i brrysqgl d/ exanpl es/ mysql . It'sthe embedded server-based clone of the usual mysql tool, and
works fine under gdb or whatever your favorite debugger is.

1.2.2. Major Directories: client

The next major directory is mysql-5.0/client.

si ze name comment

100034 nysql . cc "The MySQL command t ool "

36913 mysqgl adm n.c mai nt enance of MYSQ. dat abases
22829 nysqgl show. ¢ show dat abases, tables, or colums
+ 12 nore .c and .cc prograns

It has the source code of many of your familiar favorites, like mysgl, which everybody has used to con-
nect to the MySQL server at one time or another. There are other utilitiestoo — in fact, you'll find the
source of most client-side programs here. There are also programs for checking the password, and for
testing that basic functions — such as threading or access via SSL — are possible.

You'l notice, by the way, that we're concentrating on the files that have extension of ".c" or ".cc". By
now it's obviousthat C is our principal language athough there are some utilities written in Perl aswell.

1.2.3. Major Directories: Docs

A Guided Tour Of The MySQL Source Code

The next mgjor directory is mysql-5.0/Docs.

With the BitKeeper downloads, /Docs s nearly empty. Binary and source distributions include some
pre-formatted documentation files, such as the MySQL Reference manual in Info format (for Unix) or
CHM format (for Windows). The nysql doc documentation repository is available separately from ht-
tp://dev.mysql.com/tech-resources/sources.html. If you have Subversion, you can check out a copy of
the repository with this command:

svn checkout http://svn. nysql.com svnpublic/ mysql doc/

Some important filesin the nysql doc repository are:

nanme comment

.../ sanpl e-data/worl d/worl d.sqgl script to nmake 'worl d' database
...linternals/internals.xm i nternal s manual

... /refman/ *. xm ref erence manual

+ several nore .xm files

Our documents are written in XML using DocBook. The DocBook format is becoming popular among
publishers, and of course there'slots of general documentation for it, for example at ht-
tp://www.docbook.org/. For our immediate purpose, the most interesting directory might be thei n-

t er nal s directory, because it contains the source for the Internals Manual that you're reading now.

At this moment, the Internals Manual has more than 100 pages of information, including some details
about the formats of MySQL files that you won't find anywhere else, and a complete description of the
message formats that the client and server use to communicate. Although it's rough and may contain er-
rors and is obsolete in parts, it is a document that you must read to truly understand the workings of

MySQL.
1.2.4. Major Directories: myisam

The next major directory islabelled myisam. We will begin by mentioning that myisam is one of what
we call the MySQL storage engine directories.

The MySQL storage engine directories:

heap al so known as ' nenory’

i nnodb -- maintained by | nnobase Oy
nmyi sam -- see next section!

ndb -- ndb cluster

For example the heap directory contains the source files for the heap storage engine and the ndb direct-
ory contains the source files for the ndb storage engine.

But the filesin those directories are mostly analogues of what's in the myisam directory, and the myisam
directory is sort of a'template’.

On the myisam directory, you'll find the programs that do file 1/0. Notice that the file names begin with
the letters mi, by the way. That stands for MylSAM, and most of the important filesin this directory
start with mi.

File handling programs on mysgl-5.0/myisam:

size nane conment
40301 m _open.c for opening
3593 m _cl ose.c for closing
1951 mi _renane.c for renam ng

+ nore m _*.c prograns

http://dev.mysql.com/tech-resources/sources.html
http://dev.mysql.com/tech-resources/sources.html
http://www.docbook.org/
http://www.docbook.org/

A Guided Tour Of The MySQL Source Code

Row handling programs on mysql-5.0/myisam:

si ze nane comment

29064 m _delete.c for deleting
2562 m _delete_all.c for deleting al
6797 m _update. c for updating

32613 m _wite.c for inserting

+ nore m _*.c prograns

Drilling down abit, you'll also find programs in the myisam directory that handle deleting, updating, and
inserting of rows. The only one that's alittle hard to find is the program for inserting rows, which we've
called mi_write.c instead of mi_insert.c.

Key handling programs on mysgl-5.0/myisam:

si ze name comment
4668 m _rkey.c for random key searches
3646 m _rnext.c for next-key searches
15440 mi _key.c for managi ng keys

+ nmore m _*.c prograns

The final notable group of filesin the myisam directory is the group that handles keysin indexes.

To sum up: (1) The myisam directory is where you'll find programs for handling files, rows, and keys.

Y ou won't find programs for handling columns — we'll get to them a bit later. (2) The myisam directory
isjust one of the handler directories. The programsin the other storage engine directories fulfill about
the same functions.

1.2.5. Major Directories: mysys

The next major directory islabelled mysys, which stands for MySQL System Library. Thisisthe tool-
box directory, for example it has low level routines for file access. The .c filesin mysys have procedures
and functions that are handy for calling by main programs, for example by the programs in the myisam
directory. There are 115 .c filesin mysys, so we only can note a sampling.

Sampling of programs on mysqgl-5.0/mysys

si ze nanme conmment
17684 charset.c character sets
6165 nf_qgsort.c qui cksort

5609 nf__tenpfile.c tenmporary files
+ 112 nore *.c prograns

Example one: with charset.c routines, you can change the character set.
Example two: mf_gsort.c contains our quicksort package.
Example three: mf_tempfile.c has what's needed for maintaining MySQL's temporary files.

Y ou can see from these examples that mysys is a hodgepodge. That's why we went to the trouble of pro-
ducing extra documentation in this document to help you analyze mysys's contents.

1.2.6. Major Directories: sq|l

The next major directory is mysql-5.0/sgl. If you remember your manual, you know that you must pro-
nounce this: ess queue ell.

The "parser" programs on mysqgl-5.0/sql:

1.2.7.

A Guided Tour Of The MySQL Source Code

si ze nanme comment

51326 sql _| ex. cc | exer
230026 sql _yacc.yy par ser
+ many nore *.cc prograns

Thisiswhere we keep the parser. In other words, programs like sgl_lex.cc and sqgl_yacc.yy are respons-
ible for figuring out what's in an SQL command, and deciding what to do about it.

The "handler" programs on mysqgl-5.0/sql:

si ze nanme conmment

79798 ha_ber kel ey. cc bdb
56687 ha_federated.cc federated (sql/ned)

61033 ha_heap. cc heap (nmenory)
214046 ha_i nnodb. cc i nnodb
47361 ha_nyi sam cc nmyi sam

14727 ha_nyi sammrg.cc nerge
215091 ha_ndbcl uster. cc ndb

Thisis aso where we keep the handler programs. Now, you'll recall that the storage engine itself, for ex-
ample myisam, is a separate directory. But here in the sgl directory, we have programs which are re-
sponsible for determining which handler to call, formatting appropriate arguments, and checking results.
In other words, the programs that begin with the letters ha are the handler interface programs, and there's
one for each storage engine.

The "statement” routinesin mysqgl-5.0/sql:

si ze name comment
24212 sqgl _delete.cc 'delete ...' statenent
1217 sql _do. cc ‘do ...
22362 sql _hel p. cc "help ...
75331 sql _insert.cc ‘'insert ...'
430486 sql _select.cc 'select ...'
130861 sql _show. cc "show ...

42346 sql _update.cc ‘'update ...
+ many nore sql _*.cc prograns

Alsointhe sgl directory, you'll find individual programs for handling each of the syntactical compon-
ents of an SQL statement. These programs tend to have names beginning with sgl_. So for the SELECT
statement, check out sgl_select.cc.

Thus, there are "statement” routines like sgl_delete.c, sgl_load.c, and sgl_help.c, which take care of the
DELETE, LOAD DATA, and HELP statements. The file names are hints about the SQL statementsin-
volved.

The "statement function" routines in mysql-5.0/sql:

si ze nanme comment

19906 sql _string.cc strings

6152 sql _ol ap. cc olap (rollup)

14241 sql _udf. cc user-defined functions
17669 sql _uni on. cc uni ons

Then there are the routines for components of statements, such as strings, or online analytical processing
which at this moment just means ROLLUP, or user-defined functions, or the UNION operator.

Major Directories: vio

The final major directory that we'll highlight is labelled vio, for "virtual 1/0".

A Guided Tour Of The MySQL Source Code

The vio routines are wrappers for the various network 1/0 calls that happen with different protocols. The
ideaisthat in the main modules one won't have to write separate bits of code for each protocol. Thus
Vio's purpose is somewhat like the purpose of Microsoft's winsock library.

That wraps up our quick look at the seven mgjor directories. Just one summary chart remains to do.

1.3. The Flow

Thisisadiagram of the flow.

User enters "I NSERT" statenent /* client */
Message goes over TCP/IP |ine /* vio, various */
Server parses statenent [* sql */

Server calls |lowlevel functions [* nyi sam */

Handl er stores in file /[* mysys */

The diagram is very simplified — it's a caricature that distorts important things, but remember that we've
only discussed seven magjor directories so far: Docs, BUILD, and the five that you see here.
The flow works like this:

First, the client routines get an SQL statement from a user, allowing edit, performing initial checks, and
so on.

Then, viathe vio routines, the somewhat-massaged statement goes off to the server.

Next, the sgl routines handle the parsing and call what's necessary for each individual part of the state-
ment. Along the way, the sl routines will be calling the low level mysys routines frequently.

Finally, one of the ha (handler) programsin the sgl directory will dispatch to an appropriate handler for
storage. In this case we've assumed, as before, that the handler is myisam — so a myisam-directory pro-
gramisinvolved. Specifically, that program is mi_write.c, as we mentioned earlier.

Simple, en?

1.4. The Open-source Directories

We're now getting into the directories which aren't "major”. Starting with:

dbug
pst ack
regex
strings
zlib

Now it'stime to reveal astartling fact, which is— we didn't write all of the source code in al of the
source code directories all by ourselves. Thislistis, in asense, atribute to the idea of open source.
There's dbug, which is Fred Fish's debug library.

There's pstack, which displays the process stack.

There'sregex, which iswhat we use for our regular expressions function.

8

A Guided Tour Of The MySQL Source Code

There's strings, the meaning of which is obvious.
There's zlib, which isfor Zempel-Liv compression.

All of the programs in these directories were supplied by others, as open source code. We didn't just take
them, of course. MySQL has checked and changed what's in these directories. But we acknowledge with
thanks that they're the products of other projects, and other people's 1abor, and we only regret that we
won't have time to note al the contributed or publicly available components of MySQL, in this manual.

1.5. The Internal and External Storage Engine Director-

ies

Continuing with our extract from the directory list ...

bdb /* external */
heap

i nnobase /* external */
nyi sam

nyi sammr g

ndb

Let's go through the idea of storage engines once more, thistime with alist of all the storage engines,
both the ones that we produce, and the ones that others produce. We've aready mentioned the internal
ones — so how we'll remark on the directories of the two common external storage engines— BDB and
innobase.

The BDB, or Berkeley Database, handler, is strictly the product of Sleepycat software. Sleepycat has a
web page at deepycat.com, which contains, among other things, documentation for their product. So
you can download Sleepycat's own documentation of the source codein the BDB directory.

Asfor the innobase handler, which many of you probably use, you'll be happy to know that the com-
ments in the files are reasonably clear (the InnoBase Oy people are pretty strict about comments). There
are two chapters about it in this document.

1.6. The "OS Specific" Directories

net war e
NEW RPNVS
0s2
VC++Fi | es

A few words are in order about the directories that contain files which relate to a particular environment
that MySQL can runin.

The netware directory contains a set of files for interfacing with netware, and anyone who hasan in-
volvement with NetWare knows that we're allied with them, and so this is one of the directories that rep-
resents the joint enterprise.

The NEW-RPMS directory (empty at time of writing) isfor Linux, and the os2 directory isfor OS/2.

Finally, the VC++Files directory is for Windows. We've found that the majority of Windows program-
mers who download and build MySQL from source use Microsoft Visua C. In the VC++Files directory
you will find a nearly complete replication of what'sin all the other directories that we've discussed, ex-
cept that the .c files are modified to account for the quirks of Microsoft tools.

Without endorsing by particular names, we should note that other compilers from other manufacturers
also work.

A Guided Tour Of The MySQL Source Code

1.7. Odds and Ends

Finally, for the sake of completeness, we'll put up alist of the rest of the directories — those that we
haven't had occasion to mention till now.

Source Code Administration Directories
Bi t Keeper
SCCS

Conmon . h Fil es:
i ncl ude

G\U Readline |library and rel at ed:
cnd-line-utils

Stand-alone Utility & Test Prograns:
extra

mysql -t est

repl-tests

support-files

tests

tools

Y ou don't have to worry about the administration directories since they're not part of what you build.

Y ou probably won't have to worry about the stand-alone programs either, since you just use them, you
don't need to remake them.

There's an include directory that you SHOULD have alook at, because the common header files for pro-
grams from several directories are in here.

Finally, there are stand-alone utility and test programs. Strictly speaking they're not part of the "source
code". But it's probably reassuring to know that there's atest suite, for instance. Part of the quality-as-
surance process isto run the scriptsin the test suite before releasing.

And those are the last. We've now traipsed through every significant directory created during your
download of the MySQL source package.

1.8. A Chunk of Codein/sqgl /sqgl update.cc

Now, having finished with our bird's eye view of the source code from the air, let's take the perspective
of the worms on the ground. (Which is another name for MySQL's developer staff — turn on laugh track
here.)

int nmysqgl _update(THD *thd, ...)
{

if ((lock_tables(thd, table list)))
DBUG RETURN(1); ...

ihit read_record(& nfo, thd, tabl e, select, 0, 1);
while (! (error=info.read record(&lnfo)) & 1t hd- >k|IIed)

{

if't!(errorztable—>fiIe—>update_row((byte*) tabl e->record[1

(byt e*) tabIe->record[%%'

)))

updat ed++

if'(table->triggers)
tabl e->tri ggers->process_triggers(thd, TRG EVENT_UPDATE, TRG ACTI ON_AFTER);

}...
if'(updated &% (error <= 0 || !transactional _table))

nysqgl _bin_l og.wite(&i nfo) & transactional _table);

10

A Guided Tour Of The MySQL Source Code

Here's a snippet of code from a.c filein the sgl directory, specifically from sgl_update.cc, which — as
we mentioned earlier -- isinvoked when there's an UPDATE statement to process.

The entire routine has many error checks with handlers for improbabl e solutions, and showing multiple
screens would be tedious, so we've truncated the code alot. Where you see an ellipsis (three dotsin a
row), that means "and so on".

So, what do we learn from this snippet of code? In the first place, we see that it's fairly conventional C
code. A brace causes an indentation, instructions tend to be compact with few unnecessary spaces, and
comments are sparse.

Abbreviations are common, for example thd stands for thread, you just have to get used to them. Typic-
aly astructure will bein a separate .hfile.

Routine names are sometimes long enough that they explain themselves. For example, you can probably
guess that this routine is opening and locking, allocating memory in a cache, initializing a process for
reading records, reading recordsin aloop until the thread is killed or there are no more to read, storing a
modified record for the table, and — after the loop is through — possibly writing to the log. Incident-
ally, atransactional table isusually a BDB or an InnoDB table.

Obviously we've picked out what's easy to follow, and we're not pretending it's all smooth sailing. But
thisis actual code and you can check it out yourself.

1.9. The Skeleton Of The Server Code

And now we're going to walk through something harder, namely the server.

WARNING WARNING WARNING: code changes constantly, so names and parameters may have
changed by the time you read this.

Important programs we'll be walking through:

/sql / mysqgl d. cc

/'sql / sql _parse. cc
/'sql / sql _prepare. cc
/'sql /sql _I nsert.cc
/'sql / ha_mnyi sam cc
/nyisamm _wite.c

Thisis not as simple as what we've just done. In fact we'll need multiple pages to walk through this one,
and that's despite our use of truncation and condensation again. But the server isimportant, and if you
can grasp what we're doing with it, you'll have grasped the essence of what the MySQL source codeis
all about.

WEe'll mostly be looking at programsin the sgl directory, which is where mysgld and most of the pro-
grams for the SQL engine code are stored.

Our objectiveisto follow the server from the time it starts up, through a single INSERT statement that it
receives from aclient, to the point where it finally performs the low level write in the MylSAM file.

Walking Through The Server Code: /sgl/mysgld.cc
int main(int argc, char **argv)

_cust _check_startup();

(void) thr_setconcurrency(concurrency);

init_ssl();

server_init(); /[l '"bind" + 'listen’
init_server_conponents();

start_signal _handl er();

acl _init((THD *)0, opt_noacl);

init_slave();

11

A Guided Tour Of The MySQL Source Code

creat e_shut down_t hread();
create_mai nt enance_t hread() ;

handl e_connecti ons_socket s(0); /]!
DBUG PRI NT("quit", ("Exiting main thread"));
exit(0);

Hereiswhereit all starts, in the main function of mysgld.cc.

Notice that we show adirectory name and program name just above this snippet. We will do the same
for all the snippetsin this series.

By glancing at this snippet for afew seconds, you will probably see that the main function is doing some
initial checks on startup, isinitializing some components, is calling a function named
handle_connections_sockets, and then is exiting. It's possible that acl stands for "access control” and it's
interesting that DBUG_PRINT is something from Fred Fish's debug library, which we've mentioned be-
fore. But we must not digress.

In fact there are 150 code lines in the main function, and we're only showing 13 code lines. That will
give you an idea of how much we are shaving and pruning. We threw away the error checks, the side
paths, the optional code, and the variables. But we did not change what was left. Y ou will be able to find
these linesif you take an editor to the mysgld.cc program, and the same applies for all the other routines
in the snippetsin this series.

The one thing you won't seein the actual source codeisthelittle marker "// 1". This marker will always
be on the line of the function that will be the subject of the next snippet. In this case, it means that the
next snippet will show the handle_connection_sockets function. To prove that, let's go to the next snip-
pet.

Walking Through The Server Code: /sgl/mysgld.cc

handl e_connecti ons_sockets (arg __attribute__((unused))
if (ip_sock != |NVALI D_SOCKET)
FD_SET(i p_sock, &cl i ent FDs) ;
DBUG PRI NT("general ", ("Waiting for connections."));
whil e (!abort_I oop)
{

new_sock = accept(sock, ny_reinterpret_cast(struct sockaddr*)

(&cAddr),
&l engt h) ;
t hd= new THD;
if (sock == unix_sock)
t hd- >host =(char*) | ocal host ;
create_new_t hread(thd); /]!

Inside handle_connections_sockets you'll see the hallmarks of a classic client/server architecture. In a
classic client/server, the server has a main thread which is always listening for incoming requests from
new clients. Once it receives such arequest, it assigns resources which will be exclusive to that client. In
particular, the main thread will spawn a new thread just to handle the connection. Then the main server
will loop and listen for new connections — but we will leave it and follow the new thread.

Aswell as the sockets code that we chose to display here, there are several variants of this thread loop,
because clients can choose to connect in other ways, for example with named pipes or with shared
memory. But the important item to note from this section is that the server is spawning new threads.

Walking Through The Server Code: /sgl/mysgld.cc

create_new_t hread(THD *t hd)

pt hread_rut ex_| ock(&L.OCK_t hr ead_count) ;
pt hread_creat e(& hd- >real _i d, &onnection_attri b,
handl e_one_connecti on, /]!

12

A Guided Tour Of The MySQL Source Code

(void*) thd));
pt hr ead_nut ex_unl ock(& OCK_t hread_count) ;

Hereisaclose look at the routine that spawns the new thread. The noticeable detail is that, as you can
see, it uses amutex or mutual exclusion object. MySQL has a great variety of mutexes that it usesto
keep actions of all the threads from conflicting with each other.

Walking Through The Server Code: /sgl/sgl_parse.cc

handl e_one_connecti on(THD *t hd)

init_sqgl_alloc(& hd->memroot, MEM ROOT_BLOCK S| ZE, MEM ROOT_PREALLCC) ;
while (!net->error && net->vio != 0 && !'thd->kill ed)
{
if (do_conmmand(thd)) I
br eak;
}

cl ose_connecti on(net);
end_t hread(thd, 1);
packet =(char*) net->read_pos;

With this snippet, we've wandered out of mysgld.cc. Now, we're in the sgl_parse program, still in the sgl
directory. Thisis where the session's big loop is.

The loop repeatedly gets and does commands. When it ends, the connection closes. At that point, the
thread will end and the resources for it will be deallocated.

But we're more interested in what happens inside the loop, when we call the do_command function.

G aphi c:
client <===== MESSAGE ====> server
<======PACKETS ====>
Exanpl e:

I NSERT | NTO Tabl el VALUES (1);

To put it graphically, at this point there is along-lasting connection between the client and one server
thread. Message packets will go back and forth between them through this connection. For today's tour,
let's assume that the client passes the INSERT statement shown on the Graphic, for the server to process.

Walking Through The Server Code: /sgl/sgl_parse.cc

?ool do_conmmand(THD *t hd)

net _new_transaction(net);

packet _I| engt h=nmy_net _read(net);

packet =(char*) net->read_pos;

command = (enum enum server _conmand) (uchar) packet[O0];

”di spat ch_command(command, t hd, packet+1, (uint) packet_|ength);
|

}

Y ou've probably noticed by now that whenever we call alower-level routine, we pass an argument
named thd, which is an abbreviation for the word thread (we think). Thisis the essential context which
we must never lose.

Themy_net_read function isin another program called net_serv.cc. It gets a packet from the client, un-
compresses it, and strips the header.

Once that's done, we've got a multi-byte variable named packet which contains what the client has sent.
Thefirst byte isimportant because it contains a code identifying the type of message.

13

A Guided Tour Of The MySQL Source Code

WEe'll pass that and the rest of the packet on to the dispatch_command function.

Walking Through The Server Code: /sgl/sqgl_parse.cc

bool di spat ch_command(enum enum server _command conmand, THD *t hd,
char* packet, uint packet_| ength)

switch (command) {
case COM | NI T_DB:
case COM REG STER SLAVE:
case COM TABLE_DUMP:
case COM CHANGE_USER:
case COM EXECUTE:
nysql _stnt_execut e(t hd, packet);
case COM LONG DATA: A
case COM PREPARE:
nysql _stnmt_prepare(thd, packet, packet_|ength); /]!
/* and so on for 18 other cases */
defaul t:
send_error(thd, ER_UNKNOAN_COM ERRCR);
br eak;

}

And here'sjust part of avery large switch statement in sgl_parse.cc. The snippet doesn't have room to
show the rest, but you'll see when you look at the dispatch_command function that there are more case
statements after the ones that you see here.

There will be — we're going into list mode now and just reciting the rest of the itemsin the switch state-
ment — code for prepare, close statement, query, quit, create database, drop database, dump binary log,
refresh, statistics, get process info, kill process, sleep, connect, and several minor commands. Thisisthe
big junction.

We have cut out the code for all of the cases except for two, COM_EXECUTE and COM_PREPARE.
Walking Through The Server Code: /sgl/sgl_prepare.cc

We are not going to follow what happens with COM_PREPARE. Instead, we are going to follow the
code after COM_EXECUTE. But we'll have to digress from our main line for amoment and explain
what the prepare does.

" Pr epar e:

Parse the query

Al l ocate a new statenent, keep it in 'thd->prepared statenents' pool
Return to client the total nunber of parameters and result-set
netadata i nformation (if any)"

The prepare is the step that must happen before execute happens. It consists of checking for syntax er-
rors, looking up any tables and columns referenced in the statement, and setting up tables for the execute
to use. Once aprepare is done, an execute can be done multiple times without having to go through the
syntax checking and table lookups again.

Since we're not going to walk through the COM _ PREPARE code, we decided not to show its code at
this point. Instead, we have cut and pasted some code comments that describe prepare. All we'reillus-
trating here is that there are comments in the code, so you will have aid when you look harder at the pre-
pare code.

Walking Through The Server Code: /sgl/sgl_parse.cc

bool di spatch_conmand(enum enum server _conmand conmand, THD *t hd,
char* packet, uint packet_Iength)

switch (command) {
case COM | NI T_DB:
case COM REG STER_SLAVE:
case COM TABLE_ DUWP:
case COM CHANGE USER:

14

A Guided Tour Of The MySQL Source Code

case COM EXECUTE:
nmysql _stmt execute(thd packet) /!
case COM LONG DATA:
case COM PREPARE:
nysql _stnt_prepare(thd, packet, packet_|ength);
/* and so on for 18 other cases */
defaul t:
send_error (thd, ER_UNKNOAN_COM ERRCR);
br eak;

}

Let'sreturn to the grand central junction again in sgl_parse.cc for amoment. The thing to note on this
snippet is that the line which we're really going to follow is what happens for COM_EXECUTE.

Walking Through The Server Code: /sgl/sgl_prepare.cc

voi d nysql _stnt_execute(THD *thd, char *packet)
if (!(stm=find_prepared_statenent(thd, stnt_id, "execute")))

send_error (thd);
DBUG VO D_RETURN,;

}
init_stnt_execute(stnt);
nmysql _execut e_command(t hd) ; /]!

In this case, the line that we're following is the line that executes a statement.

Notice how we keep carrying the THD thread and the packet along with us, and notice that we expect to
find a prepared statement waiting for us, since thisis the execute phase. Notice as well that we continue
to sprinkle error-related functions that begin with the letters DBUG, for use by the debug library. Fi-
nally, notice that the identifier "stmt" is the same name that ODBC uses for the equivalent object. We try
to use standard names when they fit.

Walking Through The Server Code: /sgl/sqgl_parse.cc

voi d nmysql _execut e_conmand(THD *t hd)
switch (I ex->sqgl _comand) {
case SQLCOM SELECT: ...
case SQLCOM SHOW ERRORS: . ..
case SQ.COM CREATE_TABLE:
case SQ.COM UPDATE:
case SQLCOM | NSERT: ... /]
case SQLCOM DELETE: ...
case SQLCOM DROP_TABLE:

In the mysqgl_execute_command function. we encounter another junction. One of the itemsin the switch
statement is named SQLCOM _INSERT.

Walking Through The Server Code: /sgl/sgl_parse.cc

case SQLCOM | NSERT:
{

my_bool update=(lex->value_list.elements ? UPDATE ACL : 0);
ul ong privil ege= (| ex->duplicates == DUP_REPLACE ?
I NSERT_ACL | DELETE_ACL : INSERT _ACL | update);
i f (check_access(thd, privil ege,tabl es->db, & abl es->grant . pri vil ege))
goto error;
if (grant_option & check _grant(thd, privil ege,tables))
goto error;
if (select_lex->itemlist.elements != |ex->value_list.elenents)

send_error (thd, ER WRONG_VALUE_COUNT) ;
DBUG VO D_ RETURN

}

res = nysql _insert(thd,tables,lex->field_list,|ex->many_val ues,
select _lex->itemlist, |ex->value_list,
(update ? DUP_UPDATE : | ex->duplicates));

15

A Guided Tour Of The MySQL Source Code

/]!
if (thd->net.report_error)
res= -1;
br eak;

For this snippet, we've blown up the code around the SQLCOM_INSERT casein the
mysqgl_execute_command function. The first thing to do is check whether the user has the appropriate
privileges for doing an INSERT into the table, and thisis the place where the server checks for that, by
calling the check_access and check_grant functions. It would be tempting to follow those functions, but
those are side paths. Instead, we'll follow the path where the work is going on.

Walking Through The Server Code: Navigation Aid

Some program names in the /sgl directory:

Pr ogr am Nanme SQL statenment type
sqgl _del ete. cc DELETE

sqgl _do. cc DO

sql _handl er. cc HANDL ER

sqgl _hel p. cc HELP

sql _insert.cc | NSERT /]!
sql _I oad. cc LOAD

sql _renane. cc RENANVE

sql _sel ect. cc SELECT

sqgl _show. cc SHOW

sql _update. cc UPDATE

Question: Where will mysgl_insert() be?

Theline that we're following will take us next to a routine named mysqgl_insert. Sometimesit's difficult
to guess what program aroutine will be in, because MySQL has no consistent naming convention.
However, here is one aid to navigation that works for some statement types. In the sgl directory, the
names of some programs correspond to statement types. This happens to be the case for INSERT, for in-
stance. So the mysqgl_insert program will be in the program sgl_insert.cc. But there's no reliable rule.

(Let's add here a few sentences about the tags 'ctags program. When an editor supports ctags (and the
listislong, but vi and emacs of course are there), the function definition is one key press away - no
guessing involved. In the above case, avim user could press] on mysgl_insert name and vim would
open sql_insert.cc and position the curson on the first line of the mysql_insert() function. The tags help
can be indispensable in everyday work.)

Walking Through The Server Code: /sgl/sqgl_insert.cc

int nysql _insert(THD *thd, TABLE LI ST *table_list, List<ltenr &fields,
Li st<List_itenr &val ues_list, enum duplicates duplic)

table = open_|tabl e(thd, table_list,|ock_type);
if (check_insert_fields(thd,table,fields,*values,1) ||
setup_tables(table list) ||
setup_fields(thd,table_list,*val ues, 0,0, 0))
goto abort;
fill_record(table->field,*val ues);
error=wite_record(tabl e, & nfo); /]!
query_cache_inval i date3(thd, table_list, 1);
if (transactional _table)
error=ha_autocommit_or _rollback(thd, error);
query_cache_invalidate3(thd, table list, 1);
}frysql _unl ock_t abl es(t hd, thd->lock);

For the mysqgl_insert routine, we're just going to read what's in the snippet. What we're trying to do here
is highlight the fact that the function names and variable names are nearly English.

Okay, we start by opening atable. Then, if acheck of thefieldsin the INSERT fails, or if an attempt to

16

A Guided Tour Of The MySQL Source Code

set up the tablesfails, or if an attempt to set up the fields fails, we'll abort.

Next, we'll fill the record buffer with values. Then we'll write the record. Then we'll invalidate the query
cache. Remember, by the way, that MySQL stores frequently-used select statements and result setsin
memory as an optimization, but once the insert succeeds the stored sets are invalid. Finally, we'll unlock
the tables.

Walking Through The Server Code: /sgl/sgl_insert.cc

int wite_record(TABLE *tabl e, COPY_I NFO *i nf 0)

table->file->wite_rowtabl e->record[0]; I

Y ou can see from our marker that we're going to follow the line that contains the words ‘write row'. But
thisis not an ordinary function call, so people who are just reading the code without the aid of a debug-
ger can easily miss what the next point isin the line of execution here. The fact is, ‘write_row' can take
usto one of severa different places.

Walking Through The Server Code: /sgl/handler.h

/* The handl er for a table type.
Wl be included in the TABLE structure */

handl er (TABLE *t abl e_arg) :
tabl e(tabl e_arg), acti ve_i ndex(MAX_REF_PARTS),
ref (0), ref_| ength(5| zeof (ny_off _t)),
bl ock_si ze(O) records(0), del et ed(0),
data file_ | ength(0), max_data_ fil e_length(0),
i ndex_file_ | ength(0),
del ete | ength(0), auto_increment _val ue(0), raid_type(0),
key_used_on scan(MAX KEY)
create_time(0), check_ ti me(O) update_tinme(0), nean_rec_| ength(0),
ft _handl er (0)
{}

virtual int wite_row byte * buf)=0;

To see what the write_row statement is doing, we'll haveto look at one of the include files. In handler.h
on the sl directory, we find that write_row is associated with a handler for atable. This definition is
telling us that the address in write_row will vary — it getsfilled in at run time. In fact, there are severa
possible addresses.

There is one address for each handler. In our case, since we're using the default values, the value at this
point will be the address of write_row in the MylSAM handler program.

Walking Through The Server Code: /sgl/ha_myisam.cc
int ha_nyisam:wite_row(byte * buf)

statistic_increnent(ha_wite_count, & OCK st at us) ;
/* |f we have a timestanp columm, update it to the current time */
if (table->tinme_stanp
/update ti mest anp(buf +t abl e->ti me_st anp- 1) ;
*
If we have an auto_increment columm and we are witing a changed row
or a new row, then update the auto_increment value in the record.

*/
if (table->next_nunber_field & buf == table->record[0])
updat e_aut o_i ncrenent () ;
return m_wite(file,buf); /!
}

And that brings usto write_row in the ha_myisam.cc program. Remember we told you that these pro-
grams beginning with the letters ha are interfaces to handlers, and this one is the interface to the myisam
handler. We have at last reached the point where we're ready to call something in the handler package.

17

A Guided Tour Of The MySQL Source Code

Walking Through The Server Code: /myisam/mi_write.c
int m_wite(M_INFO *info, byte *record)

m _readi nfo(info, F_ WRLCK 1)

m _mark_fil e_changed(i nfo)

Cal cul ate and check all uni que constraints */
r(

*
o] i=0 ; i < share->state. header.uniques ; i++)

~———

m _check_uni que(i nf o, shar e- >uni quei nf o+i , record
m _uni que_hash(shar e- >uni quei nf o+i , recor d)
HA_OFFSET_ERROR) ;

. to be continued in next snippet

Notice that at this point there is no more referencing of tables, the comments are about files and index
keys. We have reached the bottom level at last. Notice as well that we are now in a C program, not a
C++ program.

Inthisfirst half of the mi_write function, we see a call which is clearly commented. Thisis where
checking happens for uniqueness (not the UNIQUE constraint, but an internal matter).

Walking Through The Server Code: /myisam/mi_write.c

continued from previ ous sni ppet

/* Wite all keys to indextree */
for (i=0 ; i < share->base.keys ; i++)
{

share->keyi nfo[i].ck_insert(info,i, buff,
_m _nmake_key(info,i,buff,record,fil epos)

(*share->write_record)(info, record)
if (share->base. aut o_key)
updat e_aut o_i ncrenent (1 nf o, record)

In this second half of the mi_write function, we see ancther clear comment, to the effect that thisis
where the new keys are made for any indexed columns. Then we see the culmination of all that the last
20 snippets have been preparing, the moment we've al been waiting for, the writing of the record.

And, since the object of the INSERT statement is ultimately to cause awrite to arecord in afile, that's
that. The server has done the job.

Walking Through The Server Code: Stack Trace

main in /sql/mnmysqgld.cc

handl e_connecti ons_sockets in /sqgl/mysqld.cc
create_new_ thread in /sqgl/nmysqgld.cc

handl e_one_connection in /sql/sqgl _parse.cc
do_conmmand in /sql/sql _parse.cc

di spat ch_command i n /sql/sql _parse.cc
nmysql _stmt _execute in /sql/sql _prepare.cc
nmysql _execute_command in /sqgl/sql _parse.cc
nmysql _insert in /sql/nysql _insert.cc

wite record in /sql/nysqgl _insert.cc
ha_nyi sam:wite_row in /sql/ha_nyi samcc
m_wite in /nyisamim _wite.c

And now here'salook at what's above us on the stack, or at least an idea of how we got here. We started
with the main program in mysgld.cc. We proceeded through the creation of athread for the client, the
several junction processes that determined where we're heading, the parsing and initial execution of an
SQL statement, the decision to invoke the MylSAM handler, and the writing of the row. We ended in a
low level place, where we're calling the routines that write to the file. That's about as low as we should
go today.

18

A Guided Tour Of The MySQL Source Code

The server program would, of course, continue by returning several timesin arow, sending a packet to
the client saying "Okay", and ending up back in the loop inside the handle_one_connection function.

We, instead, will pause for amoment in awe at the amount of code we've just flitted past. And that will
end our walk through the server code.

Graphic: A Chunk of MYISAM File

CREATE TABLE Tabl el (
columl CHAR(1),
colum2 CHAR(1),
col um3 CHAR(1));

I NSERT | NTO Tabl el VALUES ('a', 'b', 'c');
I NSERT | NTO Tabl el VALUES ('d', NULL, 'e');
F1 61 62 63 00 F5 64 00 66 00abc..d e.

Continuing with our worm's-eye view, let's glance at the structure of arecord in aMyISAM file.

The SQL statements on this graphic show atable definition and some insert statements that we used to
populate the table.

Thefina line on the graphic is a hexadecimal dump display of the two records that we ended up with, as
taken from the MyISAM file for Tablel.

The thing to notice hereis that the records are stored compactly. There is one byte at the start of each re-
cord — F1 for the first record and F5 for the second record — which contains a bit list.

When abit is on, that meansits corresponding field isNULL. That's why the second row, which has a
NULL in the second column, or field, has a different header byte from the first row.

Complications are possible, but a simple record really does ook this simple.

Graphic: A Chunk of InnoDB File

19 17 15 13 0C 06 Field Start Offsets /* First Row */
00 00 78 OD 02 BF Extra Bytes

00 00 00 00 04 21 System Col umm #1

00 00 00 00 09 2A System Col umm #2

80 00 00 00 2D 00 84 System Col utm #3

50 50 Fieldl 'PP

50 50 Field2 'PP

50 50 Field3 'PP

If, on the other hand, you look at an InnoDB file, you'll find that it's got more complexitiesin the stor-
age. The details are elsewhere in this document. But here's an introductory look.

The header here begins with offsets — unlike MylSAM, which has no offsets. So you'd have to go
through column 1 before getting to column 2.

Then there is afixed header — the extra bytes.

Then comes the record proper. Thefirst fields of atypical record contain information that the user won't
see, such asarow ID, atransaction 1D, and arollback pointer. This part would look different if the user
had defined a primary key during the CREATE TABLE statement.

And finally there are the column contents — the string of Ps at the end of the snippet here. Y ou can see
that InnoDB does more administrating.

There's been arecent change for InnoDB; what you see above is from a database made before version
5.0.

19

A Guided Tour Of The MySQL Source Code

G aphi c: A Packet

Header

Nurmber O Rows
I D

St at us

Lengt h

Message Cont ent

Our final worm's-eye look at a physical structure will be alook at packets.

By packet, we mean: what's the format of a message that the client sends over the tcp/ip line to the serv-
er — and what does the server send back?

Here we're not displaying adump. If you want to see hexadecima dumps of the contents of packets, this
document is full of them. We're just going to note that a typical message will have a header, an identifi-
er, and alength, followed by the message contents.

Admittedly thisisn't following a standard like ISO's RDA or IBM's DRDA, but it's documented so if
you want to go out and write your own type 4 JDBC driver, you've got what you need here. (Subject to

license restrictions, of course.) But aword of advice on that last point: it's already been done. Mark Mat-
thewswrote it origindly, it'sal in "MySQL Connector/J'.

1.10. Recap

Okay, let's back up and restate. In this walkthrough, we've told you four main things.

One: How to get the MySQL source.

Two: What's in each directory in the source.

Three: The main sequence, as one walks through the server code.

Four: What physical structureslook like.

We worked hard to make a description of the MySQL source that is simple, without distorting. If you
were able to follow al that we've said, then that's wonderful, congratulations. If you ended up thinking

that MySQL isreally simple, well that's not what we wanted to convey, but we think you'll be disabused
of that notion when you have alook at the code yourself.

20

Chapter 2. Coding Guidelines

This chapter shows the guidelines that MySQL 's devel opers follow when writing new code. Consistent
style isimportant for us, because everyone must know what to expect. For example, after we become ac-
customed to seeing that everything inside an “if” isindented two spaces, we can glance at alisting and
understand what's nested within what. Writing non-conforming code can be bad. For example, if we
want to find where assignments are made to variable “mutex_count”, we might search for
“mutex_count=" with an editor and miss assignments that look like “mutex_count =" with a space be-
fore the equal sign (which is non-conforming). Knowing our rules, you'll find it easier to read our code,
and when you you decide to contribute (which we hope you'll consider!) we'll find it easier to read your
code.

The chapter covers the following topics:

e C/C++ coding guidelines for MySQL Server

e confi gur e support for plugins

2.1. C/C++ Coding Guidelines

This section covers guidelines for C/C++ code for the MySQL server. The guidelines do not necessarily
apply for other projects such as MySQL Connector/J or MaxDB.

I ndentation and Spacing

» Use spaces for space. Do not use tabs (\t). See the editor configuration tips at the end of this section
for instructions on configuring avim or emacs editor to use spaces instead of tabs.

» Uselinefeed (\n) for line breaks. Do not use carriage return + line feed (\r\n); that can cause prob-
lems for other users and for builds. Thisruleis particularly important if you use a Windows editor.

» Tobegin indenting, add two spaces. To end indenting, subtract two spaces. For example:

code, code, code

code, code, code

» The maximum line width is 80 characters. If you are writing alonger line, try to break it at alogical
point and continue on the next line with the same indenting. Use of backslash is okay; however,
multi-line literals might cause less confusion if they are defined before the function start.

* You may use empty lines (two line breaks in arow) wherever it seems helpful for readability. But
never use two or more empty linesin arow. The only exception is after a function definition (see be-
low).

» To separate two functions, use three line breaks (two empty lines). To separate alist of variable de-
clarations from executable statements, use two line breaks (one empty line). For example:

int function_1()

int i;
int j;

functionO();

21

Coding Guidelines

}

int function2()

return;

Matching '{ } * (left and right braces) should be in the same column, that is, the closing '} should be
directly below the opening '{". Do not put any non-space characters on the same line as a brace, not
even acomment. |ndent within braces. Exception 1: after swi t ch thereis a different rule, see be-
low. Exception 2: if there is nothing between two braces, i.e. {}', they should appear together. For
example:

f (code, code, code)
code, code, code;

r (code, code, code)

i
{
}
fo
{}

After swi t ch use abrace on the same line, and do not indent the next line. For example:

switch (condition) {
code
code
code

}

You may align variable declarations like this:

Type val ue
i nt var 2;
ul ongl ong var 3

When assigning to a variable, put zero spaces after the target variable name, then the assignment op-
erator (‘="' '+=" etc.), then space(s). For single assignments, there should be only one space after the
equal sign. For multiple assignments, add additional spaces so that the source values line up. For ex-
ample:

a/= b;

return_val ue= ny_function(argl);
int x= 27,

int new var= 18;

Align assignments from one structure to another, like this:

f oo- >menber = bar - >nenber ;
f 00- >nane= bar - >nane;
f oo- >nane_| engt h= bar->nane_| engt h

Put separate statements on separate lines. This applies for both variable declarations and executable
statements. For example, thisiswrong:

int x=11; int y= 12

Z= X; y+= X;

Thisisright:

22

Coding Guidelines

int x= 11;
int y= 12;
zZ= X;
y+= X;

Put spaces both before and after binary comparison operators (>', '==", '>=', etc.), binary arithmetic
operators ('+' etc.), and binary Boolean operators ('||' etc.). Do not put spaces around unary operators
like'!" or "++'. Do not put spaces around [de-]referencing operators like'->' or '[]". Do not put space
after ** when "' introduces a pointer. Do not put spaces after '(". Put one space after)" if it ends a
condition, but not if it ends alist of function arguments. For example:

int *var;

if ((x ==y + 2) & !param >i s_si gned)
function_call ();

When afunction has multiple arguments separated by commas (',), put one space after each
comma. For example:

I n= nysql _bi n_| og. generate_nane(opt _bi n_| ogname, "-bin", 1, buf);

Put one space after a keyword which introduces a condition, such asi f or f or orwhi | e.

Afteri f orel se orwhi | e, when thereisonly oneinstruction after the condition, braces are not
necessary and the instruction goes on the next line, indented.

if (sig!= MYSQL_KILL_SIGNAL && sig != 0)
uni reg_abort(1);

el se
uni reg_end();

while (*val && ny_isspace(nysqld_charset, *val))
*val ++;

In function declarations and invocations: there is no space between function name and '('; thereis no
space or line break between '(* and the first argument; if the arguments do not fit on one line then
align them. Examples:

Return_val ue_type *C ass_nane: : net hod_nanme(const char *argl,
size_t arg2, Type *arg3)

return_val ue= function_nane(argunentl, argunent2, |ong_argunent3,
ar gunent 4,
functi on_nanme2(| ong_ar gunent 5,
| ong_ar gunent 6)) ;

return_val ue=
| ong_| ong_function_nane(l ong_| ong_argunent1, |ong_| ong_argunent 2,
| ong_| ong_I| ong_ar gunent 3,
| ong_| ong_ar gunent 4,
| ong_function_nane2(l ong_| ong_ar gunent 5,
| ong_Il ong_ar gunent 6)) ;

Long_l ong_return_val ue_type *

Long_Il ong_cl ass_nane: :

| ong_| ong_net hod_nane(const char *long_l ong_argl, size_t |ong_|long_arg2,
Long_l ong_t ype *arg3)

(You may but don't haveto split Cl ass_nane: : met hod_nane into two lines.)

When arguments do not fit on one line, consider renaming them.

23

Coding Guidelines

Format constructorsin the following way:

Item:ltem(int a_arg, int b_arg, int c_arg)
}:a(a_arg), b(b_arg), c(c_arg)

But keep lines short to make them more readable:

Item:lten(int |onger_arg, int nore_|longer_arg)
;1 onger (I onger _arg),
nor e_| onger (nor e_| onger _ar g)

If aconstructor can fit into oneline:

Item:ltem(int a_arg) :a(a_arg) {}

Naming Conventions

For identifiers formed from multiple words, separate each component with underscore rather than
capitalization. Thus, use my _var instead of nyVar or MyVar .

Avoid capitalization except for class names; class names should begin with a capital |etter.

class |tem
cl ass Query_arena;
cl ass Log_event;

Avoid function names, structure elements, or variables that begin or end with'_".

Use long function and variable namesin English. Thiswill make your code easier to read for all de-
vel opers.

Structure types aret ypedef 'ed to an all-upper-case identifier.

All #def i ne declarations should be in upper case.

#def i ne MY_CONSTANT 15

Enumeration names should begin with enum .

Commenting Code

Comment your code when you do something that someone else may think is not “trivial”.

When writing multi-line comments: put the '/*' and */* on their own lines, put the */' below the '/*',
put aline break and atwo-space indent after the '/*', do not use additional asterisks on the |eft of the
comment.

/*
This is how
a multi-Iline comrent
shoul d | ook.

*

/

[* ***xxx%%% Thig comment is bad. It's indented incorrectly, it has

24

Coding Guidelines

* additional asterisks. Don't wite this way.

* *********/

When writing single-line comments, the '/*' and "* /" are on the same line. For example:

/* We must check if stack_size = 0 as Solaris 2.9 can return 0 here */

For ashort comment at the end of aline, you may use either /* ... */ or a/ / double slash. In Cfiles
or in header filesused by C files, avoid / / comments.

Align short side/ / or /* ... */ comments by 48 column (start the comment in column 49).

gqcr*= 2; /* double the estimation */

When commenting members of a structure or aclass, align comments by 48th column. If acom-
ment doesn't fit into one line, move it to a separate line. Do not create multiline comments aligned
by 48th column.

struct st_mysql _stnt
{

.i\/h(SQ__RCMS *dat a_cursor; /* current row in cached result */

/* copy of nysql->affected_rows after statement execution */

ny_ul ongl ong af f ect ed_r ows;

nmy_ul ongl ong insert_id; /* copy of nysql->insert_id */

/*
nmysql _stnt_fetch() calls this function to fetch one row (it's different
for buffered, unbuffered and cursor fetch).

*/

i nt (*read_row func)(struct st_mnysqgl_stnt *stnt,

b

Function comments are important! When commenting a function, note the IN parameters (the word
IN isimplicit).

Every function should have a description unless the function is very short and its purpose is obvious.

Use the following example as a template for function comments:

/*
Initialize SHAlCont ext
SYNOPS| S
shal_reset ()
cont ext in/out The context to reset.
DESCRI PTI ON
This function will initialize the SHA1Context in preparation
for conputing a new SHA1 nessage di gest.
RETURN VALUE
SHA_SUCCESS ok
I = SHA SUCCESS sha Error Code.
*
/

int shal reset (SHAL_ CONTEXT *context)
{

Additional sections can be used: WARNING, NOTES, TODO, SEE ALSO, ERRORS, REFER-
ENCED BY.

25

Coding Guidelines

All comments should be in English.

Put two line breaks (one empty line) between a function comment and its description.

/*
This is a function.
Use it wisely.

“ff

int my_function()

General Development Guidelines

We use BitK eeper [http://www.bitkeeper.com/] for source management. Bitkeeper can be down-
loaded from http://www.bitmover.com/cgi-bin/download.cgi

Y ou should use the MySQL 5.0 source for al new developments. The public 5.0 devel opment
branch can be downloaded with shel | > bk cl one
bk://mysql . bkbits.net/nysql-5.0 nysql-5.0

If you have any questions about the MySQL source, you can post them to
<internal s@i sts. nysql.con® and wewill answer them.

Before making big design decisions, please begin by posting a summary of what you want to do,
why you want to do it, and how you plan to do it. Thisway we can easily provide you with feedback
and also discuss it thoroughly. Perhaps another developer can assist you.

Try towrite code in alot of black boxes that can be reused or at least use a clean, easy to change in-
terface.

Reuse code; There are already many algorithmsin MySQL that can be reused for list handling,
gueues, dynamic and hashed arrays, sorting, etc.

Usetheny_ * functionslikeny_read()/my_wite()/ny_nall oc() that youcanfindinthe
mysys library, instead of the direct system calls; Thiswill make your code easier to debug and more
portable.

Usel i bstri ng functions(inthest ri ngs directory) instead of standard | i bc string functions
whenever possible. For example, usebfi | | () andbzer o() instead of renset () .

Try to always write optimized code, so that you don't have to go back and rewrite it a couple of
months later. It's better to spend 3 times as much time designing and writing an optimal function
than having to do it all over again later on.

Avoid CPU wasteful code, even when its useistrivial, to avoid developing sloppy coding habits.

If you can do something in fewer lines, please do so (as long as the code will not be slower or much
harder to read).

Do not check the same pointer for NULL more than once.

Never use amacro when an (inline) function would work as well.

Do not make afunction inlineif you don't have avery good reason for it. In many cases, the extra
code that is generated is more likely to slow down the resulting code than give a speed increase be-

cause the bigger code will cause more data fetches and instruction misses in the processor cache.

It is okay to use inline functions are which satisfy most of the following requirements:

26

http://www.bitkeeper.com/
http://www.bitmover.com/cgi-bin/download.cgi

Coding Guidelines

e Thefunctionisvery short (just afew lines).
e Thefunctionis used in a speed critical place and is executed over and over again.

« Thefunction is handling the normal case, not some extra functionallity that most users will not
use.

e Thefunctionisrarely called. (This restriction must be followed unless the function trandlates to
fewer than 16 assembler instructions.)

e The compiler can do additional optimizations with inlining and the resulting function will be
only afraction of size of the original one.

Think assembly - make it easier for the compiler to optimize your code.

Avoid using mal | oc(), whichisvery sow. For memory allocations that only need to live for the
lifetime of onethread, usesql _al | oc() instead.

Functions return zero on success, and non-zero on error, so you can do:

if (a() |l b() |l c())

error ("sonethi ng went wong");

Using got o isokay if not abused.

If you have an 'if' statement that ends with a'goto’ or ‘return’ you should NOT have an el se state-
ment:

if (a==Dhb)
return 5;
el se return 6;

->
if (a == b)

return 5;
return 6;

Avoid default variable initializations. Use LI NT_| NI T() if the compiler complains after making
sure that there isreally no way the variable can be used uninitialized.

Use TRUE and FALSE instead of t r ue and f al se in C++ code. This makes the code more read-
able and makesit easier to use it later in aC library, if needed.

bool existsonly in C++. In C, you haveto usemy bool (whichischar); it has different cast
rulesthan bool :

int c= 256*2;

bool a= c; /* a gets 'true' */

nmy_bool b= c; /* b gets zero, i.e. 'false': BAD */
nmy_bool b= test(c); /* b gets 'true': GOOD */

In C++, usebool , unlessthe variable isused in C code (for example the variableis passedtoaC
function).
Do not instantiate a classif you do not have to.

Use pointers rather than array indexing when operating on strings.

Never pass parameterswith the & ar i abl e_nane construct in C++. Always use a pointer in-

27

Coding Guidelines

stead!

The reason is that the above makes it much harder for the one reading the caller function code to
know what is happening and what kind of code the compiler is generating for the call.

* Do not usethe %p marker of printf () (fprintf(),vprintf(),etc)becauseit leadsto dif-
ferent outputs (for example on some Linux and Mac OS X the output starts with Ox while it does not
on some Solaris). Use 0x% x instead, even if it causes a truncation on some 64-bit platforms. Being
sure that there isalways 0x enables us to quickly identify pointer values in the DBUG trace.

* Relying on loop counter variables being local to the loop body if declared inthef or statement is
not portable. Some compilers still don't implement this ANSI C++ specification. The symptom of
such useisan error like this:

c-1101 CC. ERROR File = listener.cc, Line = 187
"i" has already been declared in the current scope.

for (int i=0; i < numsockets; i++)

Suggested modeinenacs:

(require 'font-1ock)
(require 'cc-node)
(setq gl obal -font-lock-npde t) ;;colors in all buffers that support it
(setq font-Iock-nmaxi mum decoration t) ;;maximum col or
(c-add-style "My
' ("K&R'
LMY
(c-basic-of fset . 2)
(c-coment-only-line-offset . 0)
(c-of fsets-alist . ((statement-block-intro . +)
(knr-argdecl-intro . 0)
(subst at ement - open . 0)
(label . -)
(statenent-cont . +)
(arglist-intro . c-1li
(arglist-close . c-li

)

neup-arglist-intro-after-paren)
neup-arglist)

)))

(setq c-node-common-hook ' (| anbda ()
(c-set-style "My")
(setq tab-width 8)
(setq i ndent-tabs-nonde t)
(setq comment - col um 48)))

(c-set-style "M™")
(setq c-default-style "M™)

Basic vi msetup:

set tabstop=8

set shiftw dth=2

set backspace=2

set softtabstop

set smartindent

set cindent

set cinopti ons=g0: 0t 0c2C1(0f Ol 1

"set expandtab "uncomment if you don't want to use tabstops

Another vi msetup:

set tabstop=8
set shiftw dth=2
set bs=2

set et

set sts=2

set tw=78

28

Coding Guidelines

set formatoptions=cqroal
set cinopti ons=g0: 0t 0c2C1(0f Ol 1
set cindent

function | nsert Shift TabW apper ()
| et num spaces = 48 - virtcol ('.")

let line =
whi | e (num spaces > 0)

let line =1line . '

| et num spaces = num spaces - 1
endwhi | e

return |line
endf uncti on
" junp to 48th colum by Shift-Tab - to place a conment there
i noremap <S-tab> <c-r>=l nsert Shi ft TabW apper () <cr>
" highlight trailing spaces as errors
| et c_space_errors=1

DBUG Tags

Here are some of the DBUG tags we now use:

s enter
Arguments to the function.
o exit
Results from the function.
« info
Something that may be interesting.
e warning
When something doesn't go the usual route or may be wrong.
s error
When something went wrong.
« |oop
Writein aloop, that is probably only useful when debugging the loop. These should normally be de-
leted when you are satisfied with the code and it has been in real use for awhile.

Some tags specific to nysql d, because we want to watch these carefully:

e trans

Starting/stopping transactions.
e quit

i nf o whennysql d ispreparing to die.
e query

Print query.

29

Coding Guidelines

2.2. confi gur e Support for Plugins

Beginning with MySQL 5.1, the server supports a plugin architecture for loading plugins. For example,
several storage engines have been converted to plugins, and they can be selected or disabled at configur-
ation time by means of command-line optionsto conf i gur e.

This section describes the command-line options that are used to control which plugins get built, and the
autotools macros that enable plugin configuration support to be described.

2.2.1. confi gure Command-Line Plugin Options

Severa conf i gur e options apply to plugin selection and building. Y ou can build a plugin as static
(compiled into the server) or dynamic (built as adynamic library that must be installed using the | N-
STALL PLUGQ N statement beforeit can be used). Some plugins might not support static or dynamic
build.

configure --hel p showsthefollowing information pertaining to plugins:

» The plugin-related options
e Thenamesof al available plugins
» For each plugin, a description of its purpose, which build typesit supports (static or dynamic), and

which plugin groupsit isa part of.

Thefollowing conf i gur e options are used to select or disable plugins:

-with-plugi ns=PLUG N, PLUG N] . ..
- Wit h- pl ugi ns=GROUP

-w t h-pl ugi n- PLUG N

-w t hout - pl ugi n- PLUG N

PLUG Nisan individual plugin namesuchascsv or ar chi ve.

As shorthand, GROUP is a configuration group name such asnone (select no plugins), al | (select all
plugins), or max (select al pluginsused inanysql d- max server).

--w t h- pl ugi ns cantakealist of one or more plugin names separated by commas, or a plugin
group name. The named plugins are configured to be built as static plugins.

--w t h- pl ugi n- PLUG N configures the given plugin to be built as a static plugin.

--w t hout - pl ugi n- PLUG N disables the given plugin from being built.

If apluginisnamed both witha--wi t h and- - wi t hout option, the result is undefined.

For any plugin that is not explicitly selected or disabled, it is selected to be built dynamically if it sup-
ports dynamic build, and not built if it does not support dynamic build. (Thus, in the case that no plugin

options are given, al plugins that support dynamic build are selected to be built as dynamic plugins. Plu-
gins that do not support dynamic build are not built.)

2.2.2. Autotools Plugin Macros

The following macros enable plugin support in the autotools configuration files.

» Declaring aplugin:

30

Coding Guidelines

MYSQL_PLUG N(nane, |ong-nane, description [,configlist])

Each plugin is required to have MYSQL_PLUGQ N() declared first. confi gl i st isan optional ar-
gument that is a commarseparated list of configurations of which the module is a member.

Example:

MYSQL_PLUG N(ftexanple, [Sinple Parser], [Sinple full-text parser plugin])

Declaring a storage engine plugin:

MYSQL_STORAGE_ENG NE(nane, |egacy-opt, |ong-nane, description [,configlist])

Thisisasimple utility macro that calls MYSQL_PLUG N. It performs the bare basics required to de-
clare a storage engine plugin and provides support for handling the legacy conf i gur e command-
line options. If | egacy- opt isnot specified, it will defaultto - - wi t h- nane- st or -

age- engi ne. Setthel egacy- opt valuetono if you do not want to handle any legacy option.

This macro is roughly equivalent to:

MYSQL_PLUGQ N(nane, | ong-nanme, description)

MYSQL_PLUG N_DEFI NE(nane, W TH_NAVE_STORAGE_ENG NE)

Example:

MYSQL_STORAGE_ENG NE(ber kel ey, berkel ey-db, [Berkel eyDB Storage Engine],
[Transacti onal Tabl es using Berkel eyDB], [max, max-no-ndb])

Declaring a C preprocessor variable:

MYSQL_PLUG N_DEFI NE(nane, defi ne-nane)

When aplugin will be included in a static build, thiswill set a preprocessor variable to 1. These pre-
processor variables are defined inconf i g. h.

Example:

MYSQL_PLUG N_DEFI NE(i nnobase, W TH_| NNOBASE_STORAGE_ENG NE)

Declaring a source directory for a plugin:

MYSQL_PLUG N_DI RECTORY(nane, dir-nane)

Includes the specified directory into the build. If afile named conf i gur e is detected in the direct-
ory, it will be executed as part of the conf i gur e build otherwise it is assumed that thereisa
Makef i | e tobebuilt in that directory. Currently, thereis only support for plugin directoriesto be
specified inthe st or age/ and pl ugi n/ subdirectories.

Example:

MYSQL_PLUG N_DI RECTORY(ar chi ve, [storage/archive])

Declaring a static library name for a plugin:

MYSQL_PLUG N_STATI C(nane, |ib-nane)

31

Coding Guidelines

Setsthe conf i gur e substitution @l ugi n_nane_st ati c_t ar get @to the supplied library
name if the plugin is a static build. It also adds the library to the list of librariesto be linked into
mysql d. It may either be just the name of the library (where, if there is adirectory specified, the
directory will be prepended for the link) or another nak e variable or substitution (in which case, it
will be passed through asiis).

Example:

MYSQL_PLUG N_STATI C(ar chi ve, [

| i barchive. a
MYSQL_PLUG N_STATI C(ber kel ey, [[\

$E bdb_| i b]s)_W| th_path)]])

Declaring a dynamic library name for a plugin:

MYSQL_PLUG N_DYNAM C(nane, dso-namne)

Setstheconf i gur e substitution @ ugi n_nane_shar ed_t ar get @to the supplied dynamic
shared object library name if the module is a dynamic build.

Example:

MYSQL_PLUG N_DYNAM C(ar chi ve, [ha_archive.la])

Declaring a plugin as a mandatory module:

MYSQL_PLUG N_MANDATORY(nare)

Mandatory plugins cannot be disabled.

Example:

MYSQL_PLUG N_MANDATORY(nyi sam)

Declaring a plugin as disabled:

MYSQL_PLUG N_DI SABLED(nane)

A disabled plugin will not be included in any build. If the plugin has been marked as MANDATORY,
it will result inan aut oconf error.

Declaring additional plugin conf i gur e actions:

MYSQL_PLUG N_ACTI ONS(nane, configure-actions)

Thisisuseful if there are additional conf i gur e actions required for aplugin. Theconf i gur e- ac-
t i ons argument may either be the name of an aut oconf macro or more aut oconf script.

Example:

MYSQL_PLUG N_ACTI ONS(ndbcl ust er, [MYSQL_SETUP_NDBCLUSTER])

Declaring plugin dependencies:

MYSQL_PLUG N_DEPENDS(nane, dependenci es)

Declares al plugins, in acomma-separated list, that are required for the named plugin to be built. If

32

Coding Guidelines

the named plugin is selected, it will in turn enable all its depenencies. All plugins listed as a depend-
ency must already have been declared with MYSQL_PLUG N() .

Example:

MYSQL_PLUG N_DEPENDS(ndbcl uster, [partition])

Performing the magic:
MYSQL_CONFI GURE_PLUG NS(def aul t - nanes)
Actually performs the task of generating the shell scriptsfor conf i gur e based upon the declara-

tions made previoudly. It emits the shell code neccessary to check the options and sets the variables
accordingly.

Example:

MYSQL_CONFI GURE_PLUG NS([none])

Plugin-related conf i gur e errors:

When any plugin macro is called before MYSQL_PLUG N() is declared for that plugin, conf i g-
ur e abortswith an error.

When any of the plugins specified in the dependency list don't exist, conf i gur e aborts with an er-
ror.

When amandatory pluginis specified in - - wi t hout - pl ugi n- PLUG N, conf i gur e aborts
with an error.

When adisabled pluginis specifiedin- - wi t h- nodul es=. .. or--w th-pl ugi n=PLUG N,
conf i gur e reports an error.

When an optional plugin that may only be built dynamically is specified in -
-wi th-plugins=... or--wth-plugin-PLUG N, confi gur e emitsawarning and con-
tinues to configure the plugin for dynamic build.

When an optional plugin that may only be built statically is specified neither in -
-wi th-plugins=... nor--w thout-pl ugi n- PLUG N, conf i gur e emitsawarning but
should proceed anyway.

Avoiding conf i gur e. i n changes:

If aplugin source (which islocated in a subdirectory of thest or age/ or pl ugi n/ directory) con-
tainsapl ug. i n file (for example, st or age/ exanpl e/ pl ug. i n), thisfilewill beincluded as
apart of confi gure. i n. Thisway, confi gure. i n doesnot need to be modified to add a new

plugin to the build.

A pl ug. i n file may contain everything, particularly all MYSQL_PLUG N_xxx macros asjust de-
scribed. Thepl ug. i n file does not need to specify MYSQL_PLUG N_DI RECTORY; it is set auto-
matically to the directory of the pl ug. i n file.

33

Chapter 3. The Optimizer

This chapter describes the operation of the MySQL Query optimizer, which is used to determine the
most efficient means for executing queries.

3.1. Code and Concepts

Thiss section discusses key optimizer concepts, terminology, and how these are reflected in the MySQL
server source code.

3.1.1. Definitions

This description uses a narrow definition: The optimizer is the set of routines which decide what execu-
tion path the DBM S should take for queries.

MySQL changes these routines frequently, so you should compare what is said here with what's in the
current source code. To make that easy, this description includes notes referring to the relevant file and
routine, suchas“See: / sql / sel ect _cc,optim ze cond()”

A transformation occurs when one query is changed into another query which delivers the same result.
For example, a query could be changed from

SELECT ... WHERE 5 = a

to

SELECT .. . WHERE a = 5

Most transformations are less obvious. Some transformations result in faster execution.

3.1.2. The Optimizer Code

This diagram shows the structure of the function handl e_sel ect () in/sql /sqgl _sel ect. cc
(the server code that handles a query):

handl e_sel ect ()
nmysql _sel ect ()
JO N: : prepare()
setup_fields()
JO N::optimze() /* optimzer is fromhere ... */
optim ze_cond()
opt _sum query()
make_join_statistics()
get _quick_record_count ()
choose_pl an()
/* Find the best way to access tables */
/* as specified by the user.
optim ze_straight _join()
best _access_pat h()
/* Find a (sub-)optinmal plan anong all or subset */
/* of all possible query plans where the user */
/* controlls the exhaustiveness of the search. */
greedy_search()
best _extension_by_|inted_search()
best _access_pat h()
/* Perform an exhaustive search for an optimal plan */
find_best ()
rrake_]om sel ect () /* ... to here */
JO N: : exec()

The indentation in the diagram shows what calls what. Thus you can see that handl e_sel ect ()

34

The Optimizer

calsnmysql sel ect () whichcalsJO N: : prepare() whichcalssetup fields(),andso
on. Thefirst part of nysql _sel ect () isJO N: : prepar e() whichisfor context analysis,
metadata setup, and some subquery transformations. The optimizer isJO N: : opti m ze() andal its
subordinate routines. When the optimizer finishes, JO N: : exec() takesover and does the job that
JO N: :optim ze() decidesupon.

Although the word “ JOIN" appears, these optimizer routines are applicable to all query types.
Theoptim ze_cond() andopt _sum quer y() routines perform transformations. The

make join_statistics() routine putstogether al the information it can find about indexes that
might be useful for accessing the query'stables.

3.2. Primary Optimizations

This section discusses the most important optimizations performed by the server.

3.2.1. Optimizing Constant Relations
3.2.1.1. Constant Propagation

A transformation takes place for expressions like this:

WHERE col utmml = col um2 AND col um2 = ' x'

For such expressions, sinceit is known that, if A=B and B=C then A=C (the Transitivity Law), the
transformed condition becomes:

WHERE col utmml='x' AND col um2="x'

This transformation occursfor col unml <oper at or > col urm2 conditionsif and only if
<oper at or > is one of these operators:

= <, >, <=, >= <> <=> LIKE
That is, transitive transformations don't apply for BETV\EEN. Probably they should not apply for L1 KE
either, but that's a story for another day.

Constant propagation happensin aloop, so the output from one propagation step can be input for the
next step.

See:/ sql / sql _sel ect. cc,change_cond _ref _to_const().Or See:/
sql /sql _sel ect. cc,propagate_cond_constants().

3.2.1.2. Eliminating “Dead” Code

A transformation takes place for conditions that are always true, for example:

WHERE 0=0 AND col uml='y"'

In this case, the first condition is removed, leaving

WHERE col um1="y"

See:/ sql / sql _sel ect. cc,renove_eq_conds().

A transformation also takes place for conditions that are always false. For example, consider this WHERE

35

3.2.1.3.

3.2.1.4.

The Optimizer

clause;

WHERE (0 = 1 ANDsl =5) ORsl = 7

Since the parenthesized part is always false, it is removed, reducing this expression to

WHERE s1 = 7

In some cases, where the WHERE clause represents an impossible condition, the optimizer might elimin-
ate it completely. Consider the following:

WHERE (0 = 1 AND s1 = 5)

Because it is never possible for this condition to be true, the EXPLAI N statement will show the words
| npossi bl e WHERE. Informally, we at MySQL say that the WHERE has been “ optimized away”.

If acolumn cannot be NULL, the optimizer removes any non-relevant | S NULL conditions. Thus,

WHERE not _nul | _col umm | S NULL

isan aways-false situation, and

WHERE not _nul | _col umm |'S NOT NULL

is an aways-true situation — so such columns are also eliminated from the conditional expression. This
can be tricky. For example, inan OQUTER JO N, acolumn which is defined as NOT NULL might still
contain aNULL. The optimizer leaves| S NULL conditions alone in such exceptional situations.

The optimizer will not detect all | npossi bl e WHERE situations — there are too many possibilitiesin
thisregard. For example:

CREATE TABLE Tabl el (col umml CHAR(1));
SELECT * FROM Tabl el WHERE col umnl = ' Canada’:

The optimizer will not eliminate the condition in the query, even though the CREATE TABLE definition
makes it an impossible condition.

Folding of Constants
A transformation takes place for this expression:

WHERE columl = 1 + 2

which becomes:

WHERE col umm1l

1
w

Before you say, “but | never would write 1 + 2 in the first place”, remember what was said earlier about
constant propagation. It is quite easy for the optimizer to put such expressions together. This process
simplifies the result.

Constants and Constant Tables

A MySQL constant is something more than amere literal in the query. It can also be the contents of a
constant table, which is defined as follows:

36

The Optimizer

1. A tablewith zero rows, or with only one row

2. A table expression that is restricted with a WHERE condition, containing expressions of the form
col umm = const ant, for all the columns of the table's primary key, or for all the columns of
any of the tabl€e's unique keys (provided that the unique columns are also defined as NOT NULL).

For example, if the table definition for Tabl e0 contains

PRI MARY KEY (col umm1, col umm2)

then this expression

FROM Tabl e0 ... WHERE col utm1=5 AND col um2=7 ...

returns a constant table. More simply, if the table definition for Tabl el contains

uni que_not _nul | _col umm | NT NOT NULL UNI QUE

then this expression

FROM Tabl e1 ... WHERE uni que_not _nul | _col utm=5

returns a constant table.

These rules mean that a constant table has at most one row value. MySQL will evaluate a constant table
in advance, to find out what that valueis. Then MySQL will “plug” that value into the query. Here's an
example:

SELECT Tabl el. uni que_not _null _col umm, Tabl e2. any_col um
FROM Tabl el, Tabl e2
WHERE Tabl el. uni que_not _nul | _col umm = Tabl e2. any_col um
AND Tabl el. uni que_not _nul | _col um = 5;

When evaluating this query, MySQL first finds that table Tabl e1 — after restriction with Ta-
bl el. uni que_not _nul | _col um — isaconstant table according to the second definition above.
So it retrieves that value.

If theretrieval fails (thereisno row inthetablewith uni que_not nul | _col umm =5), then the
constant table has zero rows and you will see this message if you run EXPLAI N for the statement:

| npossi bl e WHERE noticed after reading const tables

Alternatively, if theretrieval succeeds (there is exactly one row in the table with
uni que_not _nul | _col unm = 5), then the constant table has one row and MySQL transforms the
query to this:

SELECT 5, Tabl e2.any_col um
FROM Tabl el, Tabl e2
WHERE 5 = Tabl e2. any_col um
AND 5 = 5;

Actualy thisis a grand-combination example. The optimizer does some of the transformation because
of constant propagation, which we described earlier. By the way, we described constant propagation first
because it happens happens before MySQL figures out what the constant tables are. The sequence of op-
timizer steps sometimes makes a difference.

Although many queries have no constant-table references, it should be kept in mind that whenever the

37

The Optimizer

word constant is mentioned hereafter, it refers either to aliteral or to the contents of a constant table.

See:/sqgl / sgl _sel ect.cc,make_join_statistics().

3.2.2. Optimizing Joins
This section discusses the various methods used to optimize joins.

3.2.2.1. Determining the Join Type
When evaluating a conditional expression, MySQL decides what join type the expression has. (Again:
despite the word “join”, this applies for al conditional expressions, not just join expressions. A term like
“accesstype” would be clearer.) These are the documented join types, in order from best to worst:
e syst em asystem table which is a constant table
* const : aconstant table
e eq_ref:auniqueor primary index with an equality relation
» ref:anindex with an equality relation, where the index value cannot be NUL L

e ref_or _null:anindex with an equality relation, whereit is possible for the index value to be
NUL L

e range: anindex with arelation such as BETWEEN, | N, >=, LI KE, and so on.
* i ndex: asequentia scan on an index

* ALL: asequentia scan of the entire table

Seei/ sql /sql _sel ect. h,enum j oi n_t ype{}. Notice that there are afew other
(undocumented) join types too, for subqueries.

The optimizer can use the join type to pick adriver expression. For example, consider this query:

SELECT *
FROM Tabl el
VWHERE i ndexed_col umm = 5 AND uni ndexed_col um = 6

Sincei ndexed_col umm has abetter join type, it is more likely to be the driver. You'll see various ex-
ceptions as this description proceeds, but thisisasimplefirst rule.

What is significant about a driver? Consider that there are two execution paths for the query:

The“Bad” Execution Plan: Read every row in the table. (Thisis called a sequential scan of Tabl el or
simply table scan.) For each row, examinethevaluesini ndexed_col umm and inuni n-
dexed_col um, to seeif they meet the conditions.

The“ Good” Execution Plan: Viathe index, look up the rowswhich havei ndexed_col urm =5,
(Thisiscalled an indexed search.) For each row, examine the value in unindexed_column to seeif it
meets the condition.

An indexed search generally involves fewer accesses than a sequential scan, and far fewer accesses if
the tableislarge but the index is unique. That iswhy it is better to access with the “good” execution
plan, and why it is often good to choosei ndexed_col umm asthe driver.

38

The Optimizer

3.2.2.2. Joins and Access Methods

Bad join choices can cause more damage than bad choices in single-table searches, so MySQL de-
velopers have spent proportionally more time making sure that the tablesin a query are joined in an op-
timal order and that optimal access methods (often called access paths) are chosen to retrieve table data.
A combination of afixed order in which tables are joined and the corresponding table access methods
for each tableis called query execution plan (QEP). The goal of the query optimizer isto find an optimal
QEP among all such possible plans. There are severa general ideas behind join optimization.

Each plan (or part of plan) is assigned a cost. The cost of a plan reflects roughly the resources needed to
compute a query according to the plan, where the main factor is the number of rows that will be ac-
cessed while computing a query. Once we have away to assign costs to different QEPs we have a way
to compare them. Thus, the goal of the optimizer isto find a QEP with minimal cost among all possible
plans.

In MySQL, the search for an optimal QEP is performed in a bottom-up manner. The optimizer first con-
sidersal plansfor one table, then all plans for two tables, and so on, until it builds a complete optimal
QEP. Query plansthat consist of only some of the tables (and predicates) in aquery are called partial
plans. The optimizer relies on the fact that the more tables that are added to a partial plan, the greater its
cost. This allows the optimizer to expand with more tables only the partial plans with lower cost than the
current best complete plan.

The key routine that performs the search for an optimal QEPissql / sql _sel ect . cc,
find_best (). Itperformsan exhaustive search of al possible plans and thus guaranteesiit will find
an optimal one.

Below werepresent f i nd_best () inan extremely free trandlation to pseudocode. It isrecursive, so
some input variables are labeled “so far” to indicate that they come from a previous iteration.

remai ning_tables = {t1, ..., tn}; /* all tables referenced in a query */

procedure find_best (
partial _plan in,
partial _plan_cost,

/* in, partial plan of tables-joined-so-far */
/[* in
remai ni ng_t abl es, /* in
/[* in
/* in

, cost of partial_plan */

, set of tables not referenced in partial _plan */
/out, best plan found so far */

/out, cost of best_plan_so_far */

best _pl an_so_far,
best _pl an_so_far_cost)

for each table T from rensining_tables

/* Calculate the cost of using table T. Factors that the
optim zer takes into account may include:
Many rows in table (bad)
Many key parts in conmon with tables so far (very good)
Restriction nentioned in the WHERE cl ause (good)
Long key (good)
Uni que or primary key (good)
Ful | -text key (bad)
O her factors that may at some tinme be worth consi dering:
Many col umms in key
Short average/ maxi mum key | ength
Smal | table file
Few | evel s in index
Al'l ORDER BY / GROUP col umms cone fromthis table */
cost = conpl ex-series-of-cal cul ati ons;
/* Add the cost to the cost so far. */
partial _pl an_cost += cost;

if (partial _plan_cost >= best_plan_so_far_cost)
/* partial _plan_cost already too great, stop search */
conti nue;

partial _plan= expand partial _plan by best_ access_net hod;
remai ni ng_t abl es= remai ning_tables - table T,
if (remaining _tables is not an enpty set)

find_best(partial _plan, partial _plan_cost,
remai ni ng_t abl es,
best _pl an_so_far, best_plan_so_far_cost);

39

The Optimizer

el se

best _pl an_so_far_cost= partial _plan_cost;
best _plan_so_far= partial _pl an;

Here the optimizer applies a depth-first search algorithm. It performs estimates for every table in the
FROMclause. It will stop a search early if the estimate becomes worse than the best estimate so far. The
order of scanning will depend on the order that the tables appear in the FROMclause.

See:/sql /table. h,struct st_table.

ANALYZE TABLE may affect some of the factors that the optimizer considers.

Seealso:/sql /sql _sql ect.cc,make_join_statistics().

The straightforward use of f i nd_best () and gr eedy_sear ch() will not apply for LEFT JO N
or Rl GHT JO N. For example, starting with MySQL 4.0.14, the optimizer may change aleft jointo a

straight join and swap the table order in some cases. Seeaso LEFT JO Nand Rl GHT JO N Optimiz-
ation [http://dev.mysql.com/doc/refman/5.1/en/l eft-joi n-optimi zation.html].

3.2.2.3. The r ange Join Type
Some conditions can work with indexes, but over a (possibly wide) range of keys. These are known as
range conditions, and are most often encountered with expressions involving these operators. >, >=,
<, <=, IN, LIKE, BETWEEN

To the optimizer, this expression:

columl IN (1,2, 3)

is the same as this one;

columl =1 OR columl = 2 OR columl = 3

and MySQL treats them the same — there is no need to change IN to OR for a query, or vice versa.

The optimizer will use an index (range search) for

columl LIKE ' x%

but not for

columl LIKE ' %'

That is, thereis no range search if the first character in the pattern is awildcard.

To the optimizer,

col uml BETWEEN 5 AND 7

is the same as this expression

columl >= 5 AND columl <= 7

40

http://dev.mysql.com/doc/refman/5.1/en/left-join-optimization.html
http://dev.mysql.com/doc/refman/5.1/en/left-join-optimization.html

The Optimizer

and again, MySQL treats both expressions the same.

The optimizer may change aRange to an ALL join type if a condition would examine too many index
keys. Such achangeis particularly likely for < and > conditions and multiple-level secondary indexes.
See: (for Myl SAMindexes) / nyi samf mi _range. ¢, m _records_in_range().

3.2.2.4. The i ndex Join Type

Consider this query:

SELECT col uml1 FROM Tabl el;

If col umm1 isindexed, then the optimizer may choose to retrieve the values from the index rather than
from the table. An index which is used thisway is called a covering index in most texts. MySQL simply
uses theword “index” in EXPLAI N descriptions.

For this query:

SELECT col um1, colum?2 FROM Tabl el;

the optimizer will usej oi n type = i ndex only if theindex has this definition:

CREATE | NDEX ... ON Tabl el (columml, colum2);

In other words, all columnsin the select list must be in the index. (The order of the columnsin the index
does not matter.) Thusit might make sense to define a multiple-column index strictly for use as a cover-
ing index, regardless of search considerations.

3.2.2.5. The | ndex Mer ge Join Type
3.2.2.5.1. Overview

I ndex Mer ge isused when table condition can be converted to form:

cond_1 OR cond_2 ... OR cond_N

The conditions for conversion are that each cond_i can be used for arange scan, and no pair
(cond_i,cond_j) usesthesameindex. (If cond_i andcond_j usethe sameindex, thencond_i
OR cond_j can be combined into a single range scan and no merging is necessary.)

For example, | ndex Mer ge can be used for the following queries:

SELECT * FROMt WHERE keyl=cl OR key2<c2 OR key3 IN (c3,c4);
SELECT * FROMt WHERE (keyl=cl OR key2<c2) AND nonkey=c3;

I ndex Mer ge isimplemented asa*container” for range key scans constructed from cond_i condi-
tions. When doing | ndex Mer ge, MySQL retrievesrows for each of the keyscans and then runs them
through a duplicate elimination procedure. Currently the Uni que classis used for duplicate elimina-
tion.

3.2.2.5.2. Index Merge Optimizer

A single SEL_ TREE object cannot be constructed for conditions that have different members of keysin
the OR clause, like in condition:

keyl < cl OR key2 < c2

41

The Optimizer

Beginning with MySQL 5.0, these conditions are handled with the | ndex Mer ge method, and its
range optimizer structure, class SEL | MERGE. SEL | MERGE represents a disjunction of several
SEL_TREE objects, which can be expressed as:

sel _imerge_cond = (t_1 ORt_1 OR... ORt_n)

whereeach of t i standsfor aSEL_TREE object, and no pair (t i ,t |) of distinct SEL_ TREE ob-
jects can be combined into single SEL_ TREE object.

The current implementation builds SEL_ | MERGE only if no single SEL_ TREE object can be built for
the part of the query condition it has analyzed, and discards SEL_ TREE immediately if it discovers that
asingle SEL _ TREE object can be constructed. Thisis actually alimitation, and can cause worse row re-
trieval strategy to be used. E.g. for query:

SELECT * FROMt WHERE (goodkeyl=cl OR goodkeyl=c2) AND badkey=c3

scan on badkey will be chosen evenif | ndex Mer ge on(goodkeyl, goodkey) would be faster.

Thel ndex Mer ge optimizer collects alist of possible waysto accessrowswith | ndex Mer ge.
Thislist of SEL_| MERCGE structures represents the following condition:

(t_11 ORt_12 OR ... ORt_1k) AND
(t 21 ORt 22 OR... ORt_2l) AND
AND
(t_ML ORt_M2 OR... ORt_np)

wheret i isone SEL_TREE and onelineisfor one SEL_ | MERGE abject.
The SEL_| MERGE object with minimal cost is used for row retrieval.

Insqgl / opt _range.cc,seeinerge list_and list(),inmerge_list _or_list(),and
SEL_ | MERCGE class member functions for more details of | ndex Mer ge construction.

Seetheget i ndex_nerge_par ans function in the samefilefor | ndex Mer ge cost calculation
algorithm.

3.2.2.5.3. The r ange Optimizer

For r ange queries, the MySQL optimizer builds a SEL_ TREE object which represents a conditionin
this form:

range_cond = (cond_key_1 AND cond_key_2 AND ... AND cond_key_N)

Each of cond_key i isacondition that refers to components of one key. MySQL creates a
cond_key i condition for each of the usable keys. Then the cheapest conditioncond_key i isused
for doing range scan.

A singlecond_key i conditionis represented by a pointer-linked network of SEL_ ARG objects. Each
SEL_ ARG object refersto particular part of the key and represents the following condition:;

sel _arg_cond= (inf_val < key_part_n AND key_part_n < sup_val) (1
AND next _key_part_sel _arg_cond (2
OR | eft_sel _arg_cond (3
OR right_sel _arg_cond (4

1. isfor aninterval, possibly without upper or lower bound, either including or not including bound-

42

The Optimizer

ary values.
2. isfor aSEL_ARGabject with condition on next key component.

3. isforaSEL_ARGobject with an interval on the samefield asthis SEL_ ARG object. Intervals be-
wtween the current and “left” objectsaredigointand| eft _sel _arg_cond. sup_val <=
inf_val.

4. isforaSEL_ARGobject with an interval on the same field asthis SEL_ ARG abject. Intervals bew-

teen the current and “right” objectsaredigointand| ef t _sel _arg cond. mi n_val >=
max_val .

MySQL is able to convert arbitrary-depth nested AND-OR conditions to the above conjunctive form.

3.2.2.5.4. Row Retrieval Algorithm

I ndex Mer ge worksin two steps:

Preparation step:
activate 'index only';
foreach key_i in (key_scans \ clustered_pk_scan)

while (retrieve next (key, rowid) pair fromkey_i)

if (no clustered PK scan ||
row doesn't match clustered PK scan condition)
put rowid into Unique;

deactivate 'index only"';

Row retrieval step:

or each rowid in Uni que

retrieve row and pass it to output;

f
{
}
if (clustered_pk_scan)

{

while (retrieve next row for clustered_pk_scan)
pass row to output;

See: sql / opt _range. cc, QUI CK | NDEX MERGE_SELECT class membersfor | ndex Mer ge
row retrieval code.

3.2.3. Transpositions

MySQL supports transpositions (reversing the order of operands around a relational operator) for simple
expressions only. In other words:

WHERE - 5 = columil

becomes:

WHERE col umml = -5

However, MySQL does not support transpositions where arithmetic exists. Thus:

WHERE 5 = -col umil

43

The Optimizer

is not treated the same as:

WHERE col uml = -5

Transpositions to expressions of theform col unm = const ant areideal for index lookups. If an ex-
pression of thisform refersto an indexed column, then MySQL always uses the index, regardless of the
table size. (Exception: If the table has only zero rows or only onerow, it is a constant table and receives
special treatment. See Section 3.2.1.4, “ Constants and Constant Tables”.)

3.2.3.1. AND Relations

An ANDed search hastheform condi t i on1 AND condi ti on2, asinthisexample:

WHERE col utmml = 'x' AND colum2 = 'y’

Here, the optimizer's decision process can be described as follows:

1. If (neither condition isindexed) use sequentia scan.

2. Otherwise, if (one condition has better join type) then pick adriver based on join type (see Sec-
tion 3.2.2.1, “Determining the Join Type”).

3. Otherwise, since (both conditions are indexed and have equal join type) pick a driver based on the
first index that was created.

The optimizer can also chooseto perform ani ndex_er ge index intersection, as described in In-
dex Merge Optimization [http://dev.mysgl.com/doc/refman/5.1/en/index-merge-optimi zation.htmi].

Here's an example:

CREATE TABLE Tabl el (s1 INT, s2 INT);
CREATE | NDEX | ndex1 ON Tabl el (s2);
CREATE | NDEX | ndex2 ON Tabl el (s1);

SELECT * FROM Tabl el WHERE s1 = 5 AND s2 = 5:

When choosing a strategy to solve this query, the optimizer pickss2 = 5 asthe driver because thein-
dex for s2 was created first. Regard this as an accidenta effect rather than arule— it could change at
any moment.

3.2.3.2. OR Relations

An ORed search hastheform condi ti onl OR condi ti on2, asinthisexample:

WHERE col uml = 'x' OR colum2 = 'y’

Here the optimizer's decision is to use a sequential scan.
Thereisalso an option to use index merge under such circumstances. See Section 3.2.2.5.2, “Index

Merge Optimizer” and Index Merge Optimization
[http://dev.mysql.com/doc/ref man/5.1/en/index-merge-optimization.html], for more information.

The above warning does not apply if the same column is used in both conditions. For example:

WHERE col uml = 'x' OR columl = 'y’

http://dev.mysql.com/doc/refman/5.1/en/index-merge-optimization.html
http://dev.mysql.com/doc/refman/5.1/en/index-merge-optimization.html
http://dev.mysql.com/doc/refman/5.1/en/index-merge-optimization.html

The Optimizer

In such a case, the search isindexed because the expression is arange search. This subject will be revis-
ited during the discussion of the | N predicate.

3.2.3.3. UNI ON Queries

All SELECT statements within a UNI ON are optimized separately. Therefore, for this query:

SELECT * FROM Tabl el WHERE col umml
UNI ON ALL
SELECT * FROM TABLE1 WHERE col umm2

VG

Ly
if both col utm1 and col utm?2 are indexed, then each SELECT is done using an indexed search, and

the result sets are merged. Notice that this query might produce the same results as the query used in the
OR example, which uses a sequential scan.

3.2.3.4. NOT (<>) Relations

Itisalogical rulethat

columil <> 5

isthe same as

columl <5 OR columl > 5

However, MySQL does not transform in this circumstance. If you think that a range search would be
better, then you should do your own transforming in such cases.

Itisalso alogical rulethat

WHERE NOT (col urmi != 5)

isthe same as

WHERE col uml = 5

However, MySQL does not transform in this circumstance either.

We expect to add optimizations for both the previous cases.

3.2.4. ORDER BY Clauses

In general, the optimizer will skip the sort procedure for the ORDER BY clauseif it seesthat the rows
will be in order anyway. But let's examine some exceptional situations.

For the query:

SELECT col uml FROM Tabl el ORDER BY ' x';

the optimizer will throw out the ORDER BY clause. Thisis another example of dead code elimination.

For the query:

SELECT col uml1 FROM Tabl el ORDER BY col ummi;

45

The Optimizer

the optimizer will use an index on col ummy, if it exists.

For the query:

SELECT col uml FROM Tabl el ORDER BY col umml+1;

the optimizer will use an index on col unm1, if it exists. But don't et that fool you! Theindex isonly
for finding the values. (It's cheaper to do a sequential scan of the index than a sequential scan of the ta-
ble, that'swhy i ndex isabetter join type than ALL — see Section 3.2.2.4, “Thei ndex Join Type”.)
There will still be afull sort of the results.

For the query:

SELECT * FROM Tabl el
WHERE col umml > 'x' AND col um2 > 'x'
ORDER BY col umz2;

if both col umm1 and col uMm2 areindexed, the optimizer will choose anindex on ... col unm1. The
fact that ordering takes place by col unm2 values does not affect the choice of driver in this case.

See:/sql /sql _select.cc,test _if_order_by key(),and/sqgl/sql _sel ect. cc,
test if _skip_sort_order().

ORDER BY Optimization [http://dev.mysgl.com/doc/refman/5.1/en/order-by-optimization.html],
provides a description of the internal sort procedure which we will not repeat here, but urge you to read,
because it describes how the buffering and the quicksort mechanisms operate.

See:/sql /sql _sel ect.cc,create_sort_index().

3.2.5. GROUP BY and Related Conditions

These are the main optimizations that take place for GROUP BY and related items (HAVI NG, COUNT() ,
MAX() ,M N(), SUM), AV), DI STI NCT()).

e GROUP BY will useanindex, if one exists.

« GROUP BY will use sorting, if thereis no index. The optimizer may choose to use a hash table.

* Forthecase GROUP BY x ORDER BY X, the optimizer will realize that the ORDER BY isunne-
cessary, because the GROUP BY comes out in order by x.

» The optimizer contains code for shifting certain HAVI NG conditions to the WHERE clause; however,
this code is not operative at time of writing. See: / sql / sql _sel ect . cc,
JON: :optimze(),after #i f def HAVE_REF_TO FI ELDS.

« If thetable handler has a quick row-count available, then the query

SELECT COUNT(*) FROM Tabl el;

gets the count without going through all the rows. Thisistrue for Myl SAMtables, but not for | n-
noDB tables. Note that the query

SELECT COUNT(col um1) FROM Tabl el;

is not subject to the same optimization, unless col unm1 is defined as NOT NULL.

* New optimizations exist for MAX() and M N() . For example, consider the query

46

http://dev.mysql.com/doc/refman/5.1/en/order-by-optimization.html

The Optimizer

SELECT MAX(col umm1l)
FROM Tabl el
WHERE columl < 'a';

If col utm1 isindexed, thenit's easy to find the highest value by looking for * a' intheindex and
going back to the key before that.

» The optimizer transforms queries of the form

SELECT DI STI NCT col um1 FROM Tabl el;

to

SELECT col umml FROM Tabl el GROUP BY col umi;

if and only if both of these conditions are true;

e TheGROUP BY can be donewith an index. (Thisimplies that there is only one table in the
FROMclause, and no WHERE clause.)

e ThereisnoLl M T clause.

Because DI STI NCT is not always transformed to GROUP BY, do not expect that queries with DI S-
TI NCT will always cause ordered result sets. (Y ou can, however, rely on that rule with GROUP BY,
unless the query includes ORDER BY NULL.)

See:/sqgl / sgl _sel ect. cc,opt_sum query(),and/sql/sql _select.cc,re-
nmove_dupl i cates().

3.3. Other Optimizations

In this section, we discuss other, more specialized optimizations performed in the MySQL server.

3.3.1. NULLs Filtering for ref and eq_ref Access

This section discusses the NUL Ls filtering optimization used for r ef and eq_r ef joins.

3.3.1.1. Early NULLs Filtering

Suppose we have ajoin order such as this one:

.o, thiX, ..., tblY, ...

Suppose further that tablet bl Y isaccessed viar ef oreq_r ef accesson

tbl Y. key_col um = thl X col um

or, inthecase of r ef accessusing multiple key parts, via

. AND tbhlY.key_partN = thl X col unm AND . ..

wheret bl X. col unm can be NULL. Here the early NULLsfiltering for r ef (or eq_r ef) accessis ap-

47

The Optimizer

plied. We make the following inference:

(tblY. key_partN = tbl X. columm) => (tbl X columm |S NOT NULL)

The original equality can be checked only after we've read the current rows of both tablest bl X and

t bl Y. Thel S NOT NULL predicate can be checked after we've read the current row of tablet bl X. If

there are any tablesin the join order betweent bl Xandt bl Y, theadded | S NOT NULL check will a-

low us to skip accessing those tables.

This feature isimplemented in these places in the server code:

» Theref analyzer (contained in such functionsasupdat e_r ef _and_keys()) detects and marks
equalities like that shown above by setting KEY_FI ELD: : nul | _r ej ect i ng=TRUE.

» After thejoin order has been choosen, add _not nul | conds() addsappropriate| S NOT
NULL predicates to the conditions of the appropriate tables.

Itispossibletoadd | S NOT NULL predicatesfor al equalities that could be used for r ef access (and
not for those that are actually used). However, thisis currently not done.

3.3.1.2. Late NULLs Filtering

Suppose we have a query plan with tablet bl X being accessed viather ef access method:

tbl X. key_partl = exprl AND tbl X. key_part2 = expr2 AND ...

Before performing an index lookup, we determine whether any of the expri valuesisNULL. If itis, we
don't perform the lookup, but rather immediately return that the matching tuple is not found.

Thisoptimization reusesthenul | _r ej ect i ng attribute produced by the early NUL L s filtering code
(see Section 3.3.1.1, “Early NULLs Filtering”). The check itself islocated in the function
join_read_al ways_key().

3.3.2. Partitioning-Related Optimizations

This section discussions optimizations relating to MySQL Partitioning. See Partitioning
[http://dev.mysql.com/doc/refman/5.1/en/partitioning.html] for general information about the partition-
ing implementation in MySQL 5.1 and |ater.

3.3.2.1. Partition pruning
The operation of partition pruning is defined as follows:

“Given aquery over partitioned table, match the table DDL against any VWHERE or ON clauses, and find
the minimal set of partitions that must be accessed to resolve the query.”

The set of partitions thus obtained (hereafter referred to as “used”) can be smaller then the set of all table
partitions. Partitions that did not get into this set (that is, those that were pruned away) will not be ac-
cessed at al: thisis how query execution is made faster.

Non-Transactional Table Engines. With non-transactional tables such as Myl SAM locks are placed
on entire partitioned table. It is theoretically possible to use partition pruning to improve concurrency by
placing locks only on partitions that are actually used, but thisis currently not implemented.

48

http://dev.mysql.com/doc/refman/5.1/en/partitioning.html

The Optimizer

Partition pruning doesn't depend on what table engine is used. Therefore itsimplementation is a part of
the MySQL Query Optimizer. The next few sections provide a detailed description of partition pruning.

3.3.2.1.1. Partition Pruning Overview

Partition pruning is performed using the following steps:

1. Analyze the WHERE clause and construct an interval graph describing the results of this analysis.

2. Wak the graph, and find sets of partitions (or subpartitions, if necessary) to be used for each inter-
val in the graph.

3. Construct a set of partitions used for the entire query.

The description represented by the interval graph is structured in a*“bottom-up” fashion. In the discus-
sion that follows, we first define the term partitioning interval, then describe how partitioning interval
are combined to make an interval graph, and then describe the graph “walking” process.

3.3.2.1.2. Partitioning Intervals

3.3.2.1.2.1. Single-Point Intervals

Let's start from simplest cases. Suppose that we have a partitioned table with N columns, using partition-
ing type p_t ype and the partitioning function p_f unc, represented like this:

CREATE TABLE t (col umms)
PARTI TI ON BY p_type(p_func(coll, col2,... colN...);
Suppose a'so that we have a WHERE clause of the form

WHERE t . col 1=const1 AND t.col 2=const2 AND ... t.col N=constN

Wecancalculatep _func(constl1l, const2 ... constN) anddiscover which partition can
contain records matching the WHERE clause. Note that this process works for all partitioning types and
all partitioning functions.

Note

This process works only if the WHERE clause is of the exact form given above — that is,
each column in the table must be tested for equality with some arbitrary constant (not neces-
sarily the same constant for each column). For example, if col 1=const 1 weremissing
from the example VWHERE clause, then we would not be able to calculate the partitioning
function value and so would be unable to restrict the set of partitions to those actually used.

3.3.2.1.2.2. Interval Walking

Let apartitioned tablet be defined with a set of column definitions col unms, a partitioning type
p_t ype using apartitioning function p_f unc taking an integer columni nt _col , as shown here:

CREATE TABLE t (col umms)
PARTI TI ON BY
p_type(p_func(int_col))

Now suppose that we have a query whose WHERE clause is of the form

WHERE const1 <= int_col <= const2

49

The Optimizer

We can reduce this case to a number of cases of single-point intervals by converting the WHERE clause
into the following relation:

int_field=constl
int_field=constl + 1
int_field=constl + 2

33393

ihi_field=const2

In the source code this conversion is referred to as interval walking. Walking over short intervalsis not
very expensive, since we can reduce the number of partitions to scan to a small number. However, walk-
ing over long intervals may not be very efficient — there will be lots of numbers to examine, and we are
very likely to out that all partitions need to be scanned.

The threshold for interval walking is determined by

#def i ne MAX_RANGE_TO WALK=10

Note

Thelogic of the previous example aso applies for arelation such as this one:

constl >= int_col >= const2

3.3.2.1.2.3. Interval mapping

Let apartitioned tablet be defined as follows:

CREATE TABLE t (col umms)
PARTI TI ON BY RANGE| LI ST(unary_ascendi ng_functi on(col umm))

Suppose we have aquery on tablet whose WHERE clause is of one of the forms shown here:

e constl <= t.colum <= const?2
e t.colum <= const?2

e constl <= t.columm

Since the partitioning function is ascending, the following relationship holds:

constl <= t.col <= const2
=> p_func(constl) <=

p_func(t.colum) <= p_func(const2)

Using A and B to denote the |eftmost and rightmost parts of this relation, we can rewriteit like this:

A <= p_func(t.colum) <= B

Note

In thisinstance, the interval is closed and has two bounds. However, similar inferences can
be performed for other kinds of intervals.

50

The Optimizer

For RANGE partitioning, each partition occupies oneinterva on the partition function value axis, and the
intervals are disjoint, as ahown here:

table partitions ------ X-=-=-=--- X-===---- X-==--m-- >

search interval === (R >

A partition needs to be accessed if and only if itsinterval has a non-empty intersection with the search
interval [A, B].

For LI ST partitioning, each partition covers a set of points on the partition function value axis. Points
produced by various partitions may be interleaved, as shown here:

table partitions R Rk SR R R S SR

sear ch interval ----X Mocoooo >

A partition needs to be accessed if it has at least one point in the interval [A, B] . The set of partitions
used can be determined by running from A to B and collecting partitions that have their points within
thisrange.

3.3.2.1.3. Subpartitioning Intervals

In the previous sections we've described ways to infer the set of used partitions from "elementary”
WHERE clauses. Everything said there about partitions also applies to subpartitions (with exception that
subpartitioning by RANGE or LIST is currently not possible).

Since each partition is subpartitioned in the same way, we'll find which subpartitions should be accessed
within each partition.

3.3.2.1.4. From WHERE Clauses to Intervals

Previous sections deal with inferring the set of partitions used from WWHERE clauses that represent parti-
tioning or subpartitioning intervals. Now we look at how MySQL extracts intervals from arbitrary
VWHERE clauses.

The extraction process uses the Range Analyzer — apart of the MySQL optimizer that produces plans
for the range access method. Thisis because the tasks are similar. In both cases we have a WHERE clause
asinput: the range access method needs index ranges (that is, intervals) to scan; partition pruning mod-
ule needs partitioning intervals so that it can determine which partitions should be used.

For range access, the Range Analyzer is invoked with the WHERE clause and descriptions of table in-
dexes. Each index is described by an ordered list of the columns which it covers:

(keypartl, keypart2, ..., keypartN)

For partition pruning, Range Analyzer isinvoked with the WHERE clause and alist of table columns
used by the partitioning and subpartitioning functions:

(part_col 1, part_col2, ... part_colN,
subpart _col 1, subpart_col 2, ... subpart_col M

The result of the Range Analyzer'swork isknown asa SEL_ ARG graph. Thisisacomplex (and not yet
fully documented) structure, which we will not attempt to describe here. What's important for the current

51

The Optimizer

discussion isthat we can walk over it and collect partitioning and subpartitioning intervals.

The following example illustrates the structure and the walking process. Suppose atablet is partitioned
asfollows:

CREATE TABLE t (..., pf INT, spl CHAR(5), sp2 INT, ...)
PARTI TI ON BY LI ST (pf)
p2) (

SUBPARTI TI ON BY HASH(spl, s
PARTI TI ON pO VALUES I N (1)
PARTI TI ON p1 VALUES IN (2),
PARTI TI ON p2 VALUES IN (3),
PARTI TI ON p3 VALUES IN (4),
PARTI TI ON p4 VALUES IN (5),

Now suppose that a query on tablet has a highly complex WHERE clause, such as this one:
pf=1 AND (spl='foo' AND sp2 |IN (40, 50))

OR

(pf1=3 OR pfl1l=4) AND spl='bar' AND sp2=33

OR

((pf=3 OR pf=4) AND spl=5)

OoR

p=8

The SEL_ ARG graph for thisis shown here:

(root)
| Partitioning : Sub-partitioning
| :
|
| G ooesa + : fmocccooc=os + fmoocoooo +
\---| pf=21 |----:----- | spl='foo' |---| sp2=40
+emm - - - + : Fommmeeeaa - + Femmmema o +
I I
| Fommm - - +
| | sp2=50
| Feomemes +
|
+eomm - - - + : Fommmmmeaaaa + Hommmmmmm +
| pf=8 |----:--+--|] spl='bar' |---| sp2=33 |
fmcmooo + c focoocooooos foocmcooo +
I o
E + : |
| pf=4 |----:--+
| :
| :
fFoomooo + c foooocooooos +
| pf=8 |----:1----- | spl='baz

In the previous diagram, vertical edges (|) represent OR and the horizontal ones (-) represent AND (the
line with both horizontal and vertical segments also represents AND).

The partition-pruning code walks the graph top to bottom and from left to right, making these infer-
ences:

1. Start with an empty set of used partitions at the topmost and leftmost interval.

52

The Optimizer

a. Performinterval analysisfor pf =1; find a corresponding set of partitions PO; moveright.

b. Moveright again, to sp2=40.

c. Anayzetheinterval sp1="'foo' AND sp2=40 interval; find that it covers rowsin some
subpartition SP1. Make first inference: within each partition making up set PO, mark subparti-
tion SP1 as“used”.

d. Movedowntosp2=50.

e. Anadyzetheinterval spl='foo' AND sp2=50, finding that it covers rowsin some subpar-
tition SP2. Make another inference: within each partition of set PO, mark subpartition SP2 as
used.

f. Move back to pf =1, and then down to pf =3.

a. Performinterval analysisfor pf =3; find a corresponding set of partitions P1; moveright.

b. Moveright again, to sp2=33.

c. Anayzetheinterval sp1="foo' AND sp2=33,findthat it coversrowsin asubpartition
SP3. Make another inference: within each partition from set P1, mark subpartition SP3 as
“used”.

d. Moveback to pf =3, then down to pf =4.

a Peforminterval analysisfor pf =4; find a corresponding set of partitions P2; move right.

b. Perform moves and inferences anal ogous to what we did to the right of pf =3. Thereis some
potential inefficiency due to the fact that that we will analyze the interval for sp1="f 0o’
AND sp2=33 again, but this should not have much impact on overall performance.

c. Moveback to pf =3, then down to pf =8.

a Peforminterval analysisfor pf =8; find a corresponding set of partitions P3, move right.

b. Nowwevearrivedat spl='baz' , and find that we can't move any further to the right and
can't construct a subpartitioning interval. We remember this, and move back to pf =8.

c. Inthe previous step we could not limit the set of subpartitions, so we make this inference: for
every partition in set P3, assume that all subpartitions are active, and mark them as such.

Try to move down from pf =8; find that there is nothing there; this completes the graph analysis.

Note

In certain cases the result of the RANGE optimizer will be several SEL ARG graphs that are
to be combined using OR or AND operators. This happens for WHERE clauses which either
are very complicated or do not allow for the construction of asingle list of intervals. In such
cases, the partition pruning code takes apprpriate action, an example being this query:

SELECT * FROMt1 WHERE partition_i d=10 OR subpartition_i d=20

No singlelist of intervals can be constructed in this instance, but the partition pruning code

53

The Optimizer

correctly infersthat the set of partitions used is a union of:

1. All subpartitions within the partition containing rows withpartiti on i d=10; and

a subpartition containing rows with subpartiti on_i d=20 within each partition.

3.3.2.1.5. Partition Pruning in the Source Code

Here is a short walkthrough of what is where in the code:

 sql/opt_range. cc:

Thisfile contains the implementation of what is described in Section 3.3.2.1.4, “From WHERE
Clausesto Intervals’. The entry point isthe function pr une_partitions().

There are also detailed code-level comments about partition pruning; search for Parti ti onPr un-
i ngModul e to find the starting point.
e sql/partition_info.h:
class partition_info {
"
Bitmap of used (i.e. not pruned away) partitions. This is where result
of partition pruning is stored.
*/
MY_BI TMAP used_partitions;
/*

"virtual function" pointers to functions that performinterval analysis

on this partitioned table (used by the code in opt_range. cc)
*/

get _partitions_in_range_iter get_part_iter_for_interval;
get_partitions_in_range_iter get_subpart_iter_for_interval;

e sqgl/sqgl _partition.cc:

Thisfile contains the functions implementing al types of partitioning interval analysis.

3.3.2.2. Partition selection

If apartitioned table is accessed in a series of index lookups (that is, using ther ef , eq_ref, or
ref or _nul | access methods), MySQL checks to see whether it needs to make index lookupsin all
partitions or that it can limit access to a particular partition. Thisis performed for each index lookup.

Consider this example:

CREATE TABLE t1 (a INT, b INT);
INSERT INTO t1 VALUES (1,1),(2,2),(3, 3);
CREATE TABLE t2 (
keypart1 | NT,
keypart 2 | NT,
KEY(keypartl, keypart2)
)
PARTI TI ON BY HASH(keypart 2);

I NSERT | NTO t2 VALUES (1,1),(2, 2),(3,3):

54

The Optimizer

The query

SELECT * FROMt1, t2
WHERE t 2. keypart
AND t 2. keypart

t1l

1=t1l.a
2=t 1. b;

is executed using this algorithm:

(for each record in t1:)

t 2->i ndex_read({current-val ue-of (t1.a), current-value-of(tl.b)});
whi | e(t2->i ndex_next _sane())
pass row conbi nation to query out put;

Inthei ndex_read() cal, the partitioned table handler will discover that the value of al partitioning
columns (in this case, the single column b) is fixed, and find a single partition to access. If this partition
was pruned away, then no partitions will be accessed at all.

55

Chapter 4. Important Algorithms and Structures

MySQL uses many different algorithms and structures. This chapter triesto describe some of them.

4.1. The | t emClass

To us, the word Item means more than just “thingamabob”; it is atechnical term with a precise defini-
tion in the context of our source code. | t emisaclass. Each instance of the | t emclass has;

e ananaogueinthe SQL language

* avaue

e adatatype descriptor
All of the following SQL “thingamabobs’ are modeled inthe | t emclass:

e literals

» column references

» session or global variables
e procedure variables

e parameters

» SQL functions (not a surprise since SQL functions have data types and return values).

In the function category we include operators such as + and | | , because operators are merely functions
that return values. We also include operators such as = and L1 KE, which are operators that return
boolean values. Consider the following statement:

SELECT UPPER(col utml) FROM t WHERE col um2 = @;

For this statement, MySQL will need to store alist of items for the select list (‘columnl' column refer-
ence and UPPER function), and alist of items for the WHERE clause (‘column2' column reference and
'‘@x' variable and '=" operator).

Terminology: an Item instance in aMySQL program roughly corresponds to a "site", which according to
the standard_SQL definition is "a place that holds an instance of avalue of a specified datatype”, An-
other word that you'll see often in MySQL code is "field", which means column reference, and the

Item field subclassis generally for column values that occur for the intersection of arow and columnin
atable.

MySQL's Item classis defined in .../sgl/item.h, and its subclasses are defined in .../sql/item*.h (that is, in
item.h, item_cmpfunc.h, item_func.h, item_geofunc.h, item_row.h, item_strfunc.h, item_subselect.h,
item_sum.h, item_timefunc.h). Page-width limitations prevent us from displaying the whole tree, but
these are the main Item subclasses, and the subclasses of the subclasses:

Itemident (ltemfield, Itemref)
Item nul |

Itemnum (Item.int, Itemreal)

I tem par am

56

Important Algorithms and Structures

Itemstring (ltemstatic_string_func, Itemdatetinme, Itemenpty_string)

Item hex_string (Itembin_string)

Itemresult _field (all "itemfunc.h" "item subsel ect.h" "itemsub.h" cl asses)
Item copy_string

Item cache (Item cache_int, Itemcache_real, Itemcache_str, |temcache_row)

I tem type_hol der

Itemrow

There'sno formal classification of subclasses, but the main distinctions are by use (field, parameter,
function) and by data type (num, string).

So, how does MySQL use items? You'll find that nearly every .cc program in the /sgl directory makes
some use of the Item class and its subclasses, so thislist of programsis only partial and very general:

sqgl _parse. cc: Makes new itens in add field to list()

item sum cc: Uses item func subcl asses for COUNT, AVG SUM

item buff.cc: Where buffers for itemvalues can be stored
itemcnpfunc.cc: Conparison functions with itemfunc subcl asses
itemcreate.cc For creating itenms that the | ex m ght use

i tem subsel ect.cc Subqueries are another type of function

nmysql d. cc: When main() ends, it uses clean_up() for itens

opt _range. cc: Uses field, conpare-condition, and val ue subcl asses
pr ocedur e. cc: Notice Procedure * has a pointer to an itemli st
prot ocol . cc: Uses send_fields() to pass itemvalues back to users
Sys_var. cc: System vari abl es have |tem associ ati ons too

sql _base. cc: Thread-specific Item searchers like find_field_in_table()
sql _cl ass. cc: Look at cleanup_after_query()

sql _del ete. cc This (like sqgl _insert.cc etc.) has field references
sqgl _error.cc Has one of nmany exanpl es of SHOWs use of itens
sqgl _Il ex. cc: Notice "add...to_list" functions

sql _sel ect. cc The | argest programthat uses itens, apparently

udf _exanpl e. cc The comments in this program are extensive

Whenever there's a need for an SQL operation that assigns, compares, aggregates, accepts, sends, or val-
idates a site, you'll find aMySQL use of Item and its subclasses.

4.2. How MySQL Does Sorting (fi |l esort)

In those cases where MySQL must sort the result, it usesthe following f i | esort algorithm before
MySQL 4.1:

1. Readall rows according to key or by table scanning. Rows that don't match the WHERE clause are
skipped.

2. For each row, store a pair of valuesin a buffer (the sort key and the row pointer). The size of the
buffer isthevalue of thesort _buf f er _si ze system variable.

3. When the buffer gets full, run agsort (quicksort) on it and store the result in atemporary file. Save
apointer to the sorted block. (If al pairsfit into the sort buffer, no temporary fileis created.)

4. Repeat the preceding steps until all rows have been read.

5. Do amulti-merge of up to VERGEBUFF (7) regions to one block in another temporary file. Repeat
until all blocks from the first file are in the second file.

6. Repeat the following until there are fewer than VERGEBUFF2 (15) blocks | eft.

7. Onthelast multi-merge, only the pointer to the row (the last part of the sort key) iswritten to ares-
ult file.

8. Readtherowsin sorted order by using the row pointersin the result file. To optimize this, we read
in abig block of row pointers, sort them, and use them to read the rows in sorted order into arow
buffer. The size of the buffer isthe value of ther ead_r nd_buf f er _si ze system variable. The

57

Important Algorithms and Structures

codefor thisstepisinthesql / r ecor ds. cc sourcefile.

One problem with this approach is that it reads rows twice: One time when evaluating the WHERE
clause, and again after sorting the pair values. And even if the rows were accessed successively the first
time (for example, if atable scan is done), the second time they are accessed randomly. (The sort keys
are ordered, but the row positions are not.)

InMySQL 4.1and up, af i | esort optimization isused that records not only the sort key value and
row position, but also the columns required for the query. This avoids reading the rows twice. The modi-
fiedfi | esort agorithm workslikethis:

1. Read therows that match the WHERE clause, as before.

2. For each row, record atuple of values consisting of the sort key value and row position, and also
the columns required for the query.

3. Sort thetuples by sort key value

4. Retrievetherowsin sorted order, but read the required columns directly from the sorted tuples
rather than by accessing the table a second time.

Using the modified f i | esort algorithm, the tuples are longer than the pairs used in the original meth-
od, and fewer of them fit in the sort buffer (the size of whichisgivenby sort buffer size). Asa
result, it is possible for the extra |/O to make the modified approach slower, not faster. To avoid a slow-
down, the optimization is used only if thetotal size of the extra columnsin the sort tuple does not ex-
ceed thevalue of themax_| engt h_for _sort _dat a system variable. (A symptom of setting the
value of thisvariabletoo high isthat you will see high disk activity and low CPU activity.)

4.3. Bulk Insert

The logic behind bulk insert optimization is simple.

Instead of writing each key value to B-tree (that is, to the key cache, although the bulk insert code
doesn't know about the key cache), we store keys in a balanced binary (red-black) tree, in memory.
When this tree reaches its memory limit, we write al keysto disk (to key cache, that is). But since the
key stream coming from the binary tree is already sorted, inserting goes much faster, all the necessary
pages are aready in cache, disk accessis minimized, and so forth.

4.4. How MySQL Does Caching

MySQL has the following caches. (Note that the some of the filenames contain an incorrect spelling of
the word “ cache.”)

» Key Cache
A shared cache for all B-tree index blocksin the different NISAM files. Uses hashing and reverse
linked lists for quick caching of the most recently used blocks and quick flushing of changed entries
for aspecific table. (mysys/ nf _keycash. c)

e Record Cache

Thisisused for quick scanning of all recordsin atable. (mysys/ nf _i ocash. c andi sanf
_cash. c)

58

Important Algorithms and Structures

» TableCache
This holds the most recently used tables. (sql / sql _base. cc)
* Hostname Cache

For quick lookup (with reverse name resolving). Thisis amust when you have aslow DNS. (sql /
host nane. cc)

* Privilege Cache

To allow quick change between databases, the last used privileges are cached for each user/database
combination. (sql / sgl _acl . cc)

* Heap Table Cache

Many uses of GROUP BY or DI STI NCT cache all found rowsin a HEAP table. (Thisisavery quick
in-memory table with hash index.)

» Join Buffer Cache
For every “full join” in a SELECT statement the rows found are cached in ajoin cache. (A “full

join” here means there were no keys that could be used to find rows for the next table in thelist.) In
the worst case, one SELECT query can use many join caches.

4.5. How MySQL Uses the Join Buffer Cache

Basic information about the join buffer cache:
» Thesize of each join buffer is determined by the value of thej oi n_buf f er _si ze system vari-
able.

e Thisbuffer isused only when the joinisof type ALL or i ndex (in other words, when no possible
keys can be used).

» Ajoinbuffer isnever alocated for the first non-const table, even if it would be of type ALL or i n-
dex.

» The buffer is alocated when we need to do afull join between two tables, and freed after the query
isdone.

e Accepted row combinations of tables beforethe ALL/i ndex are stored in the cache and are used to
compare against each read row inthe ALL table.

* Weonly store the used columns in the join buffer, not the whole rows.

Assume you have the following join:

Tabl e nane Type
tl range
t2 r ef
t3 ALL

Thejoin isthen done asfollows:

- Wile rows in tl matching range
- Read through all rows in t2 according to reference key

59

Important Algorithms and Structures

- Store used fields fromtl, t2 in cache
- If cache is full
- Read through all rows in t3
- Conpare t3 row against all t1, t2 conbinations in cache
- If rowsatisfies join condition, send it to client
- Enpty cache

- Read through all rows in t3
- Conpare t3 row against all stored t1, t2 conbinations in cache
- If rowsatisfies join condition, send it to client

The preceding description means that the number of timestablet 3 is scanned is determined as follows:

S = size-of-stored-row(t1,t2)
C = accept ed-row conbi nations(t1,t?2)
scans = (S * O/join_buffer_size + 1

Some conclusions:

* Thelarger thevalueof j oi n_buf f er _si ze, thefewer thescansof t 3. If
j oi n_buf fer_size isaready large enough to hold all previous row combinations, thereis no
speed to be gained by making it larger.

» |If there are severa tables of join type ALL or i ndex, then we allocate one buffer of size
j oi n_buf fer _si ze for each of them and use the same a gorithm described above to handle it.
(In other words, we store the same row combination several timesinto different buffers.)

4.6. How MySQL Handles FLUSH TABLES

e FLUSH TABLESishandledinsql / sql _base. cc::cl ose_cached tabl es().

 Theideaof FLUSH TABLES istoforceall tablesto be closed. Thisis mainly to ensure that if
someone adds a new table outside of MySQL (for example, by copying filesinto a database direct-
ory with cp), all threads will start using the new table. Thiswill also ensure that all table changes are
flushed to disk (but of course not as optimally as simply calling a sync for all tables)!

* WhenyoudoaFLUSH TABLES, thevariabler ef r esh_ver si on isincremented. Every timea
thread releases atable, it checksif the refresh version of the table (updated at open) is the same as
thecurrentr ef r esh_ver si on. If not, it will close it and broadcast asignal on COND r ef r esh
(to await any thread that is waiting for all instances of atable to be closed).

 Thecurrentr ef resh_ver si on isaso comparedtotheopenr ef resh_ver si on after athread
getsalock on atable. If therefresh version is different, the thread will free al locks, reopen the table
and try to get the locks again. Thisisjust to quickly get all tablesto use the newest version. Thisis
handled by sqgl /| ock. cc: : nysql | ock_tabl es() andsqgl/
sql _base.cc::wait_for_tables().

* When all tables have been closed, FLUSH TABLES returns an okay to the client.
» If thethread that isdoing FLUSH TABLES has alock on some tables, it will first close the locked

tables, then wait until al other threads have also closed them, and then reopen them and get the
locks. After thisit will give other threads a chance to open the same tables.

4.7. Full-text Search

MySQL uses Ranking with Vector Spaces for ordinary full-text queries.

60

Important Algorithms and Structures

Rank, also known as relevance rank, also known as relevance measure, is a number that tells us how
good amatch is.

Vector Space, which MySQL sometimes calls "natural language”, is awell-known system based on a
metaphor of lines that stretch in different dimensions (one dimension per term) for varying distances
(one distance unit per occurrence of term). The value of thinking of it thisway is: once you realize that
term occurrences are lines in a multi-dimensional space, you can apply basic trigonometry to calculate
"distances’, and those distances are equatable with similarity measurements. A comprehensible discus-
sion of vector space technology is here: http://www.miislita.com/term-vector/term-vector-1.html. And a
text which partly inspired our original developer is here:
ftp://ftp.cs.cornell.edu/pub/smart/smart.11.0.tar.Z ("SMART").

But let's try to describe the classic formula:

w=tf * idf

This means "weight equals term frequency times inverse of document frequency"”, or "increase weight
for number of times term appears in one document, decrease weight for number of documents the term
appearsin”. (For historical rasons we're using the word "weight" instead of "distance”, and we're using
the information-retrieval word "document” throughout; when you seeit, think of "the indexed part of the
row".)

For example: if "rain" appears three timesin row #5, weight goes up; but if "rain" aso appearsin 1000
other documents, weight goes down.

MySQL uses avariant of the classic formula, and adds on some calculations for "the normalization
factor". In the end, MySQL's formulalooks something like:

w = (log(dtf)+1)/sundtf * U (1+0.0115*U) * | og((N nf)/nf)

Where:

dt f is the nunber of times the termappears in the docunent

sundtf is the sumof (log(dtf)+1)'s for all terns in the same docunent
U is the nunber of Unique terns in the docunent

N is the total nunber of docunents

nf is the nunber of docunents that contain the term

The formula has three parts: base part, normalization factor, global multiplier.
The base part is the left of the formula, " (log(dtf)+1)/sumdtf".

The normalization factor isthe middle part of the formula. The idea of normalizationis: if adocument is
shorter than average length then weight goes up, if it's average length then weight stays the same, if it's
longer than average length then weight goes down. We're using a pivoted unique normalization factor.
For the theory and justification, see the paper "Pivoted Document Length Normalization™ by Amit Sing-
hal and Chris Buckley and Mandar Mitra ACM SIGIR'96, 21-29, 1996: ht-
tp://ir.iit.edu/~dagr/cs529/files/handouts/singhal 96pivoted.pdf. The word "unique" here means that our
measure of document length is based on the unique terms in the document. We chose 0.0115 as the pivot
value, it'sPIVOT_VAL inthe MySQL source code header file myisam/ftdefs.h.

If we multiply the base part times the normalization factor, we have the term weight. The term weight is
what MySQL storesin the index.

The global multiplier isthe final part of the formula. In the classic VVector Space formula, the final part
would be the inverse document frequency, or simply

I og(N/ nf)

61

http://www.miislita.com/term-vector/term-vector-1.html
ftp://ftp.cs.cornell.edu/pub/smart/smart.11.0.tar.Z

Important Algorithms and Structures

We have replaced it with

I og((N-nf)/nf)

This variant is more often used in "probabilistic” formulas. Such formulas try to make a better guess of
the probability that aterm will be relevant. To go back to the old system, look in myisam/ftdefs.h for
"#define GWS_IN_USE GWS PROB" (i.e. global weights by probability) and change it to "#define
GWS_IN_USE GWS _IDF" (i.e. global weights by inverse document frequency).

Then, when retrieving, the rank is the product of the weight and the frequency of the word in the query:

R=w* qgf;

Where:

w is the weight (as al ways)

qf is the nunber of times the term appears in the query

In vector-space speak, the similarity is the product of the vectors.

And R is the floating-point number that you seeif you say: SELECT MATCH(...) AGAINST (...)
FROM t.

To sum it up, w, which stands for weight, goes up if the term occurs more often in arow, goes down if
the term occursin many rows, goes up / down depending whether the number of unique wordsin arow
is fewer / more than average. Then R, which stands for either Rank or Relevance, isw times the fre-
guency of the term in the AGAINST expression.

The Simplest Possible Example

First, make afulltext index. Follow the instructions in the "MySQL Full-Text Functions' section of the
MySQL Reference Manual. Succinctly, the statements are:

CREATE TABLE articles (
id | NT UNSI GNED AUTO | NCREMENT NOT NULL PRI MARY KEY,
title VARCHAR(200),
body TEXT,
FULLTEXT (titl e, body)

INSERT INTO articles (title body) VALUES
"MySQL Tutorial',' DBVMS stands for DataBase ...'),

)

(

(' How To Use M/SQ_ Well'," After you went througha...'),

(' Optim zing M/SQ_','In this tutorial we wll show ..."),

('1001 MySQL Tricks','1. Never run nysqgld as root. 2. ..."),

(" MySQL vs. YourSQ_ "In the foll ow ng dat abase conparlson),
(" MySQL Security', "Wien configured properly, M/SQL ...");

Now, let'slook at the index.

There'sautility for looking at the fulltext index keys and their weights. The source code is myisam/my-

isam_ftdump.c, and the executable comes with the binary distribution. So, if exedir is where the execut-

ableis, and datadir is the directory name that you get with "SHOW VARIABLES LIKE 'datadir%", and
dbname is the name of the database that contains the articles table, then this works:

>/ exedi r/ rryl sam ftdunp /datadir/dbname/articles 1 -d

0. 9456265 1001
f8 0. 9560229 conpari son
140 0. 8148246 confi gured
0 0. 9456265 dat abase
f8 0. 9560229 dat abase
0 0. 9456265 dbns
0 0. 9456265 nysq
38 0. 9886308 mnysq
78 0. 9560229 nysq

62

Important Algorithms and Structures

b8 0. 9456265 nysq
f8 0. 9560229 nysq
140 1.3796179 nysq
b8 0. 9456265 nysql d
78 0. 9560229 optim zi ng
140 0. 8148246 properly
b8 0. 9456265 r oot
140 0. 8148246 security
78 0. 9560229 show
0 0. 9456265 st ands
b8 0. 9456265 tricks
0 0. 9456265 tutoria
78 0. 9560229 tutoria
f8 0. 9560229 yoursq

Let's see how one of these numbers relates to the formula.

The term 'tutorial’ appears in document 0. The full document is"MySQL Tutorial / DBMS stands for
DataBase ...". The word "tutorial" appears once in the document, so dtf = 1. The word "for" is a stop-
word, so there are only 5 unique terms in the document ("mysqgl", "tutorial”, "doms", "stands’, "data-
base"), so U = 5. Each of these terms appears once in the document, so sumditf is the sum of log(1)+1,
five times. So, taking the first two parts of the formula (the term weight), we have:

(log(dtf)+1)/sunmdtf * U/ (1+0.0115*U)

whichis

(log(1)+1)/((log(1l)+1)*5) * 5/(1+0.0115*5)

whichis

0. 9456265

which iswhat myisam_ftdump says. So the term weight |ooks good.

Now, what about the global multiplier? Well, myisam_ftdump could calculate it, but you'll seeit with
the mysqgl client. The total number of rowsin the articlestableis 6, so N = 6. And "tutorial" occursin
two rows, inrow 0 and in row 78, so nf = 2. So, taking the final (global multiplier) part of the formula,
we have:

I og((N-nf)/nf)

whichis

I og((6-2)/2)

whichis

0. 6931472

So what would we get for row 0 with a search for 'tutoria'? Well, first we want w, so: Multiply the term
weight of tutorial (which is 0.9456265) times the global multiplier (which is 0.6931472). Then we want
R, so: Multiply w times the number of times that the word 'tutorial’ appearsin the search (whichis1). In
other words, R = 0.9456265 * 0.6931472 * 1. Here's the proof:

nmysql > sel ect round(0.9456265 * 0.6931472 * 1, 7) as R

doococosooao +
| R I
fmsscsssssos +
| 0.6554583 |
o +

1 rowin set (0.00 sec)

63

Important Algorithms and Structures

nysql > sel ect round(match(title, body) against ('tutorial'), 7) as R
-> fromarticles limt 1;

foooooooooos +
| R |
ccooooooos +
| 0.6554583 |
fmssssssssss +

1 rowin set (0.00 sec)

You'll need memory

The MySQL experience is that many users appreciate the full-text precision or recall, that is, the rows
that MySQL returns are relevant and the rows that MySQL misses are rare, in the judgment of some real
people. That means that the weighting formulais probably justifiable for most occasions. Sinceit's the
product of lengthy academic research, that's understandable.

On the other hand, there are occasional complaints about speed. Here, the tricky part is that the formula
depends on global factors -- specifically N (the number of documents) and nf (the number of documents
that contain the term). Every time that insert/update/del ete occurs for any row in the table, these global
weight factors change for all rowsin the table.

If MySQL was a search engine and there was no need to update in real time, thistricky part wouldn't
matter. With occasional batch runs that redo the whole index, the global factors can be stored in the in-
dex. Search speed declines as the number of rows increases, but search engines work.

However, MySQL isaDBMS. So when updates happen, users expect the results to be visible immedi-
ately. It would take too long to replace the weights for all keysin the fulltext index, for every single up-
date/insert/delete. So MySQL only stores the local factors in the index. The global factors are more dy-
namic. So MySQL stores an in-memory binary tree of the keys. Using this tree, MySQL can calculate
the count of matching rows with reasonable speed. But speed declines logarithmically as the number of
terms increases.

Weighting in boolean mode

Thebasicideaisasfollows. In an expression of theform A or B or (C and D and E), either A
or B aoneis enough to match the whole expression, whereas C, D, and E should all match. So it's reas-
onable to assign weight 1 to each of A, B,and (C and D and E) . Furthermore, C, D, and E each
should get aweight of /3.

Things become more complicated when considering boolean operators, as used in MySQL full-text
boolean searching. Obviously, +A +B should betreatedas A and B,and A B-asA or B.The
problemisthat +A B can not be rewritten in and/or terms (that's the reason why this—extended—set of
operators was chosen). Still, aproximations can be used. +A B C can be approximated asA or (A
and (B or C)) orasA or (A and B) or (A and C) or (A and B and C).Apply-
ing the above logic (and omitting mathematical transformations and normalization) one gets that for
+A1 +tA 2 ... +tANB 1 B 2 ... B Mtheweightsshouldbe: A i = 1/N/B j=1if
N==0, and, otherwise, in thefirst rewriting approachB | = 1/ 3,andinthesecondone-B | =
(I+(M1)*2"M /[(M (2N (M) - 1)) .

The second expression gives a somewhat steeper increase in total weight as number of matched B_|

valuesincreases, because it assigns higher weightsto individual B_j values. Also, thefirst expressionis
much simpler, so it isthefirst one that isimplemented in MySQL.

4.8. FLOAT and DOUBLE data types and their represent-
ation.

The MySQL Reference Manual has a discussion of floating-point numbersin Section 11.2 Numeric
Types, including details about the storage. L et us now take up the story from where the MySQL Refer-

64

Important Algorithms and Structures

ence Manual leaves off.

The following discussion concentrates on the case where no display width and decimals are given. This
means that FLOAT is stored as whatever the C typef | oat isand REAL or DOUBLE [PRECI SI ON]
is stored as whatever the C type doubl e is. Thefield length is selected by the MySQL code.

This document was created when Bug#4457 [http://bugs.mysgl.com/4457] (Different resultsin SQL-
Statements for the same record) was fixed at the end of August 2004. Until then there was some confu-
sion in the double-to-string conversion at different places in the code.

The bugfix for Bug#4937 [http://bugs.mysql.com/4937] (I NSERT + SELECT + UNI ON ALL +
DATE to VARCHAR(8) conversion problem) produced a conversion function which was a promising
approach to the conversion problems. Unfortunately it was only used for direct field conversions and not
for function results etc. It did not take small numbers (absolute value less than 1) and negative numbers
into account. It did not take the limited precision of f | oat and doubl e datatypesinto account. The
bugfix was developed in two steps: The first attempt looked like this (in principle):

I ength= sprintf(buff, "%*g", field_length, nr);
if (length > field_|length)
I ength= sprintf(buff, "%*g", field_length-5, nr);

If thel i bc conversion produces too many characters, the precision is reduced by the space required for
the scientific notation (1.234e+05). Thusthe pri nt f () conversionisforced to switch to the scientific
notation, since the value would not fit otherwise. Or, if it was scientific already, the precision is reduced
and also uses less space. | |eft out some important stuff around limit checking just to show the idea. This
simple algorithm should work quite well in most cases, but has been discarded for the sake of perform-
ance. Thedoublecall totheslow pri nt f () conversion %g didn't seem reasonable, though it would
only be used for extreme values and small fields. During my explorations of the code | didn't find places
wheref | oat or doubl e wereto be converted into small fields. Remeber that | talk only of conver-
sions where field length and precision are not given. In this case a sufficient field length is selected at
several places, except for abug where it was selected wrongly. If afield length is given, a different con-
version is used anyway. But since the code is quite complex, | don't claim to grasp it in full, and there-
fore may bein error. So let uslook further:

The second attempt to fix the bug looked like this:

bool wuse_scientific_notati on=TRUE;
if (field_length < 32 & nr > 1)

{
doubl e e[]={1, 1el, 1e2, 1e4, 1e8, 1el6 }, p=1;
for (int i=sizeof(e), j=1<<i-- ; j; i--, j>>=1)

if (field length &j)
p*=e[il];

use_scientific_notation=(p < nr);

I ength= sprintf(buff, "%*g", use_scientific_notation ?
field length-5 : field_ |length, nr);

Here we evaluate if the string representation of a given number fitsinto field_length characters. If not,
we reduce the precision to makeit fit. Again, | left out important details. For example, the evaluation is
done only once per field for the sake of performance. The downside here is the unconditional reduction
of precision for field length > 31 (which doesn't really matter), for negative numbers and for small num-
bers (absolute value less than 1).

Both algorithms do not take the limited precision of f | oat and doubl e valuesinto account. This
could lead to conversions with ridicul ous bogus precision output. For example avalue of 0.7 converted
with % 30g will give alot of digits, which pretend to tell about deviations from the value 0.7 and are
completely absurd: 0.699999988079071044921875. To understand more about the %g conversion, |
guote from a comment introduced in the source at the beginning of bugfixing #4937 (this comment was

65

http://bugs.mysql.com/4457
http://bugs.mysql.com/4937

Important Algorithms and Structures

removed because it mainly describes, how the pri nt f () conversion works, but | think it's valuable
enough to include it here):

/*
Let's try to pretty print a floating point nunber. Here we use
'%*.*g" conversion string:
'-' stands for right-padding with spaces, if such padding will take
pl ace

'"*' js a placeholder for the first argunent, field_|length, and
signifies mnimal wdth of result string. If result is |ess than
field length it will be space-padded. Note, however, that we'll not
pass spaces to Field string::store(const char *, ...), due to
strcend in the next line.

'".*'" is a placeholder for DBL_DI G and defines maxi mum nunber of
significant digits in the result string. DBL_DIG is a hardware
speci fic C define for maxi mum nunber of decimal digits of a floating
poi nt nunber, such that rounding to hardware fl oating point
representati on and back to decimal will not |lead to | oss of
precision. That is: if DBL_DIGis 15, nunber 123456789111315 can be
represented as doubl e without precision |oss. As one can judge from
this description, choosing DBL_DI G here is questionable, especially
because it Introduces a system dependency.

'g' neans that conversion will use [-]ddd.ddd (conventional) style,
and fall back to [-]d.ddde[+|i]ddd (scientific) style if there is not
enough space for all digits.

Maxi mum | ength of result string (not counting spaces) is (| guess)
DBL_DIG + 8, where 8 is 1 for sign, 1 for decinmal point, 1 for
exponent sign, 1 for exponent, and 4 for exponent val ue.

/XXX: why do we use space-padding and trim spaces in the next |ine?

*

sprintf(to,"%*.*g",(int) field_length, DBL_DI G nr);

to=strcend(to,' ');

There is one small misapprehension in the comment. %@ does not switch to scientific notation when
there is 'not enough space for all digits. Asthe commentator says, the field length gives the minimal
output length. pri nt f () happily outputs more charactersif required to produce aresult with ‘preci-
sion' digits. In fact it switches to scientific when the value can no longer be represented by 'precision’ di-
gitsin conventional notation. The man page says "Style eisused if the exponent from its conversionis
lessthan -4 or greater than or equal to the precision.” In explanation, a precision of 3 digits can print a
value of 345 in conventional notation, but 3456 needs scientific notation, asit would require 4 digits (a
precision of 4) in conventional notation. Thus, it is printed as 3.46e+03 (rounded).

Since we don't want spaces in the output, we should not give afield length, but alwaysuse" % * g" .
However, the precision matters, as seen above. It isworth its own paragraph.

Since MySQL uses the machine-dependent binary representation of f | oat and doubl e to store values
in the database, we have to care about these. Today, most systems use the |IEEE standard 754 for binary
floating-point arithmetic. It describes a representation for single precision numbers as 1 bit for sign, 8
bits for biased exponent and 23 bits for fraction and for double precision numbers as 1-bit sign, 11-bit
biased exponent and 52-bit fraction. However, we can not rely on the fact that every system usesthis
representation. Luckily, the ISO C standard requires the standard C library to have aheader f | oat . h
that describes some details of the floating point representation on a machine. The comment above de-
scribesthe value DBL_DI G. Thereisan equivalent value FLT_DI Gfor the C datatypef | oat .

So, whenever we print a floating-point value, we must not specify a precision above DBL_DI Gor
FLT_DI Grespectively. Otherwise we produce a bogus precision, which iswrong. For the honor of the
writer of the first attempt above, | must say that his complete algorithm took DBL__DI Ginto account, if
however only for the second call tospri nt f () . But FLT_DI Ghas never been accounted for. At the
conversion section of the code, it was not even known whether the value came from af | oat or

doubl e field.

My attempt to solve the problems tries to take all thisinto account. | tried to concentrate all

f | oat /doubl e-to-string conversions in one function, and to bring the knowledge about f | oat versus
doubl e to thisfunction wherever it is called. This solution managed to keep the test suite happy while
solving the new problem of Bug#4457 [http://bugs.mysqgl.com/4457]. Luckily the first problem was not
big, as the test cases have been very carefully selected, so that they succeed as long as the machine uses

66

http://bugs.mysql.com/4457

Important Algorithms and Structures

|EEE 754.

Nevertheless, the function is still not perfect. It is not possible to guess how many sigificant digitsa
number has. Given that, it is not simple to tell how long the resulting string would be. This appliesto
numbers with an absolute value smaller then 1. There are probably ways to figure this out, but | doubt
that we would win in terms of performance over the simple solution of the first attempt, and besides we
might cause new bugs. The compromise taken hereis to accept that the resulting string may exceed the
destination field length by five charactersin the worst case.

if (nr <0.0)
{

abs_nr= -nr;
extra_space= 1,

el se

abs_nr= nr;
extra_space= 0;

}
precision=is_float ? FLT_ DIG: DBL_DI G
1f (precision > field_| ength)

preci sion= field_|ength;

if (! initialized)

/* Better switch to scientific too early than too late. */
doubl e nul t;
mul t= 1e0;
for (length= 0; length < DBL_DI G | ength++)
mul t/ = lel;
mult= 1el - mult;

doubl e val ;
val = 1. 0;
for (int idx= 0; idx < DBL_DI G+1; i dx++)

DBUG PRI NT("i nfo", ("doubl e_to_string_conv: big[%] % *g",
idx, DBL_DI G+3, val));
bi g_nunber[i dx] = val ;

val *= nul t;
smal | _nunber[0] = 1e0;
smal | _nunber[1] = 1e0;
smal | _nunber[2] = 1e0;
smal | _nunber[3] = 1le-1;
smal | _nunber[4] = 1le-2;
smal | _nunber[5] = 1le-3;
smal | _nunber[6] = le-4;

/* %y switches to scientific when exponent < -4. */
for (int idx= 7; idx < DBL_DI G+1; i dx++)
smal | _nunber[idx] = le-4;
) initialized= TRUE;

use_scientific_notation= (abs_nr != 0.0) &&
((abs_nr > big_nunber[precision]) ||
(abs_nr < smal | _nunber[precision]));

if (use_scientific_notation)

if (((nr >=0.0) & ((nr >= 1e+100) || (nr <= 1le-100))) |
((nr <0.0) & ((nr <= -1e+100) || (nr >= -1e-100))))
extra_space+= 6; /* .e+100 or .e-100 */
el se
extra_space+= 5; /* .e+99 or .e-99 */

if (field_length < extra_space)
pr eci si on= 0;

else if (precision > (field_length - extra_space))
precision= field_length - extra_space;

I ength= sprintf(buff, "%*g", precision, nr);

This solution takes performance into account by initializing the limiting numbers arrays only once into
static space. It copes with negative numbers and tries to decide even over small numbers. The latter has

67

Important Algorithms and Structures

only small implications, asthe prefix 0.000 is exactly the same size as the postfix e-100. But knowing if
scientific notation will be selected by spri nt f () allowsfor saving one digit when the exponent islar-
ger than -100.

The calculations for the big number array are less precise than in the second attempt, but faster. The pre-
cision is sufficient for the guesswhether spri nt f () uses scientific notation. There may be number to
field length combinations which exploit the gap, but these won't emerge anyway as | found no situation
where this function is called with small field lengths. Remember again that it is not called with user-
supplied field lengths.

However in the current stable releases (including gamma) we have some places where the field length is
too small by one character. Thus, the precision is sometimes one digit smaller than DBL_ DI Gwould al-
low for. Consequently, we cannot use the simple algorithm in the stable releases. There is a chance of
doing it in adevelopment release, though.

Addendum:

There turned out to be a new solution to the "big number array” problem. We have a statically initialized
array | og_10, which holds the necessary values. But | did not check whether these values are safe.
Even if computed by the compiler, they could carry values dightly above the decimal powers, which
would be bad. In this case we needed to initialize by 9.99999999e+xxx, where the number of ninesis
equal to DBL_DI G Thismust be protected by #i f DBL_DI G == yy, sothat anew DBL_DI Gon a
new platform is detected. And the array is of limited length. We must at least protect it by a
DBUG_ASSERT(si zeof (1 og_10)/si zeof (1 0og_10[0]) > DBL_DI G.

But all of thisis probably completely unneccessary, since we are only speaking of ceses where no user-
supplied field length is given. So MySQL selects the field length on its own. So it istotally possible, in-
deed highly desirable, that MySQL selects afield length, which allows for a maximum of precision for
all possible values. And theseare DBL_DI G+7 or FLT_DI G+6 respectively asfar as|EEE 754 is used.
In this case we can have values of about +/-1e-307 to +/-1e+308 for doubl e and +/-1e-37 to +/-1e+38
for f | oat . Thatis, for example-1.<DBL_DIG-1 digits>e+100. For cases where a precision above
|IEEE 754 is possible, we may need +8 instead. We can detect thiswith#i f DBL_MAX 10 EXP >=
1000. So using afield length of DBL_DI G+8 in all cases should be sufficient for asimple
sprintf(buff, "%*qg", DBL_DIG nr) orsprintf(buff, "%*g", FLT DG

nr) , respectively. To be safe, we should not use the machine dependent constants everywhere, but in-
stead concentrate them into definitions like these:

#if (DBL_MAX_10_EXP > 9999) || (DBL_MN 10 _EXP < -9999)

error "Need new definition for UNSPECI FI ED DOUBLE Fl ELD LENGTH'
#el i f (DBL_MAX 10 _EXP > 999) || (DBL_M N 10 _EXP < - 999)

define UNSPECIFIED DOUBLE_FI ELD_ LENGTH (DBL DI G+8)

#el se

define UNSPECI FI ED DOUBLE_FI ELD LENGTH (DBL_DI G+7)

#endi f

#if (FLT MAX_10_EXP > 999) || (FLT_M N _10_EXP < -999)

#error "Need new definition for UNSPECI FI ED_ FLOAT Fl ELD LENGTH'
#el if (FLT_MAX 10 EXP > 99) || (FLT_M N _10 EXP < -99)

define UNSPECI Fl ED_ FLOAT Fl ELD LENGTH (FLT_DI G+7)

#el se

define UNSPECI FI ED_FLOAT_FI ELD LENGTH (FLT_DI G+6)

#endi f

These definitions should be used wherever an item or field of typef | oat or doubl e without an expli-
cit field length specification is encountered. We have to propagate these lengths though all derived items
and fields and we have to select the maximum of al field lengths wherever in two or more of them are
used in an expression or a function.

We need to treat the precision (DBL_DI GFLT_DI G) similarly, but have to select the minimum in ex-
pressions or functions.

68

Important Algorithms and Structures

4.9. Threads

Threads in mysgld can run at four different priorities, defined in mysgl_priv.h:

#defi ne | NTERRUPT_PRI OR 10
#defi ne CONNECT_PRI OR 9
#define WAI T_PRI OR 8
#defi ne QUERY_PRI OR 6

Some threads try to set their priority; others don't. These calls are passed along to
pthread_setschedparam() if the native threading library implementsiit.
The different threads are:

» Themain thread. Runsat CONNECT_PRIOR priority. Callsthr_setconcurrency() if it isavailable at
compile time; this call is generally assumed to exist only on Solaris, its value should reflect the num-
ber of physical CPUs.

» The"bootstrap" thread. See handle_bootstrap() in sgl_parse.cc. The mysqgl_install_db script startsa
server with an option telling it to start this thread and read commands in from afile. Used to initial-
ize the grant tables. Runs once and then exits.

» The"maintenance" thread. See sql_manager_cc. Like the old "sync" daemon in unix, this thread oc-
casionally flushes myisam tables to disk. InnoDB has a separate maintenance thread, but BDB also
uses this oneto occasionally call berkeley_cleanup_log_files(). Begins at startup and persists until
shutdown.

» The"handle TCP/IP sockets" thread. See handle_connections sockets() in mysgld.cc. Loop with a
select() function call, to handle incoming connections.

» The"handle named pipes’ thread. Only on Windows.

* The"handle shared memory connections' thread. Only on Windows.

» Signal handler ("interrupt") thread. See signal_hand() in mysgld.cc. Runs at INTERRUPT_PRIOR
priority. Sets up to receive signals, and then handles them as they come in. Begins at server startup
and persists until shutdown.

» The"shutdown" thread. See kill_server() in mysqgld.cc. Created by the signal handling thread. Closes
al connections with close_connections(), the ends.

» Active and cached per-connection threads. See handle_one_connection() in sql_parse.cc. These can
run at QUERY_PRIOR priority or WAIT_PRIOR priority depending on what they are doing.

e The"delayed" thread. See handle _delayed insert() in sgl_insert.cc. Used for MylSAM's delayed in-
serts.

* Thetwo save threads, in slave.cc. One thread connects to the master and handles network 10. The
other reads queries from the relay log and executes them.

In InnoDB, al thread management is handled through os/osOthread.c InnoDB's threads are:

* Thel/O handler threads, Seeio_handler_thread().
e Two "watchmen" threads: srv_lock timeout_and_monitor_thread(), and srv_error_monitor_thread().

» The master thread "which does purge and other utility operations’, See srv_master_thread().

69

Important Algorithms and Structures

InnoDB'sinternal os _thread_set priority() function implements three priorities (Background, normal,
and high) but only on windows. The function is a no-op on unix.

4.10. Character/Collation Sets

Character sets are used by MySQL when storing information, both to ensure that the information is
stored (and returned) in the correct format, but also for the purposes of collation and sorting. Each char-
acter set supports one or more collations, and so these are collectively knownasCol | ati on Set s,
rather than character sets.

Character sets are recorded against individual tables and returned as part of the field data. For example,
the MYSQL_ FI ELD data type definition includesthe field char set nr :

typedef struct st_nysql _field
*namne;

f
unsi gned | ong | engt h; =)
unsi gned | ong max_| engt h;

unsi gned i nt nane_| engt h;

{
char /* Nanme of colum */
char *org_nane; /* Original colum nane, if an alias */
char *tabl e; /* Table of colum if colum was a field */
char *org_tabl e; /* Org table name, if table was an alias */
char *db; /* Database for table */
char *cat al og; /* Catalog for table */
char *def; 5* Default value (set by nysql _list_fields) */
*
/*

lis
Wdth of colum (create |ength)
Max width for selected set */

unsi gned i nt org_nane_| engt h;

unsi gned int table_| ength;

unsi gned int org_table_|ength;

unsi gned i nt db_I engt h;

unsi gned i nt catal og_| engt h;

unsi gned int def I ength;

unsi gned int flags; /* Div flags */

unsi gned i nt deci mal s; /* Nunber of decimals in field */

unsi gned int charsetnr; /* Character set */

enum enum field_types type; /* Type of field. See nysql _comh for types */

} MYSQL_FI ELD;

Character set and collation informaiton are specific to a server version and installation, and are gener-
ated automatically fromthesql / shar e/ char set s/ | ndex. xm filein the source distribution.

You can obtain alist of the available character sets configured within a server by running SHOW COL-
LATI ON, or by running aquery on the | NFORVATI ON_SCHENMA. COLLATI ONtable. A sample of the
information from that table has been provided here for reference.

Collation 1d Charset Collation Default |Sortlen
64 arnscii8 arnscii 8_bin 1
32 arnscii8 arnsci i 8_general _ci Yes 1
65 asci i ascii_bin 1
11 asci i ascii _general ci Yes 1
84 bi g5 bi g5_bin 1
1 bi g5 bi g5_chi nese_ci Yes 1
63 bi nary bi nary Yes 1
66 cpl250 cpl250 bin 1
44 cpl250 cpl250 croatian_ci 1
34 cpl250 cpl250 czech_cs 2
26 cpl250 cpl250 general ci Yes 1
50 cpl251 cpl251_bin 1
14 cpl251 cpl251 bul gari an_ci 1

70

Important Algorithms and Structures

52 cpl251 cpl251 general _cs 1
23 cpl251 cpl251_ukrai ni an_ci 1
51 cpl251 cpl251 general _ci Yes 1
67 cpl256 cpl256 bin 1
57 cpl256 cpl256_general _ci Yes 1
58 cpl257 cpl257_bin 1
29 cpl257 cpl257_Iithuani an_ci 1
59 cpl257 cpl257 general ci Yes 1
80 cp850 cp850_bin 1
4 cp850 cp850_general _ci Yes 1
81 cp852 cp852_bin 1
40 cp852 cp852_general _ci Yes 1
68 cp866 cp866_hi n 1
36 cp866 cp866_general _ci Yes 1
96 cp932 cp932_bin 1
95 cp932 cp932_j apanese_ci Yes 1
69 dec8 dec8 bin 1
3 dec8 dec8_swedi sh_ci Yes 1
98 eucj pns eucj pns_bin 1
97 eucj pnms eucj pns_j apanese_ci Yes 1
85 euckr euckr _bin 1
19 euckr euckr _korean_ci Yes 1
86 gh2312 gh2312_bin 1
24 gh2312 gb2312_chi nese_ci Yes 1
87 gbk gbk_bin 1
28 gbk gbk_chi nese_ci Yes 1
93 geost d8 geostd8 bin 1
92 geost d8 geost d8 general _ci Yes 1
70 gr eek greek_bin 1
25 greek greek_general _ci Yes 1
71 hebr ew hebrew bin 1
16 hebr ew hebr ew_general _ci Yes 1
72 hp8 hp8_bi n 1
6 hp8 hp8 _engl i sh_ci Yes 1
73 keybcs?2 keybcs2_bin 1
37 keybcs?2 keybcs2_general _ci Yes 1
74 koi 8r koi 8r_bin 1
7 koi 8r koi 8r _general _ci Yes 1
75 koi 8u koi 8u_bi n 1
22 koi 8u koi 8u_general _ci Yes 1
47 latinl latinl_bin 1
15 latinl | atinl _dani sh_ci 1

71

Important Algorithms and Structures

48 latinl | atinl_general ci 1
49 latinl | atinl_general cs 1
5 latinl latinl _germanl _ci 1
31 latinl I atinl_german2_ci 2
94 latinl | atinl_spanish_ci 1
8 latinl I atinl_swedi sh_ci Yes 1
77 | atin2 latin2 _bin 1
27 latin2 | atin2_croatian_ci 1
2 | atin2 | atin2 _czech_cs 4
21 | atin2 | ati n2_hungari an_ci 1
9 | atin2 | ati n2_general _ci Yes 1
78 | atinb latin5_bin 1
30 l atin5 latin5 turkish_ci Yes 1
79 latin7 latin7_bin 1
20 latin? | atin7_estoni an_cs 1
42 latin7 | atin7_general cs 1
41 latin? I ati n7_general _ci Yes 1
43 macce macce_bin 1
38 nmacce macce_general _ci Yes 1
53 macr onman macr onan_bin 1
39 macr onan macr onan_general _ci Yes 1
88 sjis sjis_bin 1
13 sjis Sji s_j apanese_ci Yes 1
82 swe7 swe7_bin 1
10 swe7 swe7_swedi sh_ci Yes 1
89 tis620 tis620 _bin 1
18 tis620 ti s620_thai _ci Yes 4
90 ucs?2 ucs2 bin 1
138 ucs2 ucs2 _czech_ci 8
139 ucs?2 ucs2_dani sh_ci 8
145 ucs?2 ucs2_esperanto_ci 8
134 ucs2 ucs2_estoni an_ci 8
146 ucs?2 ucs2_hungari an_ci 8
129 ucs?2 ucs2_icel andic_ci 8
130 ucs?2 ucs2_l atvian_ci 8
140 ucs? ucs2_| it huani an_ci 8
144 ucs2 ucs2_persian_ci 8
133 ucs2 ucs2_polish_ci 8
131 ucs?2 ucs2_ronani an_ci 8
143 ucs2 ucs2_ronan_ci 8
141 ucs?2 ucs2_sl ovak_ci 8
132 ucs2 ucs2_sl oveni an_ci 8

72

Important Algorithms and Structures

142 ucs2 ucs2_spani sh2_ci 8
135 ucs2 ucs2_spani sh_ci 8
136 ucs? ucs2_swedi sh_ci 8
137 ucs?2 ucs2_turkish _ci 8
128 ucs2 ucs2_uni code_ci 8
35 ucs?2 ucs2_general ci Yes 1
91 ujis ujis_bin 1
12 ujis uj i s_japanese_ci Yes 1
83 utf8 utf8 bin 1
202 utf8 utf8 czech_ci 8
203 utf8 ut f 8_dani sh_ci 8
209 utf8 utf 8 esperanto_ci 8
198 utf8 ut f8 estoni an_ci 8
210 utf8 utf 8 hungari an_ci 8
193 utf8 utf8_icel andic_ci 8
194 utf8 utf8 | atvian_ci 8
204 utf8 utf8 Iithuanian_ci 8
208 utf8 ut f 8_persi an_ci 8
197 utf8 utf8 polish_ci 8
195 utf8 ut f8 ronmani an_ci 8
207 utf8 ut f 8_r oman_ci 8
205 utf8 ut f 8_sl ovak_ci 8
196 utf8 utf8_sl oveni an_ci 8
206 utf8 ut f 8_spani sh2_ci 8
199 utf8 ut f 8 spani sh_ci 8
200 utf8 ut f8 swedi sh _ci 8
201 utf8 utf8 turkish_ci 8
192 utf8 ut f 8 _uni code_ci 8
33 utf8 utf8 general ci Yes 1

Note that it is the collation ID, not the character set ID, that is used to identify the unique combination of
character set and collation. Thus, when requesting character set information using one of the character
set functionsin nysys/ char set . ¢, suchasget _char set (), different IDs may return the same
base character set, but a different collation set.

The following functions provide an internal interface to the collation and character set information, en-
abling you to access the information by name or 1D:

static uint get_collation_nunber_internal (const char *nane)
uint get_col I ati on_nunber (const char *nane)
ui nt get_charset _nunber (const char *charset_nanme, uint cs_flags)
const char *get_charset _name(ui nt charset _nunber)
stati c CHARSET | NFO *get _i nternal _charset (ui nt cs_nunber, nyf flags)
CHARSET_| NFO *get _charset (ui nt cs_nunber, nyf flags)
CHARSET_| NFO *get _charset _by_nane(const char *cs_nanme, nyf flags)
CHARSET | NFO *get _charset by _csnanme(const char *cs_nane,

uint cs_fl ags,

nmyf flags)

73

4.11.

Important Algorithms and Structures

The table below details the functions, the key argument that is supplied, and the return value.

Function Supplied Argu- Return Value
ment

get _col l ati on_nunber _internal () Collation name Collation ID

get _col I ati on_nunber () Collation name Collation ID

get _charset _nunber () Character set name |Collation ID

get _charset _nane() Collation ID Charactet set name
get _internal charset () Collation ID Character datatype
get _charset () Collation ID Character datatype

An example of using the collation/character set functionsis availableintheext r as/ char -
set 2ht m . ¢, which outputsan HTML version of theinternal collation set table.

Error flags and functions

The following flags can be examined or set to ater the behavior during error handling:

 thd->net.report_error

thd->net.report_error issetinnmy_nessage_sql () if theerror message was registered.
(ny_nessage_sql () iscaledbynmy error(),ny_printf_error(),nm_nessage()).

t hd- >query_error

Likenet.report_error,butisawayssettolinny nessage_sql () if error was not
caught by an error handler. Used by replication to see if a query generated any kind of errors.

t hd->no_war ni ngs_for_error

Normally an error also generates awarning. The warning can be disabled by setting t hd-
>no_war ni ngs_for _error. (Thisalowsoneto catch al error messages generated by a state-
ment)

t hd- >l ex->current _sel ect->no_error

Thisissettoin caselikes| NSERT | GNORE . . .
rors generated by the select.

SELECT. Inthis case we ignore all not fatal er-

thd->is fatal _error

Set thisif we should abort the current statement (and any multi-line statements) because something
went fatally wrong. (for example, astored procedure should be able to catch this). Thisis reset by
mysql _reset _thd_for_next_command().

t hd- >abort _on_war ni ng

Strict mode flag, which means that we should abort the statement if we get awarning. In the

fiel d:: store function this changes the warning level from WARN to ERROR. In other cases, this
flag ismostly tested witht hd- >real | y_abort on_war ni ng() to ensurewedon't abort in
the middle of an update with not transactional tables.

t hd->count _cuted fields

74

4.12.

Important Algorithms and Structures

If set, we generate warning for field conversations (normal case for | NSERT/UPDATE/DELETE).
Thisismainly set to 0 when doing internal copying of data between fields and we don't want to gen-
erate any conversion errors at any level.

e thd->killed
Set in case of error in connection protocol or in case of kill'. In this case we should abort the query
and kill the connection.

Error functions

e thd->really_abort_on_warning()

This function returns 1 if awarning should be converted to an error, like in strict mode when all
tables are transactional. The conversionishandledinsql _error. cc: : push_war ni ng() .

e thd->fatal _error()
Should be called if we want to abort the current statement and any multi-line statement.
e thd->clear_error()

Resetst hd- >net . report _error andt hd- >query_error.

Functions in the nysys Library

Functionsin nmysys: (For flagsseenmy_sys. h)

e int ny _copy _A((const char *from const char *to, nyf M/Fl ags));
Copy filefromf romtot o.

e int ny _renane _A((const char *from const char *to, nmyf MFl ags));
Renamefilefromf r omtot o.

e int ny _delete A((const char *nane, nyf MFl ags));
Deletefile nane.

e int ny_redel _A((const char *from const char *to, int MyFlags));

Delete f r ombefore rename of t o to f r om Copies state from old file to new file. If
MY _COPY_TI ME isset, setsold time.

e int ny_getwd _A((string buf, uint size, nyf MyFlags)); ,int nmy_setwd
_A((const char *dir, nyf MyFlags));

Get and set working directory.

e string ny_tenpnam _A((const char *dir, const char *pfx, nyf M-
Fl ags));

Make a unique temporary file name by using di r and adding something after pf x to make the

75

Important Algorithms and Structures

name unique. The file name is made by adding a unique six character string and TMP_EXT after
pf x. Returns pointer to mal | oc() 'ed areafor filename. Should befreed by f r ee() .

File ny_open _A((const char *FileNane,int Flags,nyf MyFlags)); ,File
my_create _A((const char *FileNane, int CreateFlags, int Accses-

Fl ags, nmyf MyFlags)); ,int ny _close A((File Filedes, nyf M/Flags));
,uint my_read A((File Filedes, byte *Buffer, uint Count, nyf M-
Flags)); ,uint ny_ wite A((File Filedes, const byte *Buffer, uint
Count, nyf MyFlags)); ,ulong my_seek _A((File fd,ulong pos,int
whence, nyf MyFlags)); ,ulong ny_tell _A((File fd, nyf MFI ags));

Use instead of open, open-with-create-flag, close, read, and write to get automatic error messages
(flag MYF_WVE) and only have to test for I= O if error (flag MY_NABP).

FILE *my_fopen _A((const char *FileNane,int Flags, myf MyFlags)); ,
FI LE *ny_fdopen _A((File Filedes,int Flags, nyf M/Flags)); ,int
my_fclose _A((FILE *fd, nyf MyFlags)); ,uint my fread _A((FILE
*stream byte *Buffer, uint Count,nyf MyFlags)); ,uint my fwite
_A((FILE *stream const byte *Buffer,uint Count, nyf MyFlags)); ,

ulong ny fseek A((FILE *streamul ong pos,int whence, nyf M/Fl ags));
,ulong ny_ftell _A((FILE *stream nyf M/FIl ags));

Same read-interface for streams asfor files.

gptr _nymalloc _A((uint uSize,const char *sFile,uint uLine, nyf M-
Flag)); ,gptr _nyrealloc _A((string pPtr,uint uSize,const char
*sFile,uint uLine, nyf MyFlag)); ,void _myfree _A((gptr pPtr,const
char *sFile,uint uLine)); ,int _sanity _A((const char

*sFil e,unsigned int uLine)); ,gptr _nyget copy_of nenory _A((const
byte *fromuint |ength,const char *sFile, uint uLine, nyf MyFlag));
mal | oc(si ze, nyfl ag) ismapped to these functionsif not compiled with - DSAFENVAL L CC.
voi d TERM NATE _A((void));

Writesmal | oc() infoonst dout if compiled with - DSAFENVALLCC.

int ny _chsize A((File fd, ulong new ength, nyf M/Fl ags));
Changesize of filef d tonewl engt h.

void ny _error _D((int nr, nyf MyFlags, ...));

Writes message using error number (seenmysys/ errors. h)onst dout, or using curses, if
MYSYS_PROGRAM _USES_CURSES() has been called.

void ny_nessage _A((const char *str, nyf MyFlags));

Writesst r onst dout , or using curses, if MYSYS PROGRAM USES CURSES() has been called.
void ny_init _A((void));

Start each program (in mai n()) with this.

void ny_end A((int infoflag));

Givesinfo about program. If i nf of | ag & MY_CHECK_ERROR, printsif somefiles are left open.
Ifinfoflag & MY_Q VE_I NFQ, printstiming info and el | oc() info about program.

76

Important Algorithms and Structures

e int ny_copystat _A((const char *from const char *to, int M-
Fl ags));

Copy state from old file to new file. If MY_COPY_TI MVE is set, setsold time.
e string ny_filenanme _A((File fd));
Returns filename of open file.
e int dirnane _A((string to, const char *nane));
Copy name of directory from filename.
e int test_if _hard path _A((const char *dir_nane));
Testif di r _nane isahard path (starts from root).
« void convert_dirname _A((string nane));

Convert dirname according to system. On Windows, changes all characters to capitals and changes
1'to"\ "

e string fn_ext _A((const char *nane));
Returns pointer to extension in filename.

e string fn_format _A((string to,const char *nane, const char
*dsk, const char *formint flag));

Format a filename with replacement of library and extension and convert between different systems.
Thet o and nanme parameters may be identical. Function doesn't change nameif nane !=t o.f | ag
may be:

Force replace filnames library with ‘dsk’

Force replace extension with ‘form' */

Force unpack filename (replace ~ with home directory)

Q| [N

Pack filename as short as possible for output to user

All open requests should always use at least open(f n_f or mat (t enp_buffer, nane, ,
"', 4), ...) tounpack homeand convert filename to system-form.

e string fn_sane _A((string tonanme, const char *nane, int flag));

Copies directory and extension from nane tot onane if needed. Copying can be forced by same
flagsusedinfn_format ().

e int wild_conpare _A((const char *str, const char *w | dstr));

Compareif st r matcheswi | dstr.w | dstr cancontain*'and '?' as wildcard characters. Re-
turnsOif st r andwi | dst r match.

e void get_date _A((string to, int tineflag));
Get current date in aform ready for printing.

 void soundex _A((string out_pntr, string in_pntr))

77

Important Algorithms and Structures

Makesi n_pnt r toab char long string. All words that sound alike have the same string.
e int init_key cache _A((ulong use nem ulong |eave this nuch_nen));

Use caching of keysin MISAM, PISAM, and ISAM. KEY_CACHE_SI ZE isagood size. Remember
to lock databases for optimal caching.

e void end _key cache _A((void));

End key caching.

4.13. Bitmaps

Inside the mysys directory is afile named my_bitmap.c. It contains functions for manipulating bitmaps.
Specifically there are functions for setup or teardown (bitmap_init, bitmap_free), for setting and clearing
individual bits or whole sections of the bitmap (bitmap_set bit, bitmap_fast_test and_set, bit-
map_clear_all, bitmap_set_all, bitmap_set_prefix, bitmap_set_above), and for performing comparisons
and set operations on two bitmaps (bitmap_cmp, bitmap_intersect, bitmap_subtract, bitmap_union). Bit-
maps are useful, so the functions are called from several places (opt_range.cc, slave.cc, mysgld.c,
sgl_insert.cc, log_event.cc, sgl_show.cc) and we're expecting to make more use of them in the next ver-
sion of MySQL, MySQL 5.1.

There are afew warnings and limitations that apply for the present bitmap implementation. First: the al-
location is an integral number of bytes, and it is not possible to determine whether the last few bits are
meaningful. Second: the whole bitmap might have to be protected by a mutex for manipulations; thisis
settable by passing appropriate flag values. Third: the bitmap is allocated with a'uint' size, which means
that ordinarily it can't have more than 232 bytes. Fourth: when unioning two bitmaps, they must be of
the same size.

78

Chapter 5. How MySQL Performs Different
Selects

5.1. Steps of Select Execution

Every select is performed in these base steps:

e JON: :prepare
e Initialization and linking JO N structureto st _sel ect _I| ex.
o fix_fields() forallitems(afterfi x_fiel ds(),weknow everything about item).
* Moving HAVI NGto WHERE if possible.
 Initialization procedureif thereis one.
e« JON :optinze
e Single select optimization.
» Creation of first temporary table if needed.
« JA N: : exec
» Performing select (a second temporary table may be created).
* JON: :cleanup
* Removing all temporary tables, other cleanup.
e JON :reinit

e Prepareal structures for execution of SELECT (withJO N: : exec).

5.2.sel ect _result Class

This class has avery important role in SELECT performance with sel ect _resul t classand classes
inherited from it (usually called withasel ect _ prefix). This class provides the interface for transmit-
ting results.

The key methods in this class are the following:

 send_fi el ds sendsgivenitem list headers (type, name, etc.).
* send_dat a sendsgiven item list values as row of table of result.
» send_error isused mainly for error interception, making some operation and then

::send_error will becalled.

For example, there are thefollowing sel ect _resul t classes:

79

How MySQL Performs Different Selects

* sel ect _send used for sending results though network layer.

» sel ect_export usedfor exporting datato file.

o nulti_del et e usedfor multi-delete.

 select_insert usedforl NSERT ... SELECT ...

e multi_updat e used for multi-update.

* select_singl erow subsel ect used for row and scalar subqueries..

» select _exists subsel ect usedfor EXI STS/I NJALL/ANY/SOVE subqueries.

e select_max_m n_finder_subsel ect usedfor min/max subqueries (ALL/ANY subquery op-
timization).

5.3. SI MPLE or PRI MARY SELECT

For performing single primary select, SELECT usesthenysql _sel ect function, which does:

+ alocateJO N

* JAN: :prepare
e JON :optimze
* JON: :exec

e JAN::cleanup

In previous versions of MySQL, all SELECT operations were performed with the help of this function
and mysql _sel ect () wasnot divided into parts.

5.4. Structure Of Complex Select

There are two structures that describe selects:

e st _select | ex (SELECT_LEX) for representing SELECT itself

» st _select lex unit (SELECT _LEX UNI T) for grouping severa selectsin abunch

The latter item represents UNI ON operation (the absence of UNI ONis a union with only one SELECT
and this structure is present in any case). In the future, this structure will be used for EXCEPT and | N-
TERSECT aswell.

For example:

(SELECT ...) UNION (SELECT ... (SELECT...)...(SELECT...UN ON...SELECT))
1 2 3 4 5 6 7

will be represented as:

How MySQL Performs Different Selects

level 1

SELECT_LEX_UNI T(2)

SELECT LEX(1) SELECT_LEX(3)

| evel 2

[[
SELECT_LEX_UNI T(4) SELECT_LEX_UNI T(6)
[

| |
SELECT_LEX(4) SELECT LEX(5) SELECT_LEX(7)

Note: Single subquery 4 hasitsown SELECT _LEX _UNI T.

The uppermost SELECT_LEX_UNI T (#2 in example) is stored in LEX. The first and uppermost SE-
LECT_LEX (#1in example) is stored in LEX, too. These two structures always exist.

At the time of creating or performing any JO N: : * operation, LEX: : current _sel ect pointstoan
appropriate SELECT LEX.

Only during parsing of global ORDER BY and LI M T clauses (for the whole UNI ON),

LEX: : current _sel ect pointsto SELECT LEX_ UNI T of thisunit, in order to store this parameter
inthisSELECT_LEX_UNI T. SELECT_LEXand SELECT_LEX_UNI T areinherited from

st _sel ect | ex_node.

5.5. Non-Subquery UNI ON Execution

Non-subquery unions are performed with the help of mysql _uni on() . For now, it isdivided into the
following steps:

st _sel ect_Il ex_unit:: prepar e (the same procedure can be caled for single SELECT for
derived table => we have support for it in this procedure, but we will not describeit here):

Createsel ect _uni on (inherited from sel ect _r esul t) which will write select resultsin
this temporary table, with empty temporary table entry. We will need this object to store in every
JO Nstructurelink on it, but we have not (yet) temporary table structure.

Allocate JO N structures and execute JO N: : pr epar e() for every SELECT to get full in-
formation about types of elements of SELECT list (results). Merging types of result fields and
storing them in specia Items (I t em t ype_hol der) will be donein thisloop, too. Result of
this operation (list of types of result fields) will be stored in

st _select_lex_unit::types).

Create atemporary table for storing union results (if UNI ON without ALL option, ‘distinct’ para-
meter will be passed to the table creation procedure).

Assign atemporary tabletothesel ect _uni on object created in the first step.

st _select _lex unit::exec

Delete rows from the temporary tableif thisis not the first call.

if thisisthefirst call, call JO N: : opti m ze elseJO N: :reinit andthenJO N: : exec
for all SELECTs(sel ect _uni on will write aresult for the temporary table). If unionis

81

How MySQL Performs Different Selects

cacheable and thisis not thefirst call, the method will do nothing.
e Cdlnysqgl sel ect ontemporary table with global ORDER BY and LI M T parameters after
collecting results from all SELECTS. A specia f ake_sel ect _| ex (SELECT_LEX) whichis

created for every UNI ON will be passed for this procedure (this SELECT_LEX also can be used
to storeglobal ORDER BY and LI M T parametersif brackets used in a query).

5.6. Derived Table Execution

“Derived tables’ isthe internal name for subqueriesin the FROVIclause.

The processing of derived tables is now included in the table opening process

(open_and_| ock_tabl es() cal). Routine of execution derived tables and substituting temporary
tableinstead of it (mysql _handl e_deri ved()) will be caled just after opening and locking al real
tables used in query (including tables used in derived table query).

If | ex->derived_tabl es flagispresent, all SELECT LEX structures will be scanned (thereisa
list of all SELECT_LEX structuresin reverse order named | ex- >al | _sel ects_|i st ,thefirst SE-
LECT in the query will belast in thislist).

Thereisapointer for the derived table, SELECT LEX_ UNI T stored inthe TABLE_LI ST structure
(TABLE_LI ST: : deri ved) . For any table that hasthis pointer, mysql _deri ved() will becalled.

nmysql _derived():
* Createsuni on_r esul t for writing resultsin thistable (with empty table entry, same asfor UNI -
ONs).

e calunit->prepare() togetlistof types of result fields (it work correctly for single SELECT,
and do not create temporary table for UNI ON processing in this case).

» Creates atemporary table for storing results.
e Assign thistemporary tabletouni on_resul t object.
» Cadlsnysqgl _sel ect ornmysql _uni on to execute the query.

« If itisnot explain, then cleanup JO N structures after execution (EXPLAI N needs data of optimiza-
tion phase and cleanup them after whole query processing).

o Stores pointer to this temporary tablein TABLE_LI ST structure, then this table will be used by out-
er query.

» Linksthistemporary tableint hd- >der i ved_t abl es for removing after query execution. This

tablewill beclosedincl ose_t hread_t abl es if its second parameter (bool
ski p_deri ved)istrue.

5.7. Subqueries

In expressions, subqueries (that is, subselects) are represented by | t eminherited from
I tem subsel ect .

To hide difference in performing single SELECTsand UNI ONs, | t em subsel ect usestwo different
engines, which provide uniform interface for access to underlying SELECT or UNI ON (subse-

82

How MySQL Performs Different Selects

| ect _single select _engi neandsubsel ect _uni on_engi ne, both areinherited from
subsel ect _engi ne).

The engine will be created at thetime | t em subsel ect isconstructed
(I'tem subsel ect: : i nit method).

Onltem subsel ect::fix_fields(),engine->prepare() will becaled.

Before calling any value-getting method (val ,val _i nt,val str,bring_val ue (in caseof row
result)) engi ne- >exec() will be called, which executes the query or just does nothing if subquery is
cacheable and has already been executed.

Inherited items have their own select_result classes. There are two types of them:
* select_singl erow subsel ect, to store values of given rowsin
It em si ngl erow _subsel ect cacheonsend_dat a() call, and report error if
I tem subsel ect has'assigned' attribute.
 select _exists subsel ect juststorelasvaueof |t em exi sts_subsel ect on

send_dat a() cal.Sinceltem i n_subsel ect andltem al | any_subsel ect areinher-
itedfrom |t em exi sts_subsel ect, they usethesamesel ect _resul t class.

It em subsel ect will never call thecl eanup() procedurefor JO N. Every JO N: : cl eanup
will call cl eanup() forinner JO Ns. The uppermost JO N: : cl eanup will be called by
mysql _sel ect () ornysqgl _union().

5.8. Single Select Engine

subselect_single select_engine:

e constructor alocate JO Nand store pointerson SELECT LEXand JO N.
» prepare() cal JON: : prepare.

« fix_length _and dec() preparecacheand receive type and parameters of returning items
(calledonly by | t em si ngl er ow_subsel ect).

» exec() drop'assigned flagof | t em subsel ect . If thisisthefirst time, call

JON: :optimzeandJO N: : exec(), elsedonothingor JON: :reinit()
JO N: : exec() depending on type of subquery.

5.9. Union Engine

subsel ect _uni on_engi ne:

e constructor juststorepointertost sel ect | ex_uni on (SELECT_LEX UNI ON).
e prepare() calst _select _lex unit::prepare.

« fix_length_and_dec() preparecacheand receive type and parameters (maximum of length)
of returning items (called only by | t em si ngl er ow_subsel ect).

 exec() calst_select lex unit::exec().st_select lex unit::exec() can
drop 'assigned' flag of | t em subsel ect if st _sel ect _lex_unit::itemisnotO.

83

How MySQL Performs Different Selects

5.10. Special Engines

There are specia engines used for optimization purposes. These engines do not have afull range of fea-
tures. They can only fetch data. The normal engine can be replaced with such special engines only dur-
ing the optimization process.

Now we have two such engines:

* subsel ect _uni quesubquery_engi ne used for:

| eft _expression IN (SELECT primary_key FROM tabl e WHERE condi ti ons)
Thislooks for the given value once in aprimary index, checks the WHERE condition, and returns
“wasit found or not?’

e subsel ect i ndexsubquery_engi ne usedfor:

| eft _expression |IN (SELECT any_key FROM tabl e WHERE condi ti ons)

Thisfirst looks up the value of the left expression in an index (checking the WHERE condition), then
if value was not found, it checks for NULL values so that it can return NULL correctly (only if a
NULL result makes sense, for example if an | N subquery is the top item of the WHERE clause then
NULL will not be sought)

The decision about replacement of the engine happensin JO N: : opt i nmi ze, after calling
make j oi n_readi nf o, when we know what the best index choiceis.

5.11. Explain Execution

For an EXPLAI N statement, for every SELECT, nysql _sel ect will be called with option SE-
LECT_DESCRI BE.

For main UNI ON, nysql _expl ai n_uni on will be called.

For every SELECT inagiven union, nysql _expl ai n_uni on will call
nmysql _expl ai n_sel ect.

nmysqgl _expl ai n_sel ect will call nysql _sel ect with option SELECT DESCRI BE.

mysql _sel ect createsaJO Nfor select if it does not already exist (it might already exist because if
it called for subquery JO N can be createdin JO N: : opt i mi ze of outer query when it decided to
calculate the value of the subquery). ThenitcalsJO N: : prepare,JO N: : opti m ze,

JO N: : execandJO N: : cl eanup asusual.

JO N: : exec iscaled for SELECT with SELECT DESCRI BE option call sel ect _descri be.

sel ect _descri be returnsthe user description of SELECT and callsmysql _expl ai n_uni on for
every inner UNI ON.

PROBLEM: how it will work with global query optimization?

Chapter 6. How MySQL Transforms Subqueries

It em subsel ect virtua method sel ect _transf or mer isused to rewrite subqueries. Itiscalled
fromltem subsel ect::init (whichiscaledjust after call tofi x_fi el ds() method for all
itemsinJO N: : pr epar e).

6.1.ltem.in_subsel ect::sel ect _transforner

Itemin_subsel ect::select transforner isdividedintotwo parts, for the scalar |eft part
and the row left part.

6.1.1. Scalar | N Subquery

Torewriteascalar | N subquery, the method used is

[tem.in_subsel ect::single_val ue_transformner.Scaar| Nsubquery will be replaced
withltem in_optimnm zer.

[temin_optim zer itemisaspecia boolean function. On avaluerequest (oneof val ,val i nt,
orval _str methods) it evaluates left expression of | N by storing its value in cache item (one of

It em cache* items), then it tests the cache to see whether it is NULL. If left expression (cache) is
NULL,thenltem in_optim zer returnsNULL, elseit evaluates| t em i n_subsel ect .

Example queries.

a) SELECT * fromtl where tl.a in (SELECT t2.a
ain (SE 2

b) SELECT * fromtl where t1. LECT t GROUP BY t2.a);

 Item.in_subsel ect inheritsthe mechanism for getting a value from
Item exi sts_subsel ect.

e Sel ect _transforner storesareferenceto theleft expression in its conditions:

(in WHERE and HAVING in case 'a' and in HAVING i n case 'b')

» Itemfrom item list of thisselect (t 2. a) can be referenced with a special reference
(Itemref _null _hel per orltem null _hel per). Thisreferenceinforms
Item.in_optim zer whetheritem (t 2. a) isNULL by setting the ‘was _null’ flag.

e Thereturnvauefromltem i n_subsel ect will be evaluated asfollows:
¢ If TRUE, return true
e If NULL, return null (that is, unknown)

e |f FALSE, and 'was null'is set, return null

¢ Return FALSE

<left_expression> IN (SELECT <item> ...) will be represented as follows:

| I'tem.in_optimzer|
) +

I 00000000000000000000 dcooooooooo0 +

85

How MySQL Transforms Subqueries

o + o +
| <l eft _expressi on> | | I'tem.i n_subsel ect |
| T +
e e eeemaaaaa + |
| <l ef t _expressi on cache>| LR e +
I I I
R + | |
N dccooooooo + dbsccooooococooooooooooo +
+<<<<<<<<<<<<<<<<<| [temref | +<<<||temref_null _hel per|
p + \Y e +
\Y e e e eeeaaaa +
+>>>| <itenp |
dimccocccosccocosoocoos +

where <<<<<<<<<isreferenceinmeaningof | t em r ef .

I temref isusedtopointto<l ef t _expressi on cache>, because at the time of transformation
we know only the address of variable where the cache pointer will be stored.

If the select statement has an ORDER BY clause, it will be wiped out, because there is no sensein OR-
DER BY without LI M T here.

If I N subquery union, the condition of every select in the UNI ON will be changed individually.

If a condition needs to be added to the WHERE clause, it will be presentedas(item OR item | S
NULL) andltem is _not _null _test(iten) will beaddedtothe HAVI NG clause.
[temis_not_null _test registersNULL valuetheway |t em ref nul |l _hel per doesit, and
returns FALSE if argument is NULL. With the above trick, we will register NULL value of | t emeven
for the case of index optimization of a WHERE clause (case 'a in the following example).

The following are examples of | N transformations:

o Examplel:

<l eft_expression> | N (SELECT <item> FROMt WHERE <where_exp>)

If returning NULL correctly would make sense, the above will become:

(SELECT 1 FROM t
VWHERE
<wher e_exp> and
(Itemref(<cached_| eft _expression>)=<itenm> or
<ltem is null)
HAVING Item.is_not_null_test(<itenp))

When subquery is marked as the top item of the WHERE clause, it will become:

(SELECT 1 FROM t
VWHERE
<wher e_exp> and
Itemref(<cached_| eft_expressi on>) =<i t enp)

o Example2:

<l eft_expression> | N (SELECT <itenm> FROMt
HAVI NG <havi ng_expr >
ORDER BY 1)

will be represented as

(SELECT <itenmr as ref_null _hel per FROM t
HAVI NG <havi ng_exp> AND
Itemref(<cached_l| eft_expression>) = Itemref_null _hel per(item)

86

How MySQL Transforms Subqueries

* Example3:

<l eft _expression> | N (SELECT <item> UNION ...)

will become

(SELECT 1
HAVI NG |t em ref (<cached_| eft _expressi on>) =
Item nul | _hel per(<ltenp)>

<
UNION . ..)

(HAVI NGwithout FROMis a syntax error, but a HAVI NG condition is checked even for subquery
without FROV)

e Example4:

<l eft_expression> I N (select <itenp)

will be completely replaced with <l eft _expression> = <itenp

Now conditions (VWHERE (a) or HAVI NG (b)) will be changed, depending on the select, in the
following way:

If subquery contains a HAVI NG clause, SUM) function or GROUP BY (example 1), then theitem list
will beunchanged and | t em ref _nul | _hel per reference will be created on item list element. A
condition will be added to the HAVI NG

If the subquery does not contain HAVI NG, SUM) function or GROUP BY (example 2), then:

e itemlist will bereplaced with 1.

e left _expression cache> = <itenk or is null <iten will beaddedtothe
VWHERE clause and aspecial i s_not _nul | (itemnm) will beadded to the HAVI NG, so null values
will be registered. If returning NULL wouldn't make correct sense, thenonly | ef t _expr essi on
cache> = <iten> will be added to the WHERE clause. If this subquery does not contain a FROM
clause or if the subquery contains UNI ON (example 3), then| ef t _expressi on cache> =
I'tem nul | _hel per(<iten) will beadded to the HAVI NG clause.

A single select without a FROMclause will bereduced to just <l ef t _expressi on> = <itenp
withoutuseof | tem i n_optim zer.

6.1.2. Row | N Subquery

Torewritearow | N subquery, the method used is

I[temin_subsel ect::row val ue_transforner.Itworksinamost the same way asthe
scalar analog, but workswith | t em cache_r owfor caching left expression and uses references for
elementsof | t em cache_r ow. Torefer toitem list it uses

I[temref _null_hel per(ref_array+i).

Subquery with HAVI NG, SUM) function, or GROUP BY will transformed in the following way:

RONI1, 12, ... IN) IN(SELECT i1, i2, ... iNFROMt HAVING <having_expr>)

87

How MySQL Transforms Subqueries

will become:

(SELECT i1, i2, ... iNFROVMt
HAVI NG <havi ng_expr> and
<cache_| 0> = <lItemref_null _hel per(ref_array[0] > AND
<cache_| 1> = <Itemref_nul | _hel per(ref_array[1])> AND

'<i:'ache_l N-1> = <lItemref_null _hel per(ref_array[N-1]>)
SELECT without FROMwill be transformed in this way, too.

It will be the same for other subqueries, except for the WHERE clause.

6.2. ltem al | any_subsel ect

Item al | any_subsel ect isinherited from|tem i n_subsel ect . ALL/ANY/SOVE use the
same algorithm (and the same method of | t em i n_subsel ect) asscalar | N, but use adifferent
function instead of =.

ANY/SOVE use the same function that was listed after the left expression.

ALL uses an inverted function, and all subqueries passed as argumentsto| t em func_not _al |
(Item func_not _al | isaspecia NOT function used in optimization, see following).

But before above transformation ability of independent ALL/ANY/SQOVE optimization will be checked
(query isindependent, operation isone of <, =<, >, >=, returning correct NULL have no sense (top level
of WHERE clause) and it is not row subquery).

For such queries, the following transformation can be done:

val > ALL (SELECT...) -> val > MAX (SELECT...)
val < ALL (SELECT...) -> val < MN (SELECT...)
val > ANY (SELECT...) -> val > MN (SELECT...)
val < ANY (SELECT...) -> val < MAX (SELECT...)
val >= ALL (SELECT...) -> val >= MAX (SELECT...)
val <= ALL (SELECT...) -> val <= M N (SELECT...)
val >= ANY(SELECT...% -> val >=MN(SELECT...;

val <= ANY (SELECT...) -> val <= MAX (SELECT. ..

ALL subqueries aready have NOT before them. This problem can be solved with help of special NOT,
which can bring 'top' tag to its argument and correctly process NULL if it is'top' item (return TRUE if
argument isNULL if itis'top' item). Let's call this operation NOT . Then we will have following table
of transformation:

val > ALL (SELECT...) -> _NOT_ val >= MAX (SELECT...
val < ALL (SELECT...) -> _NOT_ val <= M N (SELECT. ..
val > ANY (SELECT...) -> val < MN (SELECT...
val < ANY (SELECT. .. val > MAX (SELECT. ..

val >= ALL (SELECT...
val <= ALL (SELECT...
val >= ANY (SELECT...
val <= ANY (SELECT. ..

-> NOr_ val > MAX (SELECT. ..
-> NOT_ val < MN (SELECT. ..
-> val <= M N (SELECT. ..
-> val >= MAX (SELECT...

—
'
—

If subquery does not contain grouping and aggregate function, above subquery can be rewritten with
MAX() /M N() aggregate function, for example:

val > ANY (SELECT item...) -> val < (SELECT MN(item...)

For queries with aggregate function and/or grouping, specia | t em maxmi n_subsel ect will be
used. This subquery will return maximum (minimum) value of result set.

88

How MySQL Transforms Subqueries

6.3. 1t em si ngl erow subsel ect

It em si ngl erow _subsel ect will berewritten only if it contains no FROMclause, and it is not
part of UNI ON, and it is a scalar subquery. For now, there will be no conversion of subqueries with field
or reference on top of item list (on the one hand we can't change the name of such items, but on the other
hand we should assign to it the name of the whole subquery which will be reduced);

The following will not be reduced:

SELECT a;
SELECT 1 UNI ON SELECT 2;
SELECT 1 FROM t1;

The following select will be reduced:

SELECT 1;
SELECT a+2;

Such a subquery will be completely replaced by its expression from item list and its SELECT _LEX and
SELECT _LEX _UNI T will be removed from SELECT LEX'stree.

Butevery ltem fieldandltemref of that expression will be marked for processing by a special
fix_fields() procedure. Thefi x_fi el ds() proceduresfor such |t ens will be performedin
the same way as for items of an inner subquery. Also, if thisexpressionislt em fi el ds or

I t em r ef , then the name of this new item will be the same as the name of thisitem (but not

(SELECT .. .)). Thisisdoneto prevent broken references on such items from more inner subqueries.

89

Chapter 7. MySQL Client/Server Protocol

7.1. Licensing Notice

The MySQL Protocol is proprietary.

The MySQL Protocol is part of the MySQL Database Management System. As such, it falls under the
provisions of the GNU Public License (GPL). A copy of the GNU Public License is available on
MySQL 's web site, and in the product download.

Because thisisa GPL protocol, any product which usesit to connect to a MySQL server, or to emulate a
MySQL server, or to interpose between any client and server which uses the protocol, or for any similar
purpose, is also bound by the GPL. Thereforeif you use this description to write a program, you must
release your program as GPL. Contact MySQL AB if you need clarification of theseterms or if you

need to ask about aternative arrangements.

7.2. Organization

Thetopicis: the contents of logical packetsin MySQL version 5.0 client/server communication.

The description is of logical packets. There will be only passing mention of non-logical considerations,
such as physical packets, transport, buffering, and compression. If you are interested in those topics, you
may wish to consult another document: "MySQL Client - Server Protocol Documentation” in the file
net doc. t xt inthei nt er nal s directory of thenysql doc MySQL documentation repository.

The description is of the version-5.0 protocol at the time of writing. Most of the examples show version-
4.1 tests, which is okay because the changes from version-4.1 to version-5.0 were small.

A typical description of a packet will include:

"Bytes and Names". Thisisintended as a quick summary of the lengths and identifiers for every field in
the packet, in order of appearance. The "Bytes' column contains the length in bytes. The Names column
contains names which are taken from the MySQL source code whenever possible. If the version-4.0 and
version-4.1 formats differ significantly, we will show both formats.

Descriptions for each field. This contains text notes about the usage and possible contents.

(If necessary) notes about alternative terms. Naming in this document is not authoritative and you will
often see different words used for the same things, in other documents.

(If necessary) references to program or header files in the MySQL source code. An example of such a
referenceis: sgl/protocol.cc net_store length() which means"in the sql subdirectory, in the protocol.cc
file, the function named net_store |length".

An Example. All examples have three columns:

-- the field name
-- a hexadeci mal dunp
-- an ascii dunp, if the field has character data

All spaces and carriage returnsin the hexadecimal dump are there for formatting purposes only.

In the later sections, related to prepared statements, the notes should be considered unreliable and there
are no examples.

90

MySQL Client/Server Protocol

7.3. Elements

Null-Terminated String: used for some variable-length character strings. The value \O' (sometimes writ-
ten 0x00) denotes the end of the string.

Length Coded Binary: avariable-length number. To compute the value of a Length Coded Binary, one
must examine the value of itsfirst byte.

Val ue O # OF Bytes Description
First Byte Fol | owi ng
0- 250 0 = value of first byte
251 0 colum val ue = NULL
only appropriate in a Row Data Packet
252 2 = value of followi ng 16-bit word
253 4 = value of following 32-bit word
254 8 = value of followi ng 64-bit word

Thus the length of a Length Coded Binary, including the first byte, will vary from 1 to 9 bytes. Therel-
evant MySQL source program is sgl/protocol.cc net_store length().

All numbers are stored with least significants byte first. All numbers are unsigned.

Length Coded String: a variable-length string. Used instead of Null-Terminated String, especially for
character strings which might contain \O' or might be very long. Thefirst part of a Length Coded String
isaLength Coded Binary number (the length); the second part of a Length Coded String is the actual
data. An example of a short Length Coded String is these three hexadecimal bytes: 02 61 62, which
means "length = 2, contents = "ab™’.

7.4. The Packet Header

Byt es Name
3 Packet Length
1 Packet Number

Packet Length: The length, in bytes, of the packet
that follows the Packet Header. There
may be sone special values in the nost
significant byte. Since 2**24 = 16MB,
t he maxi num packet length is 16MB.

Packet Number: A serial nunber which can be used to
ensure that all packets are present
and in order. The first packet of a
client query wll
have Packet Nunber = 0. Thus, when a
new SQL statenment starts, the packet
nunber is re-initialised.

The Packet Header will not be shown in the descriptions of packets that follow this section. Think of it
as awaysthere. But logicaly, it "precedes the packet" rather than "isincluded in the packet”.

Alternative terms: Packet Length is also called "packetsize". Packet Number is also called "Packet no".

Rel evant MySQL Source Code:
i ncl ude/ gl obal . h int3store()
sql /net _serv.cc ny_net_wite(), net_flush(), net_wite_conmand(), ny_net_read()

7.5. Packet Types

Thisiswhat happensin atypical session:

The Handshake (when client connects):

91

MySQL Client/Server Protocol

Server Sends To Cient: Handshake Initialisation Packet
Cient Sends To Server: Cient Authentication Packet
Server Sends To Client: OK Packet, or Error Packet
The Commands (for every action the client wants the server to do):
dient Sends To Server: Command Packet
Server Sends To Cient: OK Packet, or Error Packet, or Result Set Packet

In therest of this chapter, you will find a description for each packet type, in separate sections.

Alternative terms. The Handshakeis aso called "client login" or "login procedure” or "connecting".

7.6. Handshake Initialization Packet

From server to client during initial handshake.

Byt es Nanme
pr ot ocol _versi on
(Nul | - Term nated String) server_versi on

thread_id
scranbl e_buf f
(filler) always 0x00
server_capabilities
server _| anguage
server _stat us

3 (filler) always 0x00 ...

PNFRPNRORAS -

pr ot ocol _ver si on: The server takes this from PROTOCOL_VERSI ON
in /include/nysqgl _version.h. Exanple value = 10.

server_versi on: The server takes this from MYSQ._SERVER VERSI ON
in /include/ nysqgl _version.h. Exanple value = "4.1.1-al pha".

t hr ead_nunber : I D of the server thread for this connection.

scranbl e_buff: The password mechani smuses this.
(See "Password functions" section el sewhere in this docunent.)

server_capabilities: CLIENT_XXX options. The possible flag values at tinme of
witing (taken from include/nysql_com h):

CLI ENT_LONG PASSWORD 1 /* new nore secure passwords */

CLI ENT_FOUND_ ROAS 2 /* Found instead of affected rows */

CLI ENT_LONG FLAG 4 /* Get all columm flags */

CLI ENT_CONNECT_W TH DB 8 /* One can specify db on connect */

CLI ENT_NO _SCHEMA 16 /* Don't all ow database.tabl e. col um */

CLI ENT_COWPRESS 32 /* Can use conpression protocol */

CLI ENT_ODBC 64 /* Odbc client */

CLI ENT_LOCAL_FI LES 128 /* Can use LOAD DATA LOCAL */

CLI ENT_| GNORE_SPACE 256 /* | gnore spaces before ' (' */

CLI ENT_PROTOCOL_41 512 /* New 4.1 protocol */

CLI ENT_| NTERACTI VE 1024 /* This is an interactive client */

CLI ENT_SSL 2048 /* Switch to SSL after handshake */

CLI ENT_| GNORE_SI GPI PE 4096 /* | GNORE si gpi pes */

CLI ENT_TRANSACTI ONS 8192 /* dient knows about transactions */

CL| ENT_RESERVED 16384 /* Ad flag for 4.1 protocol */

CL| ENT_SECURE_CONNECTI ON 32768 /* New 4.1 authentication */

CLI ENT_MULTI _STATEMENTS 65536 /* Enabl e/ di sable nmulti-stnt support */

CLI ENT_MULTI _RESULTS 131072 /* Enabl e/disable multi-results */

server_l anguage: current server character set numnber

server_stat us: SERVER _STATUS xxx flags: e.g. SERVER STATUS AUTOCOW T

Alternative terms. Handshake Initialization Packet is also called "greeting package". protocolversion is
aso called "Prot. version". server_version is aso caled "Server Version String”. thread_number is also
called "Thread Number". current server charset number is also called "charset no". scramble_buff is

92

MySQL Client/Server Protocol

also called "crypt seed". server_statusisaso caled "SERVER_STATUS xxx flags' or "Server status

variables'.
Exanpl e Handshake Initialization Packet
Hexadeci mal ASCl |
pr ot ocol _versi on Oa
server_versi on 34 2e 31 2e 31 2d 71 6¢ 4,1.1-a
70 68 61 2d 64 65 62 75 pha- debu
67 00 g.
t hr ead_nunber 01 00 00 00 e
scranbl e_buf f 3a 23 3d 4b 43 4a 2e 43
(filler) 00 .
server_capabilities 2c 82
server _| anguage 08
server _status 02 00 ..
(filler) 00 00 00 00 00 00 OO OO

00 00 00 00 00

In the example, the server istelling the client that its server_capabilities include CLI-
ENT_MULTI_RESULTS, CLIENT_SSL, CLIENT_COMPRESS, CLIENT_CONNECT_WITH_DB,
CLIENT_FOUND_ROWS,

7.7. Client Authentication Packet

From client to server during initial handshake.

VERSI ON 4.0
Byt es Nanme
2 client_flags

3 max_packet _si ze
n (Null-Termnated String) user
8 scranbl e_buf f

1 (filler) always 0x00
VERSI ON 4. 1
Byt es Name

4 client_flags

4 max_packet _si ze

1 char set _nunber

23 (filler) always 0x00..
n (Null-Termnated String) user

8 scranbl e_buf f

1 (filler) always 0x00
n (Null-Term nated String) dat abasenane

client_flags: CLI ENT_xxx options. The list of possible flag
values is in the description of the Handshake
Initialisation Packet, for server_capabilities
For sone of the bits, the server passed "what
it's capable of". The client |eaves sone of the
bits on, adds others, and passes back to the server
One inportant flag is: whether conpression is desired

max_packet _si ze: t he maxi mum nunber of bytes in a packet for the client
char set _nunber: in the sane domain as the server_| anguage field that

the server passes in the Handshake Initialisation packet.
user: identification
scranbl e_buff: the password, after encrypting using the scranbl e_buff

contents passed by the server (see "Password functions"
section el sewhere in this docunent)

dat abasenane: name of schema to use initially

The scramble_buff and databasename fields are optional .

Alternative terms:. "Client authentication packet" is sometimes called "client auth response” or "client

93

MySQL Client/Server Protocol

auth packet". "Scramble_buff" is sometimes called "crypted password".

Rel evant MySQL Sour ce Code:

- On the client side:

I'i brrysql /11 brysqgl . c: : nysql

real _connect ().

- On the server side: sqgl/sql_parse.cc::check_connections()

Exanpl e Client Authentication Packet

Hexadeci mal ASCl |

client_flags 85 a6 03 00

max_packet _si ze 00 00 00 01

char set _nunber 08

(filler) 00 00 00 00 00 OO0 OO OO
00 00 00 00 00 OO0 OO OO
00 00 00 00 00 OO0 OO

user 70 67 75 6¢c 75 74 7a 61 pgul ut za
6e 00 n.

7.8. Password functions

The Server Initialization Packet and the Client Authentication Packet both have an 8-byte field,
scramble_buff. The value in thisfield is used for password authentication. It works thus:

The server sends a randomstring to the client, in scranble_buff.

The client encrypts the scranbl e_buff val ue using the password that the user
enters. This happens in sqgl/password.c:scranbl e() function.

The client sends the encrypted scranbl e _buff value to the server.

The server encrypts the original random string using a value in the nysdl
dat abase, nysql . user. Password.

The server conpares its encryted randomstring to what the client sent

in scranbl e_buff.

If they are the sane, the password is okay.

Rel evant MySQL Source Code:
l'i bnysql / password.c coments at start of file.

7.9. Command Packet

From client to server whenever the client wants the server to do something.

Byt es Nanme

1 commrand

n arg

command: The npbst conmon val ue is 03 COM QUERY, because

| NSERT UPDATE DELETE SELECT etc. have this code.
The possible values at time of witing (taken
from/include/nysgl _comh for enum server_command) are:

Nane Associ ated client function

0x00 COM SLEEP (default, e.g. SHOW PROCESSLI ST)
0x01 COM QUI T nmysql _cl ose

0x02 COM_ I NI T_DB nmysql _sel ect _db

0x03 COM_QUERY nmysql _real _query

0x04 COM FI ELD LI ST nysql _list_fields

0x05 COM_CREATE_DB nysql _create_db

0x06 COM_DROP_DB nysql _drop_db

0x07 COM_REFRESH nysql _refresh

0x08 COM SHUTDOWN

0x09 COM _STATI STI CS nmysql _st at

0x0a COM_PROCESS_| NFO nmysql _| i st_processes

0x0b COM_CONNECT (during authenticati on handshake)
0x0c COM_PROCESS Kl LL nysql _kill

0x0d COM_DEBUG

0x0e COM_PI NG nysql _pi ng

0xOf COM_TI ME (special value for slow |ogs?)

94

MySQL Client/Server Protocol

0x10 COM DELAYED | NSERT

0x11 COM_CHANGE_USER nysql _change_user

0x12 COM Bl NLOG_DUMP (used by sl ave server / nysql binl og)

0x13 COM_TABLE_DuwP (used by slave server to get naster table)
0x14 COM_CONNECT_OUT (used by slave to | og connection to naster)
0x15 COM REG STER SLAVE (reports slave location to nmaster)

0x16 COM_STMI_ PREPARE see description of Prepare Packet

0x17 COM_STMI_EXECUTE see description of Execute Packet

0x18 COM_STMI_SEND_LONG_DATA see description of Long Data Packet
0x19 COM_STMI_CLOSE new, for closing statenent

Oxla COM STMI_RESET

Ox1lb COM SET_OPTI ON

Ox1lc COM_STMI_FETCH

arg: The text of the command is just the way the user typed it,
by the client (except renoval of the final ';'

This field is not a null-terminated string; however,

the size can be cal cul ated fromthe packet size,

and the MySQL client appends '\0' when receiving.

there is no processing

Rel evant MySQL source code:
sgl -comon/client.c cli_advanced_command(), send_quer

mysql y().
net _field_length().

l'i bmysql /1ibnysqgl.c nysql _real _query(), si erI e_comuand(),
Exanpl e Command Packet

Hexadeci mal ASCl |
command 02 .
arg 74 65 73 74 t est

In the example, the value 02 in the command field stands for COM_INIT_DB. Thisisthe packet that the
client putstogether for "use test;".

7.10. Types Of Result Packets

A "result packet" is a packet that goes from the server to the client in response to a Client Authentication
Packet or Command Packet. To distinguish between the types of result packets, a client must ook at the
first byte in the packet. We will call this byte "field_count” in the description of each individual pack-
age, although it goes by several names.

Type O Result Packet

Hexadeci mal Value OF First Byte (field_count)

K Packet 00

Error Packet ff

Resul t Set Packet 1-250 (first byte of Length-Coded Bi nary)
Fi el d Packet 1-250 (""

Row Dat a Packet 1-250 ("")

ECF Packet fe

7.11. OK Packet

From server to client in response to command, if no error and no result set.

VERSI ON 4.0

Byt es Nanme

1 (Length Coded Bi nary) field_count, always = 0
1-9 (Length Coded Bi nary) af f ect ed_r ows

1-9 (Length Coded Bi nary) insert_id

2 server_status

n (Length Coded String) message

VERSI ON 4. 1

Byt es Nanme

1 (Length Coded Bi nary) field_count, always = 0
1-9 (Length Coded Bi nary) af f ect ed_r ows

95

MySQL Client/Server Protocol

1-9 (Length Coded Bi nary) insert_id

2 server _status
2 war ni ng_count
n (Length Coded String) message

field_count: al ways = 0
af f ect ed_r ows: = nunber of rows affected by | NSERT/ UPDATE/ DELETE
insert _id: This will have the "last INSERT id", that is, the val ue

that an auto_increnent colum received in the | ast |NSERT.
=0 if "last INSERT id" was not changed by the conmand.

server_status: = 0, usually. The client can use this to check if the
command was inside a transaction.

war ni ng_count : nunber of warni ngs

message: For exanple, after a multi-line |INSERT, nessage m ght be

"Records: 3 Duplicates: 0 Warnings: 0"

The message field is optional .

Alternative terms: OK Packet is also known as "okay packet" or "ok packet" or "OK-Packet".
field_count is also known as "number of rows" or "marker for ok packet". message is also known as
"Messagetext”. OK Packets (and result set packets) are also called "Result packets'.

Rel evant files in MySQ source:
(client) sqgl/client.c nysqgl_read_query_result()
(server) sql/protocol.cc send_ok()

Exanpl e OK Packet

Hexadeci nal ASCl |
field_count 00
af f ect ed_r ows 01
insert_id 00
server _status 02 00
war ni ng_count 00 00

In the example, the optional message field is missing (the client can determine this by examining the
packet length). Thisis a packet that the server returns after a successful INSERT of asingle row that
contains no auto_increment columns.

7.12. Error Packet

From server to client in response to command, if error.

VERSI ON 4. 0

Byt es Nanme

1 field_count, always = Oxff

2 errno

n nessage

VERSI ON 4. 1

Byt es Nanme

1 field_count, always = Oxff

2 errno

1 (sql state nmarker), always '#'

5 sql state

n nessage

field_count: Al ways Oxff (255 decinmal).

errno: The possible values are listed in the manual, and in
the MySQL source code file /include/ mysqld_error.h.

(sqlstate marker): This is always "# . It is necessary for distinguishing

versi on-4.1 nessages.

96

MySQL Client/Server Protocol

sqgl st at e: The server translates errno values to sqgl state val ues
with a function naned nysql _errno_to_sqlstate(). The
possi bl e values are listed in the manual, and in the
M/SQL source code file file /include/sql_state.h.

message: The error nessage is a string which ends at the end of
the packet, that is, its length can be determ ned from
t he packet header. The MySQL client (in the ny_net_read()
function) always adds '\0' to a packet, so the nessage
may appear to be a Null-Term nated String.
Expect the nessage to be between 0 and 512 bytes | ong.

Alternative terms: field_count is also known as " Status code" or "Error Packet marker”. errno isalso
known as "Error Number" or "Error Code".

Relevant filesin MySQL source: (client) client.c net_safe read() (server) sgl/protocol.cc send_error()

Exanpl e of Error Packet

Hexadeci mal ASCl |
field_count ff
errno 1b 04
(sql state narker) 23 #
sql state 34 32 53 30 32 42502
message 55 63 6b 6e 6f 77 6e 20 Unknown
74 61 62 6¢c 6C 65 20 27 table '
71 27 q'

7.13. Result Set Header Packet

From server to client after command, if no error and result set -- that is, if the command was a query
which returned aresult set.

The Result Set Header Packet isthefirst of several, possibly many, packets that the server sends for res-
ult sets. The order of packetsfor aresult setis:

(Result Set Header Packet) the nunber of col umms

(Fi el d Packet s) col umm descriptors

(EOF Packet) mar ker: end of Field Packets

(Row Dat a Packet s) row contents

(End Packet) mar ker: end of Data Packets
Byt es Nanme

1-9 (Lengt h- Coded- Bi nary) fiel d_count
1-9 (Lengt h- Coded- Bi nary) extra

field_count: See the section "Types O Result Packets"
to see how one can distinguish the
first byte of field_count fromthe first
byte of an OK Packet, or other packet types.

extra: For exanpl e, SHOW COLUMNS uses this to send
the nunber of rows in the table.

The"extra' field is optional and never appears for ordinary result sets.

Alternative terms. a Result Set Packet is aso called "aresult packet for acommand returning rows" or
"afield description packet”.

Rel evant MySQL source code:
I'i bmysqgl /11 bnysqgl.c (client):
nysql _store_result() Read a result set fromthe server to nmenory
nysql _use_result() Read a result set row by row fromthe server.
See also nmy_net_wite() which describes |ocal data | oading.

97

MySQL Client/Server Protocol

Exanpl e of Result Set Header Packet
Hexadeci mal ASCI |

fiel d_count 03

In the example, we se what the packet would contain after "SELECT * FROM t7" if table t7 has 3
columns.

7.14. Field Packet

From Server To Client, part of Result Set Packets. One for each column in the result set. Thus, if the
value of field_columnsin the Result Set Header Packet is 3, then the Field Packet occurs 3 times.

VERSI ON 4.0

Byt es Nanme
n (Length Coded String) tabl e

n (Length Coded String) name

4 (Length Coded Binary) I ength

2 (Length Coded Binary) type

2 (Length Coded Binary) flags

1 deci mal s
n (Length Coded Binary) def aul t

VERSI ON 4. 1
Byt es Nane

n (Length Coded String) cat al og
db

(filler), always 0x00
(Lengt h Coded Binary) def aul t

n (Length Coded String)

n (Length Coded String) tabl e

n (Length Coded String) org_table
n (Length Coded String) nanme

n (Length Coded String) org_nane
1 (filler)
2 charset nr
4 I engt h

1 type

2 flags

1 deci mal s
2

n

In practice, since identifiers are almost always 250 bytes or shorter, the Length Coded Strings look like:
(1 byte for length of data) (data)

cat al og: Catal og, for version 5.0 use. The value nowis "std".
: Dat abase identifier, also known as schena nane.

tabl e: Table identifier, after AS clause (if any).

org_tabl e: Oiginal table identifier, before AS clause (if any).

name: Colum identifier, after AS clause (if any).

org_nane: Columm identifier, before AS clause (if any).

charsetnr: Char acter set nunber.

| engt h: Lengt h of columm, according to the definition.

Al so known as "display |Iength". The val ue given
here may be | arger than the actual |ength, for
exanpl e an i nstance of a VARCHAR(2) colum may
have only 1 character in it.

type: The code for the colum's data type. Al so known as
"enum field_type". The possible values at tinme of
witing (taken from include/nysql _comh), in hexadecinal:
0x00 FI ELD TYPE_DECI MAL
0x01 FI ELD_TYPE_TI NY
0x02 FI ELD TYPE_SHORT
0x03 FI ELD TYPE_LONG
0x04 Fl ELD_TYPE_FLOAT
0x05 FI ELD_TYPE_DOUBLE
0x06 FI ELD TYPE_NULL
0x07 FI ELD TYPE TI MESTAWP
0x08 FI ELD_TYPE_LONGLONG
0x09 FI ELD TYPE_ | NT24
0x0a FI ELD_TYPE_DATE
0x0b FI ELD TYPE_TI ME
0x0c FI ELD_TYPE_DATETI VE

98

MySQL Client/Server Protocol

0x0d FI ELD_TYPE_YEAR
0x0e FI ELD_TYPE NEWDATE

0x0f FI ELD_TYPE VARCHAR (new in M/SQL 5.0)
0x10 FIELD TYPE BIT (newin MySQ 5.0)

0xf6 FIELD TYPE_NEWDECI MAL (new in MYSQL 5. 0)
0xf7 FI ELD_TYPE_ENUM

0xf8 FI ELD_TYPE SET

0xf9 FI ELD_TYPE TI NY_BLOB

oxfa FI ELD_TYPE MEDI UM BLOB

Oxfb FI ELD_TYPE LONG BLOB

oxfc FIELD_TYPE BLOB

oxfd FI ELD_TYPE VAR STRI NG

Oxfe FIELD TYPE STRING

Oxff FI ELD_TYPE GEOMETRY

flags: The possible flag values at tine of
witing (taken from include/nysql _comh), in hexadeci nal
0001 NOT_NULL_FLAG
0002 PRI _KEY_FLAG
0004 UNI QUE_KEY_FLAG
0008 MULTI PLE_KEY_FLAG
0010 BLOB_FLAG
0020 UNSI GNED_FLAG
0040 ZERCFI LL_FLAG
0080 BI NARY_FLAG
0100 ENUM FLAG
0200 AUTO_ | NCREMENT_FLAG
0400 TI MESTAMP_FLAG
0800 SET_FLAG

deci mal s: The nunber of positions after the deci mal
point if the type is DECI MAL or NUVERI C
Al so known as "scal e".

defaul t: For table definitions. Doesn't occur for
normal result sets. See nysql _list_fields()

Alternative Terms: Field Packets are also called "Header Info Packets" or "field descriptor packets"
(that's a better term but it's rarely used). In non-MySQL contexts Field Packets are more commonly
known as "Result Set Metadata’.

Rel evant MySQL source code
(client) client/client.c unpack_fields().
(server) sql/sqgl _base.cc send_fields()

Exanpl e of Field Packet

Hexadeci mal ASCl |
cat al og 03 73 74 64 .std
db 03 64 62 31 .dbl
tabl e 02 54 37 .T7
org_table 02 74 37 .17
nanme 02 53 31 .S1
or g_name 02 73 31 .sl
(filler) Oc .
charset nr 08 00
| ength 01 00 00 0O
type fe
flags 00 00
deci mal s 00
(filler) 00 00

In the example, we see what the server returnsfor "SELECT s1 AS S1 FROM t7 AS T7" where column
sl isdefined as CHAR(1).

7.15. EOF Packet

From Server To Client, at the end of a series of Field Packets, and at the end of a series of Data Packets.
With prepared statements, EOF Packet can also end parameter information, which we'll describe later.

VERSI ON 4.0
Byt es Nanme

99

MySQL Client/Server Protocol

1 field_count, always = Oxfe

VERSI ON 4.1

Byt es Nanme

1 field_count, always = Oxfe

2 war ni ng_count

2 Status Fl ags

field_count: The val ue is al ways Oxfe (deci mal 254).
However ... recall (fromthe

section "El ements", above) that the value 254 can begin
a Lengt h- Encoded- Bi nary val ue whi ch contains an 8-byte
integer. So, to ensure that a packet is really an EOF
Packet: (a) check that first byte in packet = Oxfe, (b)
check that size of packet < 9.

war ni ng_count : Nunber of warnings. Sent after all data has been sent
to the client.

server_status: Contains flags |ike SERVER STATUS MORE_RESULTS.

Alternative terms; EOF Packet is also known as "L ast Data Packet" or "End Packet".

Rel evant MySQL source code:
(server) protocol.cc send_eof ()

Exanpl e of EOF Packet

Hexadeci mal ASCl |
field_count fe
war ni ng_count 00 00
server _status 00 00

7.16. Row Data Packet

From server to client. One packet for each row in the result set.

Byt es Nanme

n (Length Coded String) (columm val ue)

(col umm val ue): The data in the colum, as a character string.
If a colum is defined as non-character, the
server converts the value into a character
before sending it. Since the value is a Length
Coded String, a NULL can be represented with a
singl e byte containing 251(see the description
of Length Coded Strings in section "Elements" above).

The (column value) fields occur multiple times. All (column value) fields are in one packet. Thereisno
space between each (column value).

Alternative Terms. Row Data Packets are also called "Row Packets" or "Data Packets'.

Rel evant MySQL source code:
(client) client/client.c read_rows

Exanpl e of Row Data Packet

Hexadeci mal ASCl |
(first col um) 01 58 . X
(second col um) 02 35 35 .55

In the example, we see what the packet contains after a SELECT from atable defined as " (s1 CHAR, s2

100

MySQL Client/Server Protocol

INTEGER)" and containing one row where s1="X" and s2=55.

7.17. Row Data Packet: Binary (Tentative Description)

From server to client, or from client to server (if the client has a prepared statement, the "result set"
packet format is used for transferring parameter descriptors and parameter data).

Recall that in the description of Row Datawe said that: "If a column is defined as non-character, the
server converts the value into a character before sending it." That doesn't have to be true. If it isn't true,
it'sa Row Data Packet: Binary.

Byt es Nanme

1 Null Bit Map with first two bits = 01
n (Length Coded String) (colum val ue)

Byt es Nanme
? Packet Header
1 Nul Il Bit Map with first two bits = 01

Nul I Bit Map: The npbst significant 2 bits are reserved. Since
there is always one bit on and one bit off, this can't be
confused with the first byte of an Error Packet (255), the
first byte of a Last Data Packet (254), or the first byte of
an OK Packet (0).

(col um val ue): The columm order and organi zation are the sane as for
conventional Row Data Packets. The difference is that
each colum value is sent just as it is stored. It's now up
to the client to convert nunbers to strings if that's desirable.
For a description of colum storage, see "Physical Attributes O
Col ums" el sewhere in this docunent.

Only non-zero parameters are passed.

Because no conversion takes place, fixed-length data items are as described in the "Physical Attributes
of Columns" section: one byte for TINYINT, two bytes for FLOAT, four bytes for FLOAT, etc. Strings
will appear as packed-string-length plus string value. DATETIME, DATE and TIME will be asfollows:

Type Si ze Coment
date 1+ 0-11 Length + 2 byte year, 1 byte MVDDHHMVSS,
4 byte billionth of a second
datetime 1+ 0-11 Length + 2 byte year, 1 byte MVDDHHMVSS,
4 pbyte billionth of a second
tine 1+ 0-11 Length + sign (0 = pos, 1= neg), 4 byte days,

1 byte HHWDD, 4 byte billionth of a second

Alternative Terms: Row Data Packet: Binary isalso called "Binary result set packet”.

Except for the different way of signalling NULLSs, the server/client parameter interaction here proceeds
the say way that the server sends result set data to the client. Since the datais not sent as a string, the
length and meaning depend on the data type. The client must make appropriate conversions given its
knowledge of the data type.

7.18. Prepared Statement Initialization Packet
(Tentative Description)

From server to client, when a statement is being sent with the COM_PREPARE command.

Byt es Nanme

101

MySQL Client/Server Protocol

1 field_count

4 st at enent _handl er _i d

2 col ums

2 par anet er s

field_count: Always = 0, as with OK Packet.

statenment _handl er_id: |ID of statenment handl er.
col umms: Nunmber of columms in result set.

paraneters: Nunber of paranmeters in query.

Alternative terms. statement_handler_id is called "statement handle" or "hstmt" everywhere but at
MySQL . Prepraed statement initialization packet is also called "prepared statement init packet".

7.19. OK for Prepared Statement Initialization Packet
(Tentative Description)

From server to client, in response to prepared statement initialization packet.

Byt es Nanme

1 0 - marker for OK packet

4 stat ement _handl er _i1d

2 nunmber of colums in result set
2 nunber of paraneters in query

7.20. Parameter Packet (Tentative Description)

From server to client, for prepared statements which contain parameters.

The Parameter Packets follow a Prepared Statement Initialization Packet which has a positive value in
the parametersfield.

Byt es Name

2 type

2 flags

1 deci mal s

4 I engt h

type: Sane as for type field in a Field Packet.
flags: Sane as for flags field in a Field Packet.
deci mal s: Same as for decimals field in a Field Packet.
| engt h: Same as for length field in a Field Packet.

Notice the similarity to a Field Packet.

The parameter data will be sent in a packet with the same format as Row Data Packet: Binary.

7.21. Long Data Packet (Tentative Description)

From client to server, for long parameter values.

Byt es Nane

4 stat ement _handl er _i d
2 par anet er _nunber

2 type

n dat a

102

MySQL Client/Server Protocol

st at enent _handl er _i d: I D of statenent handl er

par anet er _nunber: Par amet er nunber.

type: Parameter data type. Not used at time of witing.
dat a: Val ue of paraneter, as a string.

The | ength of the data can be conputed from
the packet |ength

Thisisused by mysgl_send long_data() to set any parameter to a string value. One can call
mysqgl_send_long_data() multiple times for the same parameter; The server will concatenate the results
to one big string.

The server will not require an end packet for the string. mysgl_send_long_data() is responsible for up-
dating aflag that all data has been sent (that is, that the last call to mysqgl_send_long_data() has the
'last_data flag set).

The server will not send an @code{ ok} or @code{ error} packet in response to this. If thereis an error
(for example the string is too big), one will see the error when calling "execute".

Rel evant MySQL Source Code:
(server) nysqgl _send_| ong_dat a

7.22. Execute Packet (Tentative Description)

From client to server, to execute a prepared statement.

Byt es Nane

1 code

4 statenent _id

1 flags

4 iteration_count

(param count +7)/ 8 nul | _bit_map

1 new_par anet er _bound_f | ag
n type

code: al ways COM EXECUTE

statenment _id: stateneent identifier

fl ags: reserved for future use.
in \y\SQL 4.0, always 0.
used in M/SQ. 5.0 for "open cursor".

iteration_count: reserved for future use. in MySQL 4.1, always 1.

null _bit_map: A map of bits which are null / not null, one for
each paraneter. The first two bits are reserved so as to
avoi d confusion with other packet types. For exanple, if
the first paraneter (paranmeter 0) is NULL, then
the least significant bit in null_bit_nmap will be 1.

new_par anmet er _bound_f | ag: Contains 1 if this is the first tinme
that "execute" has been called, or if
the paraneter has been rebound.

type: Cccurs once for each paraneter that
is described as NOT NULL. The high
15 bits of the | ow byte-first nunber
are the type, then there is one bit which
is set to on for "unsigned'. This is not
used with nysqgl _send_| ong_dat a() .

The Execute Packet is also known as"COM_EXECUTE Packet".

In response to an Execute Packet, the server should send back one of: an OK Packet, an Error Packet, or

103

MySQL Client/Server Protocol

aseries of Result Set Packetsin which all the Row Data Packets are binary.

Relevant MySQL Source Code: libmysgl/libmysgl.c cli_read prepare result()

7.23. Compression

This chapter does not discuss compression, but you should be aware of its existence.

Compression is of one or more logical packets. The packet_number field that isin each packet header is
an aid for keeping track.

The opposite of "compressed” is"raw".

Compression is used if both client and server support zlib compression, and the client requests compres-
sion.

A compressed packet header is: packet length (3 bytes), packet number (1 byte), and Uncompressed
Packet Length (3 bytes). The Uncompressed Packet Length is the number of bytesin the original, un-
compressed packet. If thisis zero then the datais not compressed.

When the compressed protocol isin use (that is, when the client has requested it by setting the flag bit in
the Client Authentication Packet and the server has accepted it), either the client or the server may com-

press packets. However, compression will not occur if the compressed length is greater than the original

length. Thus, some packets will be compressed while other packets are not compressed.

104

Chapter 8. Prepared Statements and Stored
Routines

Let us start with ageneral description of the MySQL statement processing workflow in order to provide
the reader with understanding of the problem of reexecution and vocabulary for the following sections.

Conventional statements, that is, SQL queries sent in COM_QUERY protocol packet, are the only state-
ments present in MySQL server prior to version 4.1. Execution of such statementsis performed in a
batch mode, one query processed by the server at atime. The original implementation is streamlined for
this mode and has a single global connection state THD shared among all operational steps.

When executing a query in conventional mode, the server sequentially parsesits text, acquires table
level locks, analyzes the parsed tree, builds an execution plan, executes the built plan and releases the
locks.

Memory for parsing is allocated using block allocator MEM ROOT in 4k chunks and freed once in the
end of execution. Memory for execution is allocated in the memory root of the parsed tree, aswell asin
the system heap, and in some casesin local "memory roots" of execution modules.

Therole of the parser is to create a set of objects to represent the query. E.g. for a SELECT statement,
this set includes alist of Item'sfor SELECT list, alist of tables (TABLE_LI ST object for each table) for
FROMclause, and atree of Item's for WHERE clause.

During context analysis phase, links are established from the parsed tree to the physical objects of the
database, such as open tables and table columns. A physical tableisrepresented by a heir of class hand-
ler that corresponds to the storage engine the table belongs to, and issaved in TABLE LI ST: : fil e.

When context analysisis done, the query optimizer isrun. It performs two major tasks:

* Query transformation — a transformation of the parsed tree to an equivalent one, which is simpler
and more efficient to execute.

e Creation of an execution plan, including evaluation of an order of joins and initialization of methods
to access the used tables. At this step parts of the execution plan are attached to the parsed tree.

Finally, the query is passed to the execution runtime — an interpreter that operates with and modifies
both the parsed tree and the execution plan in order to execute the query.

It should be noted that the overall procedure is infamous for breaking borders between abstraction lay-
ers. For example, MySQL performs [sub]query transformation during context analysis, moreover, most
parts of the code rely on the fact that THD is processing only one statement at atime.

8.1. Statement Re-execution Requirements

Features of MySQL 4.1 and 5.0 put a new demand on the execution process. prepared statements and
stored routines need to reuse the same parsed tree to execute a query many times.

So far no easy mechanism that would allow query reexecution using the conventional query processing
code has been found. For instance, copying of the parsed tree before each reexecution is not smpleto
implement as a parsed tree, which can contain instances of more than 300 different classes, has alot of
cross-references between its objects.

The present solution introduces a concept of change management for the changes of the parsed tree and
islargely a unification of numerous fixes of bugs in reexecution. The solution has two aspects.

105

Prepared Statements and Stored Routines

Thefirst oneisthat modifications of the parsed tree are tracked and away to restore the tree to a state
that allows reexecution is introduced.

The second aspect isthat a dedicated block allocator (memory root) is used to store the parsed tree, and
the memory allocated in this memory root is freed only when the parsed tree is destroyed. Later this
memory root will be denoted as the permanent memory root of a statement.

In order to properly restore the parsed tree to a usable state, all modifications of the tree are classified as
destructive or non-destructive and an appropriate action is taken for every type of modification.

A non-destructive modification does not depend on actual values of prepared statement placeholders or
contents of the tables used in a query. Such modification is[and should be, for future changes] made
only once and the memory for it is alocated in the permanent memory root of the statement.

As aresult, the modified parsed tree remains usable.

Examples of non-destructive and useful modifications of the parsed tree are:

* VHERE/ON clause flattening
e NOT dimination

« LEFT JO N eimination, when it can be done based on the constants explicitly specified in the
query

Therest of modifications are destructive, generally because they are based on actual contents of tables
or placeholders.

Examples of destructive modifications are:

» Equality propagation

» Sorting of members of | Narray for quick evaluation of | N expression.

Destructive modifications are (and should be for al future changes) allocated in a memory root dedic-
ated to execution, areregistered in THD: : change_| i st and rolled back in the end of each execution.
Later the memory root dedicated to execution of a statement will be denoted as the runtime memory root
of the statement. Because allocations are done indirectly viaTHD; : mem r oot , THD: : nem r oot at
any given moment of time can point either to the permanent or to the runtime memory root of the state-
ment. Consequently, THD: : nem r oot and THD: : free_| i st can be denoted as 'currently active
arena of THD.

8.2. Preparation of a Prepared Statement

As mentioned above, THD is currently arequired argument and the runtime context for every function in
the server. Therefore, in order to call the parser and allocate memory in the statement memory root we
perform several save-restore stepswith THD: : nem r oot and THD: : free_| i st (the active arena of
THD).

1. Inorder to parse a statement, we save the currently active arena of THD and assign its members
from the permanent arena of the statement. This is achieved by calling
THD: : set _and_backup_active_arena. Thisway al | oc_query andyypar se operate
on the permanent arena.

106

Prepared Statements and Stored Routines

We don't want the garbage which is created during statement validation to be left in the permanent
arena of the statement. For that, after parse but before validation of the statement, we restore the
THD arena saved in (1). In other words, we use the arena of THD that was active when Pr e-

par ed_st at enent : : pr epar e wasinvoked as the runtime arena of the statement wheniit is
validated.

Statement validation is performed in function check_pr epar ed_st at enent () . Thisfunction
will subsequently call st _sel ect | ex _unit::prepare() andsetup_fiel ds() forthe
main LEX unit, create JO Ns for every unit, and call JO N: : pr epar e for every join (JO Ns in
MySQL represents a part of the execution plan). Our prepared statement engine does not save the
execution plan in a prepared statement for reuse, and ideally we should not create it at prepare
stage. However, currently there is no other way to validate a statement except to call

JO N:: prepar e for al its units.

During validation we may perform atransformation of the parsed tree. In a clean implementation
thiswould belong to a separate step, but in our case the mgjority of the server runtime was not re-
factored to support reexecution of statements, and a permanent transformation of the parsed tree
can happen at any moment during validation. Such transformations absolutely must use the per-
manent arena of the prepared statement. To make this arena accessible, we save a pointer to it in

t hd- >st mt _ar ena before callingcheck _prepared_st at enent.

Later, whenever we need to perform a permanent transformation, we first call
THD: : activate_stnt_arena_i f_needed to make the permanent arena active, transform
the tree, and restore the runtime arena.

Some parts of the execution do not distinguish between preparation of a prepared statement and its
execution and perform destructive optimizations of the parsed tree even during validation. These
changes of the parsed tree are recorded in THD: : change_| i st usi ng method

THD: : regi ster_itemtree_change.

After the validation is done, we rollback the changes registered in THD: : change | i st and free
new items and other memory allocated by destructive transformations.

8.3. Execution of a Prepared Statement

In order to call mysgl_execute_command (the function that executes a statement) for a prepared state-
ment and not damage its parse tree, we backup and restore the active Query arenaof THD.

We don't want the garbage created during execution to be left in the permanent arena of the state-
ment. To ensure that, every statement is executed in the runtime arena of THD. In other words, the
arenawhich was activewhennysql _stnt _execut e was called is used as the runtime arena of
the statement during its execution.

Before calling mysqgl _stnt _execut e,weal | ocat e t hd->query with parameter markers
('?) replaced with their values: the new query is allocated in the runtime arena. We'll need this query
for general, binary, error and slow logs.

The execution plan created at prepare stage is not saved (see Section 8.2, “ Preparation of a Prepared
Statement”), and at execute we simply create a new set of JOINs and then prepare and optimize it.
During the first execution of the prepared statement the server may perform non-destructive trans-
formations of statement's parsed tree: normally that would belong to a separate step executed at
statement prepare, but once again, this haven't been done in 4.1 or 5.0. Such transformations abso-
lutely must use the permanent arena of the prepared statement (saved int hd- >st nt _ar ena).
Whenever we need to perform a permanent transformation, we first call

THD: : activate_stnmt _arena_ if_needed to make the permanent arena active, transform
the tree, and restore the runtime arena. To avoid double transformations in such cases, we track cur-

107

Prepared Statements and Stored Routines

rent state of the parsed treein Query_ar ena: : st at e.

This state may be one of the following:

e | NI TI ALI ZED— we'rein statement PREPARE.

« | NI TIALI ZED FOR_SP— we'rein first execution of a stored procedure statement.
« PREPARED — we'rein first execution of a prepared statement.

* EXECUTED — we'rein a subsequent execution of a prepared statement or a stored procedure
Statement.

e CONVENTI ONAL_EXECUTI ON— we're executing a pre-4.1 query.

One can use helper methods of Quer y_ar ena to check this state
(is_conventional execution(),is_stm prepare(),is_stnt_execute(),
is_stnt _prepare_or _first_sp_execute()).

Additionally, st _sel ect | ex_unit::first_executi on containsaflag for the state of
each subquery in a complex statement. A separate variable is needed because not all subqueries may
get executed during the first execution of a statement.

» Some optimizations damage the parsed tree, e.g. replace leafs and subtrees of items with other items
or leave item objects cluttered with runtime data. To allow re-execution of a prepared statement the
following mechanisms are currently employed:

1. Ahierarchyof It em : cl eanup() andst _sel ect _| ex:: cl eanup() methodsto re-
store the parsed tree to the condition of right-after-parse. These cleanups are called in Pr e-
pared_statenent::cleanup_stnt () after the statement has been executed.

2. Inorder to roll back destructive transformations of the parsed tree, every replacement of one
item with another isregistered in THD: : change_I i st by using
THD: : change_item tree().Intheend of execution all such changes are rolled back in
reverse order.

Example:

if (1(fld= new Itemfield(fromfield)))
goto error;
thd->change_item tree(reference, fld);

If atransformation is anon-destructive, it should not be registered, but performed only oncein
the permanent memory root. Additionally, be careful to not supply a pointer to stack asthefirst
argument of change_i t em tree() ; that will lead to stack corruption when atreeisre-
stored.

3. AND/OR subtrees of VVHERE and ON clauses are created anew for each execution. It was easier
to implement in 4.1, and the approach with change record list used in (b) could not have been
used for AND/OR transformations, because these transformations not only replace one item with
another, but also can remove a complete subtree. Leafs of AND/OR subtrees are not copied by
this mechanism because currently they are not damaged by the transformation. For details, see
Item : copy_andor_structure().

4. No other mechanism exists in the server at the moment to allow re-execution. If the code that
you're adding transforms the parsed tree, you must use one of the mechanisms described above,
or propose and implement a better approach.

* When execution is done, we rollback the damage of the parsed tree.

108

Prepared Statements and Stored Routines

8.4. Execution of a Stored Procedure Statement

Execution of a stored procedure statement is similar to execution of a prepared statement. The few exist-
ing exceptions are described below.

During execution of a stored procedure, THD: : st nt _ar ena points to the permanent query arena of
the stored procedure. This arena happens to be also the permanent query arena of every instruction of the
procedure, as the parser creates al instructions in the same arena. More generally,

THD: : st nt _ar ena isaways set and always points to the permanent arena of a statement. If the
statement is a conventional query, then the permanent arena simply points to the runtime arena of the

query.

An own runtime memory root is set up for execution of every stored procedure statement and freed in
the end of execution. Thisis anecessary measure to avoid memory leaks if a stored procedure statement
is executed in aloop.

With regard to the transformations and restoration of the parsed tree, execution of a stored procedure
statement follows the path of execution of a prepared statement, with the exception that there is no sep-
arate preparestep. THD: :is_first _sp _execute() isusedtodetermine whether it'sthefirst exe-
cution, and in this case non-destructive permanent transformations of the parsed tree are made in the
permanent memory root of the statement that is currently being executed.

During subseguent executions no non-destructive transformations are performed, while all destructive
ones are rolled back in the end of execution using the same algorithm asin prepared statements.

109

Chapter 9. Replication

This chapter describes MySQL replication principles and code, asitisin version 4.1.1.

MySQL replication works like this: Every time the master executes a query that updates data (UPDATE,
| NSERT, DELETE, etc.), it packs this query into an event, which consists of the query plus afew bytes
of information (timestamp, thread id of the thread which issued the query etc., defined later in this
chapter). Then the master writes this event to afile (the “binary 1og”). When the slave is connected, the
master re-reads its binary log and sends the events to the slaves. The slave unpacks the event and ex-

ecutes the query.

9.1. Main Code Files

Thesefileareall inthesql directory:

| 0g. cc: creating/writing/deleting a binlog.

sl ave. *: dl the dave threads' code.

| og_event . *: al event types and their methods.

sql _repl . *:al SQL commands related to replication (START SLAVE, CHANGE MASTER

TO). Also al the master's high-level code about replication (binlog sending, ak.a
COM BI NLOG_DUMP). For example, binlog sending codeisinsql _repl . cc, but useslow-level
commands (single event reading) which arein| og_event . cc.

repl _fail safe. *: unfinished code about failsafe (master election if the primary master fails).

Thisfilewill probably be heavily reworked. Presently it's almost unused.

9.2. The Binary Log

When started with - - | 0g- bi n, mysql d createsabinary log (“binlog”) of all updates. Only updates
that really change the data are written (a DELETE issued on an empty table won't be written to the bin-
ary log). Every query iswritten in a packed form: an event. The binary log is a sequence of events. The
nysql bi nl og utility can be used to print human-readable data from the binary log.

[gui | hem@bi chot2 1] $ nysql bi nl og gbi chot 2- bi n. 005

at 4

#030710 21:55:35 server id 1
at 79

#030710 21:55:59 server id 1
SET TI MESTAMP=1057866959
drop dat abase test;

at 128

#030710 21:56:20 server id 1
SET Tl MESTAMP=1057866980
creat e database test

at 179

#030710 21:57:00 server id 1
use test;

SET TI MESTAMP=1057867020
create table u(a int primary key, b int,
at 295

#030710 21:57:19 server id 1
SET TI MESTAMP=1057867039
drop table u

at 342

#030710 21:57:24 server id 1
SET TI MESTAMP=1057867044
create table u(a int primary key, b int,
at 470

| og_pos 4
| og_pos 79

| og_pos 128

| og_pos 179

| og_pos 295

| og_pos 342

key(b),

key(b),

Start: binlog v 3, server v 4.0.14-debug-10g created 0:
Query thread_i d=2 exec_time=16 error_code=0
Query thread_i d=2 exec_tinme=0 error_code=0
Query thread_i d=2 exec_tinme=1 error_code=0
foreign key (b) references u(a))

Query thread_i d=2 exec_tinme=0 error_code=0
Query thread_i d=2 exec_time=0 error_code=0
foreign key (b) references u(a)) type=i nnodb

110

Replicat

ion

#030710 21:57:52 server id 1
SET Tl MESTAMP=1057867072
insert into u val ues(4, NULL)
at 533

#030710 21:57:59 server id 1
SET Tl MESTAMP=1057867079
insert into u val ues(3,4)

at 593

#030710 21:58:34 server id 1
SET Tl MESTAMP=1057867114

del ete from u;

at 641

#030710 21:58:57 server id 1
SET Tl MESTAMP=1057867137
drop table u

at 688

#030710 21:59:18 server id 1
SET Tl MESTAMP=1057867158

l'og_

|l og_|

l'og_

log_

log_

pos 470

pos 533

pos 593

641

pos

pos 688

create table v(c int primary key) type=i nnodb

at 768

#030710 21:59: 24 server id 1
SET TI MESTAMP=1057867164
create table u(a int primry key,
at 896

#030710 21:59:47 server id 1 |og_|
SET TI MESTAMP=1057867187

DROP TABLE | F EXI STS u

at 953

#030710 21:59:47 server id 1 1og_

SET TI MESTAMP=1057867187
CREATE TABLE u (
a int(11) NOT NULL default 'O0',
b int(11) default NULL,
PRI MARY KEY (a),
KEY b (b)

CONSTRAI NT "0_41" FOREI GN KEY (°

) TYPE=I hnoDB
at 1170

#030710 21:59:47 server id 1 |og_
SET TI MESTAMP=1057867187

DROP TABLE | F EXI STS v;

at 1227

#030710 21:59:47 server id 1 1log_

SET TI MESTAMP=1057867187

CREATE TABLE v (
c int(11) NOT NULL default 'O
PRI MARY KEY (c)

) TYPE=I nnoDB

at 1345

#030710 22:00: 06 server id 1 1og_
SET TI MESTAMP=1057867206

drop table u,v;

at 1394

#030710 22:00: 29 server id 1 |og_

SET TI MESTAMP=1057867229

log_

pos 768
b int,
pos 896

pos 953

key(b),

Query

Query

Query

Query

Query

Query

foreign key (b)

Query

Query

b)) REFERENCES "v°

pos 117

pos 122

pos 134

pos 139

0

7

5

4

create table v(c int primary key) type=i nnodb

at 1474
#030710 22:00:32 server id 1
SET TI MESTAMP=1057867232
create table u(a int primry key,
at 1602
#030710 22:00: 44 server id 1
SET TI MESTAMP=1057867244
drop table v, u;
at 1651
#030710 22: 00:51 server id 1
SET Tl MESTAMP=1057867251
CREATE TABLE v (
c int(11) NOT NULL default 'O
PRI MARY KEY (c)
) TYPE=| nnoDB
at 1769

#030710 22:12:50 server id 1

Here are the possible types of events:

enum Log_event _t ype

b int,

| og_pos 1474

key(b),

| og_pos 1602

| og_pos 1651

| og_pos 1769

Query

Query

Query

Query

Query

foreign key (b)

Query

Query

St op

t hread_i d=2

thread_i d=2

thread_i d=4

thread_i d=4

thread_i d=4

thread_i d=4

thread_i d=8

thread_i d=8

("c’)

thread_i d=8

thread_i d=8

thread_i d=9

thread_i d=13

thread_i d=13

thread_i d=16

thread_i d=16

exec_tine=0

exec_time=0

exec_tine=0

exec_time=0

exec_time=0

exec_tinme=0

references v(c)) type=

exec_tinme=0

exec_tinme=0

exec_tine=0

exec_tinme=0

exec_tinme=0

exec_tine=0

exec_tinme=0

references v(c)) type=

exec_time=0

exec_tinme=0

111

error_code=0

error_code=0

error_code=0

error_code=0

error_code=0

error_code=0

nnodb;

error_code=0

error_code=0

error_code=0

error_code=0

error_code=0

error_code=0

error_code=0

nnodb;

error_code=0

error_code=0

Replication

START_EVENT = 1, QUERY_EVENT =2, STOP_EVENT=3, ROTATE_EVENT = 4,

I NTVAR_EVENT=5, LOAD EVENT=6, SLAVE EVENT=7, CREATE FILE_EVENT=8,

APPEND_BLOCK_EVENT=9, EXEC LOAD EVENT=10, DELETE FILE_EVENT=11,
: NEW LOAD_EVENT=12, RAND EVENT=13, USER VAR EVENT=14

enum | nt _event _t ype

{
I NVALI D_| NT_EVENT = 0, LAST |NSERT_|D EVENT = 1, |NSERT_|D _EVENT = 2

 START_EVENT
Written when mysql d starts.
« STOP_EVENT
Written when mysql d stops.
* QUERY_EVENT
Written when an updating query is done.
» ROTATE_EVENT
Written when mysql d switchesto a new binary log (because someone issued FLUSH LOGS or the
current binary log's size becomes too large. The maximum size is determined as described in Sec-
tion 9.3.1, “The Slave I/O Thread”.
« CREATE_FI LE_EVENT
Written when aLOAD DATA | NFI LE statement starts.
« APPEND_BLOCK_EVENT
Written for each loaded block.
« DELETE_FI LE_EVENT
Written if the load finally failed
« EXECUTE_LOAD EVENT
Written if the load finally succeeded.
 SLAVE_EVENT
Not used yet.
« | NTVAR EVENT, RAND EVENT, USER VAR EVENT
Written every time aquery or LOAD DATA used them. They are written together with the
QUERY_EVENT or the events written by the LOAD DATA | NFI LE. | NTVAR _EVENT isin fact
two types: | NSERT | D_EVENT and LAST | NSERT | D_EVENT.
« | NSERT_| D_EVENT

Used to tell the slave the value that should be used for anaut o_i ncr enent column for the next
query.

e LAST_I NSERT_| D_EVENT

112

Replication

Used to tell the slave the value that should be used for the LAST | NSERT | D() function if the
next query usesit.

 RAND EVENT
Used to tell the slave the value it should use for the RAND() function if the next query usesit.
» USER VAR EVENT

Used to tell the slave the value it should use for a user variable if the next query usesit.

The event'sformat is described in detail in Section 9.7, “ Replication Event Format in Detail”.

Thereisa C++ classfor every type of event (cl ass Query | og_event etc). Prototypesarein
sql /1 og_event . h. Code for methods of these classesisin| og_event . cc. Codeto create, write,
rotate, or delete abinary logisinl og. cc.

9.3. Replication Threads

Every timereplication is started on the lave nysql d, i.e. when nysql d is started with some replica-
tion options (- - mast er - host =t hi s_host nane etc.) or someexistingmast er. i nfoandr e-

I ay- I 0og. i nf o files, or when the user does START SLAVE on the slave, two threads are created on
thedave, insl ave. cc:

extern "C' pthread_handl er _decl (handl e_sl ave_i o, ar g)

extern "C' pthread_handl er_decl (handl e_sl ave_sql , ar g)

9.3.1. The Slave I/O Thread

The I/O thread connects to the master using a user/password. When it has managed to connect, it asks
the master for its binary logs:

thd->proc_i nfo = "Requesting binlog dunp";
if (request_dunp(nysqgl, m, &suppress_warnings))
Then it enters this loop:

\{A/ni le (!'io_slave killed(thd, m))

<cut >

thd->proc_i nfo = "Readi ng naster update”;

ul ong event | en = read_event (nysqgl, m, &suppress_warni ngs);
<cut >

t hd- >proc_i nfo = "Queuei ng event from naster";

if (queue_event(m, (const char*)nysql->net.read_pos + 1,
event _| en))
{

sqgl _print_error("Slave |/ O thread coul d not queue event
frommaster");

goto err;
}
flush_master_info(m);
if (m->rli.log_space_|limt & mi->rli.log_space_linmt <
m->rli.|log_space_total &&
I'm->rli.ignore_|l og_space_limt)

if (wait_for_relay_ | og_space(&m->rli))

{

sql _print_error("Slave 1/0O thread aborted while
wai ting for relay | og space");

goto err;

113

Replication

<cut >

read_event () cadlsnet safe_read() toreadwhat the master has sent over the network.
gueue_event () writesthe read event to the relay log, and also updates the counter which keeps track
of the space used by all existingrelay logs. f | ush_mast er _i nf o() writestothemast er.info
file the new position up to which the thread has read in the master's binlog. Finally, if relay logs take too
much space, the 1/O thread blocks until the SQL thread signalsit's okay to read and queue more events.
The <cut > code handles network failures and reconnections.

When the relay log getstoo large, it is “rotated”: The I/O thread stops writing to it, closesit, opens a
new relay log and writes to the new one. The old oneis kept, until the SQL thread (see below) has fin-
ished executing it, then it is deleted. The meaning of “too large” is determined as follows:

e max_relay log size,ifmax_relay |og _size>0

« max_binlog_size,ifmax_rel ay_| og_si ze =0or MySQL isolder than 4.0.14

9.3.2. The Slave SQL Thread

while (!sql_slave_Killed(thd, rli))

thd->proc_info = "Processing master |og event";
DBUG ASSERT(rli->sqgl _thd == thd);
THD_CHECK_SENTRY(t hd) ;

if (exec_relay_log_event(thd,rli))

/! do not scare the user if SQ. thread was sinply killed or stopped
if (!sql_slave killed(thd,rli))
sql _print_error("Error running query, slave SQL thread

aborted. Fix the problem and restart

the slave SQL thread with "SLAVE START".

We stopped at log '%' position %",

RPL_LOG NAME, IIstr(rli->naster_|log_pos, |Ilbuff));
goto err;

exec_relay | og event () readsanevent fromtherelay log (by callingnext event ()).

next _event () will start reading the next relay log file if the current oneis finished; it will also wait
if there isno more relay log to read (because the 1/0O thread is stopped or the master has nothing more to
send tothe dlave). Finally exec_rel ay_| og_event () executestheread event (all

;. exec_event () methodsinl og_event . cc) (mostly this execution goes through

sql _par se. cc), thus updating the slave database and writingtor el ay- | og. i nf o the new posi-
tion up to which it has executed in therelay log. The: : exec_event () methodsin| og_event. cc
will take care of filter optionsliker epl i cat e- do-t abl e and such.

When the SQL thread hits the end of the relay log, it checks whether a new one exists (that is, whether a
rotation has occurred). If so, it deletes the already-read relay log and starts reading the new one. Other-
wise, it just waits until there's more datain the relay log.

9.3.3. Why 2 Threads?

In MySQL 3.23, we had only one thread on the slave, which did the whole job: read one event from the
connection to the master, executed it, read another event, executed it, etc.

In MySQL 4.0.2 we split the job into two threads, using arelay log file to exchange between them.

This makes code more complicated. We have to deal with the relay log being written at the end, read at

114

Replication

another position, at the same time. Plus handling the detection of EOF on the relay 1og, switching to the
new relay log. Also the SQL thread must do different reads, depending on whether therelay log it is
reading

* isheing written to by the I/O thread; then the relay log is partly in memory, not all on disk, and mu-
texes are needed to avoid confusion between threads.

» hasalready been rotated (the 1/0 thread is not writing to it anymore), in which case it isanormal file
that no other threads touches.

The advantages of having 2 threads instead of one:

» Helpshaving a more up-to-date slave. Reading a query isfast, executing it is slow. If the master
dies (burns), there are good chances that the 1/O thread has caught almost all updates issued on the
master, and saved them in the relay log, for use by the SQL thread.

* Reducestherequired master-slave connection time. If the slave has not been connected for along
time, it isvery late compared to the master. It means the SQL thread will have alot of executing to
do. So with the single-thread read-execute-read-execute technique, the slave will have to be connec-
ted for along time to be able to fetch all updates from the master. Which is stupid, as for a signific-
ant part of the time, the connection will be idle, because the single thread is busy executing the
query. Whereas with 2 threads, the 1/0 thread will fetch the binlogs from the master in a shorter
time. Then the connection is not needed anymore, and the SQL thread can continue executing the re-

lay log.

9.3.4. The Bi nl og Dunp Thread

Thisthread is created by the master when it receivesa COM Bl NLOG_DUNP request.

voi d nysql _bi nl og_send(THD* thd, char* |og_ident, ny_off_t pos,
ushort flags)
{

<cut >
if ((file=open_binlog(& og, log file_nanme, &errmsg)) < 0)

ny_errno= ER MASTER FATAL_ERROR READI NG Bl NLOG
gOt 0o err;

if (pos < BIN LOG HEADER SI ZE || pos > ny_b_filel ength(& og))

errnmeg= "Cient requested master to start replication from
i npossi bl e position";

ny_errno= ER_ MASTER FATAL_ERROR READI NG Bl NLOG,

goto err;

nmy_b_seek(& og, pos); /'l Seek will done on next read

<cut >

/1l if we are at the start of the |og

if (pos == BIN_LOG HEADER SI ZE)
/1
i f
{

tell the client log nane with a fake rotate_event
(fake_rotate_event(net, packet, log_file_nane, &errnsg))

ny_errno= ER MASTER FATAL_ERROR READI NG Bl NLOG;
gOt 0O err,

<cut >

while (!net->error && net->vio != 0 && !thd->kill ed)
pthread_rmutex_t *log_l ock = nmysql _bin_| og. get_|og_Il ock();

115

Replication

while (!(error = Log_event::read_| og_event (& og, packet, |og_Il ock)))

<cut >
i{f (nmy_net_write(net, (char*)packet->ptr(), packet->length()))

errnsg = "Failed on nmy_net_wite()";
my_errno= ER_UNKNOMN_ERROR;
goto err;

<cut >

If this thread starts reading from the beginning of abinlog, it is possible that the slave does not know the
binlog's name (for example it could have just asked “give me the FIRST binlog”). Using

fake rotate_event (), themaster tellsthe dave the binlog's name (required for mast er . i nf o
and SHOW SLAVE STATUS) by buildingaRot at e | og_event and sending this event to the dave.
In this event the lave will find the binlog's name. This event has zeros in the timestamp (shows up as
written in year “1970" when reading the relay log with mysqgl bi nl 0g).

9.4. How Replication Deals With...

This section describes how replication handles various problematic issues.

9.4.1. aut o_i ncrenent Columns, LAST | NSERT | X))

When a query inserts into such a column, or usesLAST | NSERT _| () , oneor two | n-
tvar | og_event arewrittento the binlog just beforethe Query | og_event.

9.4.2. User Variables (Since 4.1)

When aquery usesauser variable, aUser _var | og_event iswritten to the binlog just before the
Query_ | og_event.

9.4.3. System Variables

Example: SQL_MODE, FOREI GN_KEY_CHECKS. Not dealt with. Guilhem isworking on it for version
5.0.

9.4.4. Some Functions

USER(), LOAD FI LE() . Not dealt with. Will be solved with row-level binlogging (presently we have
query-level binlogging, but in the future we plan to support row-level binlogging too).

9.4.5. Non-repeatable UDF Functions

“Non repeatable” means that they have a sort of randomness, for example they depend on the machine
(to generate aunique ID for example). Not dealt with. Will be solved with row-level binlogging.

9.4.6. Prepared Statements

For the moment, a substituted normal query iswritten to the master's binlog. Using prepared statements
on the slave aswell ison the TODO.

9.4.7. Temporary Tables

Temporary tables depend on the thread which created them, so any query event which uses such tablesis
marked with the LOG_EVENT _THREAD SPECI FI C_F flag. All events have in their header the id of

116

Replication

the thread which created them, so the slave knows which temporary table the query refersto.

When the slaveis stopped (STOP SLAVE or even mysql adni n shut down), the in-use replicated
temporary tables are not dropped (like clients temporary tables are). This way, when the slave restarts
they are still available.

When a connection using temporary tables terminates on the master, the master automatically writes
some DROP TEMPORARY TABLE statements for them so that they are dropped on the slave as well.

When the master brutally dies, then restarts, it drops all temporary tableswhich remained int npdi r,
but without writing it to the binlog, so these temporary tables are till on the slave, and they will not be
dropped before the next dave'snysql d restart. To avoid this, the slave drops al replicated temporary
tableswhen it executesa St art _| og_event read from the master. Indeed such an event means the
master'smysql d hasrestarted so all preceding temporary tables have been dropped.

Presently we have abug: if the dave mysql d is stopped while it was replicating a temporary table, then
at restart it deletes thistable (like anormal temporary table), which may cause a problem if subsequent
gueries on the master refer to thistable.

9.4.8. LOAD DATA [LOCAL] | NFI LE (Since 4.0)

The master writes the loaded file to the binlog, but in small blocks rather than al at once. The slave cre-
ates atemporary file, the concatenation of each block. When the slave reads the final Ex-

ecute_| oad_| og_event, it loadsall temporary filesinto the table and deletes the temporary files.
If thefinal event wasinstead aDel ete_fil e | og_event thenthesetemporary files are deleted
without loading.

9.5. How a Slave Asks Its Master to Send Its Binary
Log

The dlave server must open anormal connection to its master. The MySQL account used to connect to
the master must have the REPLI CATI ON SLAVE privilege on the master. Then the slave must send the
COM_BI NLOG_DUMP command, as in this example taken from function r equest _dunp() :

static int request_dunp(MYSQL* nysql, MASTER | NFO* mi,
bool *suppress_war ni ngs)
{

char buf[FN_REFLEN + 10];

int |en;

int binlog flags = 0; // for now
char* | ogname = m - >nmast er_| og_nane;
DBUG _ENTER("request _dunp");

/] TODO if big log files: Change next to int8store()

i nt4store(buf, (longlong) m ->naster_| og_pos);

i nt 2store(buf + 4, binlog_flags);

int4store(buf + 6, server_id);

len = (uint) strlen(lognane);

mencpy(buf + 10, |ognane, | en);

if (sinple_command(nysql, COM BI NLOG DUWP, buf, len + 10, 1))

// act on errors

Here variable buf contains the arguments for COM Bl NLOG_DUNVP. It's the concatenation of:

» 4 bytes: the position in the master's binlog from which we want to start (i.e. “ please master, send me
the binlog, starting from this position™).

e 2 bytes: 0 for the moment.

117

Replication

* 4 bytes: thisslave's server id. Thisis used by the master to delete old Bi nl og Dunp threads which
were related to this slave (see function ki | | _zonbi e_dunp_t hr eads() for details).

e variable-sized part: the name of the hinlog we want. The dump will start from this binlog, at the pos-
ition indicated in the first four bytes.

Then send the command, and start reading the incoming packets from the master, liker ead_event ()
does (usingnet _safe read() likeexplained below). One should also, to be safe, handle all possible
cases of network problems, disconnections/reconnections, malformed events.

9.6. Network Packets in Detall

The communication protocol between the master and slave is the one that all other normal connections
use, as described earlier in this document. See Chapter 7, MySQL Client/Server Protocol. So after the
COM Bl NLOG_DUMP command has been sent, the communication between the master and slaveisa se-
guence of packets, each of which containsan event. Insl ave. cc, functionr ead_event (), one has
anexample: net _saf e _read() iscaled; it isableto detect wrong packets. After

net safe_read(),theeventisready to beinterpreted; it starts at pointer (char *) nysql -
>net.read_pos + 1.Thatis (char*) nysql->net.read_pos + 1 isthefirstbyte of the
event's timestamp, etc.

9.7. Replication Event Format in Detalil
9.7.1. The Common Header

Each event starts with aheader of size LOG_EVENT_HEADER LEN=19 (definedinl og_event . h),
which contains:

* timestamp
4 bytes, seconds since 1970.
* event type

1 byte. 1 means START _EVENT, 2 means QUERY _EVENT, etc (these numbers are defined in an
enum Log_event typeinl og_event. h).

e server ID

4 bytes. The server ID of the mysql d which created this event. When using circular replication
(with option - - | og- sl ave- updat es on), we use this server 1D to avoid endless loops. Suppose
tthat M1, M2, and M3 have server ID values of 1, 2, and 3, and that they are replicating in circular
fashion: M1 isthe master for M2, M2 is the master for M3, and M3 is that master for M1. The mas-
ter/server relationships ook like this:

M- - - - >M2

A client sends an | NSERT query to M1. Then thisis executed on M1, then written in the binary log
of M1, and the event's server ID is 1. The event is sent to M2, which executes it and writesit to the
binary log of M2; the event written still has server ID 1 (because that isthe ID of the server that ori-
ginally created the event). The event is sent to M3, which executes it and writesit to the binary log
of M3, with server ID 1. Thislast event is sent to M1, which sees “server ID = 1" and understands

118

Replication

this event comes from itself, so hasto be ignored.
event total size

4 bytes. Size of this event in bytes. Most events are 10-1000 bytes, except when using LOAD DATA
I NFI LE (where events contain the loaded file, so they can be big).

position of the event in the binary log

4 bytes. Offset in bytes of the event in the binary log, asreturned by t el | () . It isthe offset in the
binary log wherethisevent wascreatedi n the first place.Thatis,itiscopied as-istothe
relay log. It isused on the slave, for SHOW SLAVE STATUS to be able to show coordinates of the
last executed event in the master's coor dinate system. If this value were not stored in the event, we
could not know these coordinates because the slave cannot invoket el | () for the master's binary
log.

flags

2 bytes of flags. Almost unused for now. The only onewhichisusedin4.1is
LOG_EVENT_THREAD_SPECI FI C_F, whichisused only by mysql bi nl og (not by the replica-
tion code at al) to be able to deal properly with temporary tables. nysql bi nl og prints queries
from the binary log, so that one can feed these queriesinto mysql (the command-line interpreter),
to achieve incremental backup recovery. But if the binary log looks like this:

<thread id 1>
create tenporary table t(a int);
<thread id 2>
create tenporary table t(a int)

(two simultaneous threads used temporary tables with the same name, which is allowed as temporary
tables are visible only in the thread which created them), then simply feeding thisinto mysql will
lead to the “table t already exists’ error. Thisis why events which use temporary tables are marked
with the flag, so that mysql bi nl og knowsit has to set the pseudo_thread id before, like this:

SET PSEUDO _THREAD | D=1;
create tenporary table t(a int);
SET PSEUDO THREAD | D=2;
create tenporary table t(a int);

Thisway thereis no confusion for the server which receives these queries. Always printing SET
PSEUDO THREAD | D, even when temporary tables are not used, would cause no bug, it would just
slow down.

9.7.2. The “Post-headers” (Event-specific Headers)

After the common header, each event has an event-specific header of fixed size (O or more bytes) and a
variable-sized part (0 or more bytes). It's easy for the slave to know the size of the variable-sized part: it
isthe event's size (contained in the common header) minus the size of the common header, minus the
size of the event-specific header.

START_EVENT

In MySQL 4.0 and 4.1, such events are written only for the first binary log since nysql d startup.
Binlogs created afterwards (by FLUSH LOGS) do not contain this event. In MySQL 5.0 we will
change this; all binary logswill start with a START EVENT, but there will be away to distinguish
between a START EVENT created at mysql d startup and other START _EVENTS; such distinction
is needed because the first category of START_EVENT, which means the master has started, should

119

Replication

trigger some cleaning tasks on the slave (suppose the master died brutally and restarted: the dlave
must delete old replicated temporary tables).

2 bytes: The binary log format version. Thisis 3in MySQL 4.0 and 4.1; it will be 4 in MySQL
5.0.

50 bytes: The MySQL server's version (example: 4.0.14-debug-log).

4 bytes: Timestamp in seconds when this event was created (this is the moment when the binary
log was created). In fact thisis useless information as we already have the timestamp in the com-
mon header, so this useless timestamp should NOT be used, because we plan to change its mean-
ing soon.

No variable-sized part.

QUERY_EVENT

4 bytes: Thethread ID of the thread that issued this query. Needed for temporary tables. Thisis
also useful for aDBA for knowing who did what on the master.

4 bytes: The time in seconds which the query took for execution. Only useful for inspection by
the DBA.

1 byte: The length of the name of the database which was the default database when the query
was executed (later in the event we store this name; thisis necessary for querieslike | NSERT

I NTO t VALUES(1) which don't specify the database, relying on the default database previ-
ously selected by USE).

2 bytes: The error code which the query got on the master. Error codes are defined ini n-

cl ude/ nysql d_error. h.0meansno error. How come queries with a non-zero error code
can exist in the binary log? Thisis mainly due to the non-transactional nature of Myl SAMtables.
If an | NSERT SELECT fails after inserting 1000 rows (for example, with a duplicate-key viola-
tion), then we have to write this query to the binary log, because it truly modified the My | SAM
table. For transactional tables, there should be no event with a non-zero error code (though it can
happen, for example if the connection was interrupted (Control-C)). The slave checks the error
code: After executing the query itself, it compares the error code it got with the error code in the
event, and if they are different it stopsreplicating (unless - - sl ave- ski p- er r or s was used).

Variable-sized part: The concatenation of the name of the default database (null-terminated) and
the query. The slave knows the size of the name of the default database (it's in the event-specific
header) so by subtraction it can know the size of the query.

STOP_EVENT

No event-specific header, no variable-sized part. It just means “ Stop” and the event's type saysit all.
Thisevent is purely for informational purposes, it is not even queued into the relay log.

ROTATE_EVENT

This event isinformation for the slave to know the name of the next binary log it is going to receive.

8 bytes: Useless, alway contains the number 4 (meaning the next event starts at position 4 in the
next binary log).

variable-sized part: The name of the next binary log.

I NTVAR_EVENT

8 bytes: the value to be used for theaut o_i ncr enent counter or LAST | NSERT | D().8

120

Replication

bytes corresponds to the size of MySQL's Bl G| NT type.
* Novariable-sized part.
LOAD_EVENT

Thisisan event for interna use. One should only need to be able to read CREATE_FI LE_EVENT
(see below).

SLAVE_EVENT

This event is never written so it cannot exist in abinlog. It was meant for failsafe replication which
will be reworked.

CREATE_FI LE_EVENT

LOAD DATA | NFI LE isnot written to the binlog like other queries; it iswritten in the form of a
CREATE_FI LE_EVENT; the command does not appear in clear-text in the binlog, it's in a packed
format. This event tells the slave to create atemporary file and fill it with afirst data block. Later,
zero or more APPEND_BLOCK EVENT events append blocks to this temporary file. EX-

EC LOAD EVENT tellsthe daveto load the temporary fileinto the table, or DE-

LETE FI LE_EVENT tellsthe slave not to do the load and to delete the temporary file. DE-
LETE FI LE _EVENT occursiswhen the LOAD DATA failed on the master: on the master we start
to write loaded blocks to the binlog before the end of the command. If for some reason there is an er-
ror, we have to tell the slave to abort the load. The format for this event is more complicated than for
others, because the command has many options. Unlike other events, fixed headers and variable-
sized parts are intermixed; thisis due to the history of the LOAD DATA | NFI LE command.

e 4bytes: Thethread ID of the thread that issued thisLOAD DATA | NFI LE. Needed for tempor-
ary tables. Thisisalso useful for aDBA for knowing who did what on the master.

e 4 bytes: Thetimein seconds which the LOAD DATA | NFI LE took for execution. Only useful
for inspection by the DBA.

e 4 bytes: The number of linesto skip at the beginning of the file (option | GNORE nunber
LI NES of LOAD DATA | NFI LE).

« 1 byte: The size of the name of the table which is to be loaded.
< 1 byte: The size of the name of the database where thistableis.

* 4 bytes: The number of columnsto be loaded (option (col _nane, . . .)). Will be non-zero
only if the columns to load were explicitly mentioned in the command.

e 4dbytes: AnID for thisfile (1, 2, 3, etc). Thisis necessary in case several LOAD DATA | NFI LE
commands have been run in parallel on the master: in that case the binlog contains events for the
first command and for the second command intermixed; the ID is used to resolve to which file

the blocksin APPEND_BLOCK_EVENT must be appended, and which file must be loaded by the
EXEC_LOAD_EVENT event, and which file must be deleted by the DELETE_FI LE_EVENT.

e 1byte: The size of thefield-terminating string (FI ELDS TERM NATED BY option).
e variable-sized part: The field-terminating string (null-terminated).
* 1byte: The size of thefield-enclosing string (FI ELDS ENCLOSED BY option).

e variable-sized part: The field-enclosing string (null-terminated).

121

Replication

* 1 byte: The size of the line-terminating string (LI NES TERM NATED BY option).
e variable-sized part: The line-terminating string (null-terminated).

e 1hbyte: The size of the line-starting string (LI NES STARTI NG BY option).

e variable-sized part: The line-starting string (null-terminated).

* 1 byte: The size of the escaping string (FI ELDS ESCAPED BY option).

e variable-sized part: The escaping string (null-terminated).

e 1byte Flags: OPT_ENCLOSED FLAG(FI ELD OPTI ONALLY ENCLOSED BY option), RE-
PLACE_FLAG(LOAD DATA | NFI LE REPLACE), | GNORE_FLAG(LOAD DATA | NFI LE
| GNORE), DUMPFI LE_FLAG (unused). All theseare defined inl og_event . h.

e 1 byte: The size of the name of the first column to |oad.

s egtc

e 1 byte: The size of the name of the last column to load.

e Variable-sized part: The name of the first column to load (null-terminated).

* €fc

* Variable-sized part: The name of the last column to load (null-terminated).

* Variable-sized part: The name of the table which isto be loaded (null-terminated).

e Variable-sized part: The name of the database containing the table (null-terminated).

* Variable-sized part: The name of the file which was loaded (that's the original name, from the
master) (null-terminated).

e Variable-sized part: The block of raw datato load.

Here is a concrete example:

On the master we have file '/mtnp/u.txt' which contains:
>1,2,3

>4,5,6

>7,8,9

>10, 11, 12

And we issue this command on the master:

load data infile "/mtnp/u.txt' replace into table x fields
term nated by ',' optionally enclosed by '""' escaped by '\\
lines starting by '>' terminated by '\n" ignore 2 lines (a,b,c);

Then in the master's binlog we have this event (hexadeci nal dunp)
00000180: db4f 153f 0801 0000 072 ...
00000190: 006f 0000 0088 0100 0000 0004 0000 0000 .0..............
000001a0: 0000 0002 0000 0001 0403 0000 0003 0000

000001b0: 0001 2c01 2201 0a0l1l 3e01 5c06 0101 0161 ,.te..> N\ La
000001c0: 0062 0063 0078 0074 6573 7400 2f6d 2f74 .b.c.x.test./nft
000001d0: 6d70 2f75 2e74 7874 003e 312c 322c 330a np/u.txt.>1,2,3.
000001e0: 3e34 2c¢35 2c36 Oa3e 372c 382c 390a 3e31 >4,5,6.>7,8,9.>1
000001f0: 302c 3131 2c31 32db 4f15 3f0a 0100 0000 O0,11,12.Q0.2.....

00000200: 1700 0000 f701 0000 0000 0300 0000 R

e Line 180: timestamp db4f153f, event's type (08), server id (01 0000 00).

e Line190: event's size (6f 0000 00), position in the binlog (88 0100 00) (that's 392 in decimal

122

Replication

basg), flags (00 00), thread id (04 0000 00), time it took (00 0000 00).

Line 1a0: number of linesto skip at the beginning of the file (02 0000 00), size of the table's
name (01), size of the database's name (04), number of columnsto load (03 0000 00), thefile'sid
(03 0000 00).

Line 1b0: size of the field terminating string (01), field terminating string (2ci.e. ,), size of the
field enclosing string (01), field enclosing string (22 i.e. "), size of the line terminating string
(01), line terminating string (Oai.e. newline), size of the line starting string (01), line starting
string (3ei.e. >), size of the escaping string (01), escaping string (5c¢ i.e. backslash), flags (06)
(that's OPT_ENCLOSED FLAG| REPLACE_FLAG), size of the name of the first column to load
(01), size of the name of the second column to load (01), size of the name of the third column to
load (01), name of the first column to load (61 00 i.e. "a").

Line 1c0: name of the second column to load (62 00), name of the third column to load (63 00),
name of the table to load (78 00), name of the database to load (74 6573 7400), name of thefile
loaded on the master (2f6d 2f74 6d70 2f75 2e74 7874 00).

Line 1d0 and following: raw data to load (3e 312c 322¢ 330a 3e34 2¢35 2¢36 0a3e 372c 382c
390a 3e31 302c 3131 2¢31 32). The next byte is the beginning of the EXEC_LOAD_EVENT
event.

APPEND_BLOCK_EVENT

4 bytes: The ID of the file this block should be appended to.

Variable-sized part: the raw data to load.

EXEC_LOAD_EVENT

4 bytes. the ID of thefile to be loaded.

No variable-sized part.

DELETE_FI LE_EVENT

4 bytes: The ID of the file to be deleted.

No variable-sized part.

NEW LOAD_EVENT

For internal use.

RAND_EVENT

RAND() in MySQL uses 2 seeds to compute the random number.

8 bytes: Value for the first seed.
8 bytes:
Value for the second seed.

No variable-sized part.

USER VAR EVENT

4 bytes:. the size of the name of the user variable.

123

Replication

» variable-sized part: A concatenation. First is the name of the user variable. Second is one byte,
non-zero if the content of the variable isthe SQL value NULL, ASCII 0 otherwise. If this bytes
was ASCII 0, then the following parts exist in the event. Third is one byte, the type of the user
variable, which correspondsto elementsof enum |t em resul t definedini ncl ude/
nmysql _com h. Fourth is 4 bytes, the number of the character set of the user variable (needed
for astring variable). Fifth is 4 bytes, the size of the user variable's value (corresponds to mem-
berval | enof classlt em string). Sixthisvariable-sized: for astring variableit isthe
string, for afloat or integer variableit isitsvaluein 8 bytes.

9.8. Plans

We have aready made extensive changes to the above in MySQL 5.0. For an upcoming version we plan
anew format where datais replicated by row instead of by statement. This makes it possible to replicate

data from one MySQL Cluster to another. We also plan new functionality to handle replication connec-
tions from multiple masters into one slave.

124

Chapter 10. Myl SAMStorage Engine

10.1. Myl SAMRecord Structure
10.1.1. Introduction

When you say:
CREATE TABLE Tabl el ...

MySQL createsfilesnamed Tabl el. MYD ("MySQL Data'), Tabl e1. MYl ("MySQL Index"), and
Tabl el. f r m("Format"). These fileswill bein the directory:

/ <dat adi r >/ <dat abase>/

For example, if you use Linux, you might find thefilesinthe/ usr/ | ocal / var/ t est directory
(assuming your database nameist est). if you use Windows, you might find the filesin the
\'nmysqgl \ dat a\t est\ directory.

Let'slook at the. MYD Datafile (Myl SAMSQL Datafile) more closely. There are three possible formats
— fixed, dynamic, and packed. First, let's discuss the fixed format.
e PageSize

Unlike most DBMSs, MySQL doesn't store on disk using pages. Therefore you will not seefiller
space between rows. (Reminder: This does not refer to BDB and | nnoDB tables, which do use

pages).
* Record Header
The minimal record header is a set of flags:
o "X hit" = 0if row isdeleted, = 1 if row isnot deleted
* "Null Bits" = 0if columnisnot NULL, = 1if column is NULL

* "FillerBits'=1

The length of the record header is thus:

(1 + nunber of NULL columms + 7) / 8 bytes

After the header, all columns are stored in the order that they were created, which is the same order that
you would get from SHOW COLUNS.

Here's an example. Suppose you say:

CREATE TABLE Tabl el (col ummil CHAR(1) coI urm2 CHAR(1), colum3 CHAR(1));
I NSERT | NTO Tabl el VALUES ('a
I NSERT | NTO Tabl el VALUES ('d', NULL e)

A CHAR(1) column takes precisely one byte (plus one bit of overhead that is assigned to every column
— I'll describe the details of column storage later). So the file Tabl e1. MyD looks like this:

125

My | SAMStorage Engine

Hexadecimal Display of Tabl el. MyDfile

F1 61 62 63 00 F5 64 00 66 00abc..d e.

Here's how to read this hexadecimal-dump display:

* Thehexadecima numbersF1 61 62 63 00 F5 64 20 66 00 are byte valuesand the
column on the right is an attempt to show the same bytesin ASCII.

* TheFL1 byte meansthat there are no null fieldsin the first row.

e TheF5 byte means that the second column of the second row is NULL.

(It's probably easier to understand the flag setting if you restate F5 as11110101 bi nary, and () no-
tice that the third flag bit from theright ison, and (b) remember that the first flag bit is the X hit.)

There are complications — the record header is more complex if there are variable-length fields — but
the simple display shown in the example is exactly what you'd see if you looked at the MySQL Datafile
with a debugger or a hexadecimal file dumper.

So much for the fixed format. Now, let's discuss the dynamic format.

The dynamic file format is necessary if rows can vary in size. That will be the caseif there are BLOB
columns, or "true" VARCHAR columns. (Remember that MySQL may treat VARCHAR columns as if
they're CHAR columns, in which case the fixed format is used.) A dynamic row has more fieldsin the
header. The important ones are "the actua length", "the unused length”, and "the overflow pointer”. The
actual length is the total number of bytesin all the columns. The unused length is the total number of
bytes between one physical record and the next one. The overflow pointer is the location of the rest of
the record if there are multiple parts.

For example, hereis adynamic row:

03, 00 start of header

04 actual |ength

Oc unused | ength

01, fc flags + overfl ow pointer
ok data in the row
*kkkkhkkhkkkkkkx unused bytes

<-- next row starts here)

In the example, the actual length and the unused length are short (one byte each) because the table defin-
ition says that the columns are short — if the columns were potentially large, then the actual length and
the unused length could be two bytes each, three bytes each, and so on. In this case, actual length plus
unused length is 10 hexadecimal (sixteen decimal), which isaminimum.

Asfor the third format — packed — we will only say briefly that:

» Numeric values are stored in aform that depends on the range (start/end values) for the data type.
e All columns are packed using either Huffman or enum coding.

For details, see the sourcefiles/ nmyi sani m _st at rec. c (for fixed format), / nyi s-

am m _dynrec. c (for dynamic format), and/ nyi saml mi _packr ec. ¢ (for packed format).

Note: Internally, MySQL uses aformat much like the fixed format which it uses for disk storage. The
main differences are;

126

My | SAMStorage Engine

1

BL OB values have alength and a memory pointer rather than being stored inline.

"True VARCHAR" (a column storage which will be fully implemented in version 5.0) will have a
16-hit length plus the data.

All integer or floating-point numbers are stored with the low byte first. Point (3) does not apply for
| SAMstorage or internals.

10.1.2. Physical Attributes of Columns

Next I'll describe the physical attributes of each column in arow. The format depends entirely on the
data type and the size of the column, so, for every datatype, I'll give a description and an example.

* Thecharacter datatypes

CHAR

Storage: fixed-length string with space padding on the right.

Example: a CHAR(5) column containing thevalue® A’ lookslike: hexadeci mal 41 20
20 20 20 -- (length=5,value="A ")

VARCHAR

Storage: variable-length string with a preceding length.

Example: a VARCHAR(7) column containing' A' lookslike: hexadeci mal 01 41 --
(length=1, value="A")

In MySQL 4.1 the length is always 1 byte. In MySQL 5.0 the length may be either 1 byte (for up
to 255) or 2 bytes (for 256 to 65535). Some further random notes about the new format: In old
tables (from MySQL 4.1 and earlier), VARCHAR columns have type
MYSQL_TYPE VAR STRI NG which works exactly like a CHAR with the exception that if you
doan ALTER TABLE, it's converted to atrue VARCHAR (MYSQL_TYPE_VARCHAR). (This
means that old tables will work as before for users.) ... Apart from the above case, there are no
longer any automatic changes from CHAR to VARCHAR or from VARCHAR to CHAR. MySQL
will remember the declared type and stick to it ... VARCHAR isimplemented inf i el d. h and
fiel d. cc throughthenew classFi el d_var string ... Myl SAMimplements VARCHAR
both for dynamic-length and fixed-length rows (as signaled with the ROV FORNVAT flag) ...
VARCHAR now stores trailing spaces. (If they don't fit, that's an error in strict mode.) Trailing
spaces are not significant in comparisons ... Int abl e- >r ecor d, the space is reserved for
length (1 or 2 bytes) plus data ... The number of bytes used to store thelengthisin the field

Fi el d_varchar - >l engt h_byt es. Note that internally this can be 2 even if

Fi el d_varchar->fiel d_| ength <256 (for example, for a shortened key to a

var char (256)) ... Thereisanew macro,

HA VARCHAR _PACKLENGTH(fi el d_I engt h) , that canbeusedonfi el d- >l engt hin
write_row / read row to check how many length bytes are used. (In this context we can't have a
field_length < 256 with a 2-byte pack length) ... When creating a key for the handler,

HA KEYTYPE_VARTEXT1 and HA_KEYTYPE_BI NARY1 are used for akey on a column that
has a 1-byte length prefix and HA_KEYTYPE_VARTEXT2 and HA_KEYTYPE_BI NARY2 for a
column that has a 2-byte length prefix. (In the future we will probably delete

HA KEYTYPE_BI NARY#, as this can be instead be done by just using the bi nar y character
set with HA_ KEYTYPE_VARTEXT#.) ... When sending a key to the handler for i n-
dex_read() orrecords in_range, we always use a 2-byte length for the VARCHAR to make
things simpler. (For version 5.1 we intend to change CHARS to also use a 2-byte length for these
functions, as thiswill speed up and simplify the key handling code on the handler side) ... The

127

My | SAMStorage Engine

test casefilenysql -t est /i ncl ude/ var char . i nc should beincluded in the code that
teststhe handler. Seet / myi sam t est for how to usethis. Y ou should verify the result against
theoneinmnmysql -test/t/ myi sam r esul t to ensure that you get the correct results ... A
client sees both the old and new VARCHAR typeas MYSQL_ TYPE VAR _STRI NG. It will never
(at least for 5.0) see MYSQL_TYPE_VARCHAR. This ensures that old clients will work as before
... If you run MySQL 5.0 with the - - new option, MySQL will show old VARCHAR columns as
" CHAR' in SHOW CREATE TABLE. (Thisisuseful when testing whether atableis using the
new VARCHAR type or not.)

The numeric data types

Important: MySQL almost always stores multi-byte binary numbers with the low byte first. Thisis

called "little-endian" numeric storage; it's normal on Intel x86 machines; MySQL usesit even for

non-Intel machines so that databases will be portable.

TI NYI NT

« Storage: fixed-length binary, always one byte.

o Example: aTl NYI NT column containing 65 lookslike: hexadeci mal 41 -- (length=1,
value = 65)

SVALLI NT
« Storage: fixed-length binary, always two bytes.

e Example: aSVALLI NT column containing 65 lookslike: hexadeci mal 41 00 -- (length =
2, value = 65)

MEDI UM NT
» Storage: fixed-length binary, always three bytes.

e Example: aMEDI UM NT column containing 65 looks like: hexadeci mal 41 00 00 --
(length = 3, value = 65)

I NT
e Storage: fixed-length binary, always four bytes.

e Example: an| NT column containing 65 looks like: hexadeci mal 41 00 00 00 -- (length
=4, value = 65)

Bl G NT
« Storage: fixed-length binary, aways eight bytes.

e Example: aBl G NT column containing 65 looks like: hexadeci nal 41 00 00 00 00
00 00 00 -- (length = 8, value = 65)

FLOAT
» Storage: fixed-length binary, always four bytes.

e Example: aFLOAT column containing approximately 65 lookslike: hexadeci mal 00 00
82 42 -- (length = 4, value = 65)

DOUBLE PRECI SI ON

128

My | SAMStorage Engine

« Storage: fixed-length binary, always eight bytes.

e Example: aDOUBLE PRECI SI ON column containing approximately 65 lookslike: hexa-
decinmal 00 00 00 00 00 40 50 40 -- (length =8, value = 65)

REAL

* Storage: same as FLOAT, or same as DOUBLE PRECI S| ON, depending on the setting of the -
-ansi option.

DECI MAL
* MySQL 4.1 Storage: fixed-length string, with aleading byte for the sign, if any.

e Example: aDECI MAL(2) column containing 65 lookslike: hexadeci mal 20 36 35 --
(length=3,value="' 65")

e Example: aDECI MAL(2) UNSI GNED column containing 65 looks like: hexadeci mal 36
35 -- (length=2, value=" 65")

e Example: aDECI MAL(4, 2) UNSI GNED column containing 65 lookslike: hexadeci mal
36 35 2E 30 30 -- (length=5, value="65. 00")

« MySQL 5.0 Storage: high byte first, four-byte chunks. We call the four-byte chunks "* decimal*
digits'. Since 2**32 = 4294967296, one *decimal* digit can hold values up to 10**9
(999999999), and two *decimal* digits can hold values up to 10**18, and so on. Thereisan im-
plied decimal point. Details are in /strings/decimal.c.

e Example: aMySQL 5.0 DECI MAL(21, 9) columnconaining 111222333444, 555666777
lookslike: hexadeci nmal 80 6f 0d 40 8a 04 21 le cd 59 -- (flag + 111,
'222333444', '555666777").

NUMERI C

¢ Storage: same as DECI VAL.

BOOL

e Storage: sameas Tl NYI NT.

Thetemporal datatypes

DATE

e Storage: 3 byteinteger, low byte first. Packed as: ‘day + month* 32 + year* 16* 32'

e Example: aDATE column containing ' 1962- 01- 02' lookslike: hexadeci mal 22 54
OF

DATETI ME

» Storage: eight bytes.

e Part 1isa32-hit integer containing year* 10000 + month* 100 + day.

* Part 2isa32-bit integer containing hour* 10000 + minute* 100 + second.

e Example: aDATETI ME columnfor' 0001-01-01 01: 01: 01" lookslike: hexadeci nal
B5 2E 11 5A 02 00 00 00

129

My | SAMStorage Engine

TI ME

e Storage: 3 bytes, low bytefirst. Thisis stored as seconds:
days* 24* 3600+hours* 3600+minutes* 60+seconds

e Example: aTl MVE column containing’ 1 02: 03: 04" (1 day 2 hour 3 minutes and 4 seconds)
lookslike: hexadeci mal 58 6E 01

TI MESTAMP

« Storage: 4 bytes, low bytefirst. Stored asunix t i me() , which is seconds since the Epoch
(00:00:00 UTC, January 1, 1970).

e Example: aTl MESTANP column containing' 2003- 01- 01 01: 01: 01" lookslike: hexa-
deci mal 4D AE 12 23

YEAR

« Storage: same asunsigned T1 NYI NT with a base value of 0 = 1901.

Others

SET

e Storage: one byte for each eight membersin the set.

* Maximum length: eight bytes (for maximum 64 members).

e Thisisabit list. The least significant bit corresponds to the first listed member of the set.

e ExampleaSET(' A" ,"' B ,' C) columncontaining" A" lookslike: 01 -- (length = 1, value
='A"

ENUM
e Storage: one byte if less than 256 alternatives, else two bytes.

e Thisisanindex. Thevaue 1 corresponds to the first listed aternative. (Note: ENUMaways re-
serves the value O for an erroneous value. Thisexplainswhy ' A" is1instead of 0.)

e Example anENUM ' A", ' B',' C) columncontaining' A" lookslike: 01 -- (length=1,
value="A")

The Large-Object data types

Warning: Because T1 NYBLOB's preceding length is one byte long (the size of a TI NYI NT) and MVE-
DI UVBLOB's preceding length is three bytes long (the size of a MEDI UM NT), it's easy to think
there's some sort of correspondence between the the BLOB and | NT types. Thereisn't — aBLOB's
preceding length is not four byteslong (the size of an | NT).

TI NYBLOB

« Storage: variable-length string with a preceding one-byte length.

e Example: aTl NYBLOB column containing' A" lookslike: hexadeci mal 01 41 -- (length
=2,vaue="A")

TI NYTEXT

130

My | SAMStorage Engine

e Storage: sameas T| NYBLOB.
BLOB
» Storage: variable-length string with a preceding two-byte length.

e Example: aBLOB column containing' A' lookslike: hexadeci mal 01 00 41 -- (length =
2, value="A")

TEXT

e Storage: same as BLOB.

MEDI UVBLOB

» Storage: variable-length string with a preceding length.

* Example: a MEDI UVMBLOB column containing* A'lookslike: hexadeci nal 01 00 00 41
-- (length = 4, value ="A")

MVEDI UMTEXT

e Storage: same as IVEDI UVBLOB.

LONGBLOB

« Storage: variable-length string with a preceding four-byte length.

e Example: a LONGBLOB column containing* A" looks like: hexadeci mal 01 00 00 00
41 -- (length = 5, value ="A")

LONGTEXT

e Storage: same as LONGBLOB.

10.1.3. Where to Look For More Information

References:
Most of the formatting work for Myl SAMcolumnsisvisibleinthe program/ sqgl / fi el d. cc inthe
source code directory. And in the Myl SAMdirectory, the files that do formatting work for different re-

cord formatsare: / nyi sani mi _statrec.c,/ nyi sami m _dynrec. c,and/ nyi s-
ani m _packrec. c.

10.2. The . WY1 file

A . \WI filefor aMy| SAMtable contains the table's indexes.

The. MYI file hastwo parts: the header information and the key values. So the next sub-sections will be
"The. MYl Header" and"The. MYl Key Vaues'.

The. MYl Header

A . WY1 file beginswith a header, with information about options, about file sizes, and about the "keys".
In MySQL terminology, a"key" is something that you create with CREATE [UNI QUE] | NDEX.

131

My | SAMStorage Engine

Program files which read and write . MYl headersareinthe. / myi samdirectory: mi _open. ¢ hasthe
routines that write each section of the header, ni _cr eat e. ¢ hasaroutinethat callstheni _open. c
routinesin order, and nyi sandef . h has structure definitions corresponding to what we're about to de-
scribe.

These are the main header sections:

Section Cccurrences

state Cccurs 1 time

base Qccurs 1 tinme

keydef (including keysegs) Cccurs once for each key
reci nfo Cccurs once for each field

Now we will look at each of these sections, showing each field.

We are going to use an exampl e table throughout the description. To make the example table, we ex-
ecuted these statements:

CREATE TABLE T (S1 CHAR(1), S2 CHAR(2), S3 CHAR(3)):
CREATE UNIQUE INDEX |1 ON T (S1);

CREATE | NDEX |2 ON T (S2, S3);
IINSERT INTO T VALUES ('1', 'aa', 'b')
INSERT INTO T VALUES ('2', 'aa', 'bb'):

I NSERT INTO T VALUES ('3', 'aa', 'bbb'):

DELETE FROM T WHERE S1 = :

We took a hexadecimal dump of the resulting file, T. IWYI .

In all theindividual descriptions below, the column labeled “Dump From Example File” has the exact
bytesthat arein T. MYI . You can verify that by executing the same statements and looking at a hexa
decimal dump yourself. With Linux thisis possibleusingod -h T. MYl ; with Windows you can use
the command-line debugger.

Along with the typical value, we may include a comment. The comment usually explains why the value
iswhat it is. Sometimes the comment is derived from the comments in the source code.

State

Thissectioniswritten by mi _open. c,m _state_info_wite().

Nane Si ze Dunp From Exanple File Comment

file_version 4 FE FE 07 01 from nyi sam fil e_magic

opti ons 2 00 02 HA_OPTI ON_COVPRESS RECORD
etc.

header _| ength 2 01 A2 this header exanple has
Ox01A2 byt es

state_info_l ength 2 00 BO =M STATE I NFO_SI ZE
defined in nyisanmdef.h

base_i nfo_| ength 2 00 64 = M _BASE_| NFO_SI ZE
defi ned in nyisandef.h

base_pos 2 00 D4 = where the base
section starts

key parts 2 00 03 a key part is a colum
within a key

uni que_key_parts 2 00 00 key- part s+uni que- parts

keys 1 02 here are 2 keys --
11 and 12

uni ques 1 00 nunber of hash uni que
keys used internally
in tenporary tables
(nothing to do with
"UNI QUE' definitions)

| anguage 1 08 "l anguage for indexes"

max_bl ock_si ze 1 01

ful ltext_keys 1 00 # of fulltext keys.

=0 if version <= 4.0

132

My | SAMStorage Engine

not _used 1 00 to align to 8-byte
boundary

st at e- >open_count 2 00 01

st at e- >changed 1 39 set if table updated

reset if shutdown (so
one can exanmi ne this
to see if there was an
updat e w t hout proper

shut down)

st at e- >sort key 1 FF "sorted by this key"
(not used)

stat e- >state. records 8 00 00 00 00 00 00 00 02 nunber of actual
un-del et ed, records

st at e- >st at e. del 8 00 00 00 00 00 00 00 01 # of deleted records

state->split 8 00 00 00 00 00 00 00 03 # of "chunks" (e.g
records or spaces |eft
after record del etion)

st at e- >del | i nk 8 00 00 00 00 00 00 00 07 "Link to next renobved

"block". Initially =
HA OFFSET_ERROR

00 00 00 00 00 00 Oc 00 2048

00 00 00 00 00 00 00 15 = size of .MYD file

state->state. key file_length
state->state.data_file_length
state->state. enpty
state->state. key_enpty

st at e- >aut o_i ncr enent

st at e- >checksum

AP DPD D 00000O0O 0
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o

st at e- >process 00 00 09 E6 fromgetpid(). process
of | ast update

st at e- >uni que 00 00 00 OB initially =0

st at e- >st at us 00 00 00 00

st at e- >updat e_count 00 00 00 04 updated for each wite

|l ock (there were 3
inserts + 1 delete
total 4 operations)
st at e- >key_r oot 8 00 00 00 00O OO OO 04 00 offset in file where
11 keys start, can be
= HA_OFFSET_ERROR
00 00 00 00 00 00 08 00 state->key_root occurs
twi ce because there
are two keys
st at e- >key_del 8 FF FF FF FF FF FF FF FF delete |inks for keys
(occurs many tinmes if
many del ete |inks)
st at e- >sec_i ndex_changed 4 00 00 00 00 sec_i ndex = secondary
i ndex (presumably)
not currently used
st at e- >sec_i ndex_used 4 00 00 00 00 "whi ch extra i ndexes
are in use"
not currently used
3F 3F EB F7 "tinmestanp of create"
"what keys are in use"
00 00 00 00 3F 3F EB F7 "tine when dat abase
created" (actually
tinme when file nade)
00 00 00 00 00 00 OO0 00 "time of |ast recover"
00 00 00 00 3F 3F EB F7 "tinme of |ast check"

st at e- >versi on
st at e- >key_map
state->create_tine

00 00~
o
o
o
o
o
o
o
w

st at e- >recover _tine
st at e- >check_ti ne
st at e- >rec_per _key_rows

& 00 00 0
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o

state->rec_per_key_parts 00 00 00 00 (key_parts = 3, so
00 00 00 00 rec_per_key_parts
00 00 00 00 occurs 3 tines)

base

Thissectioniswrittenby mi _open. c,m _base_info_wite(). Thecorresponding structurein
nyi sandef . hisM _BASE | NFQ.

Inour example T. MY file, thefirst byte of the base section is at offset 0x00d4. That's where it's sup-
posed to be, according to the header field base_pos (above).

Name Si ze Dunp From Exanple File Conment

base- >keyst art 8 00 00 00 00 00 00 04 00 keys start at offset
1024 (0x0400)
base->max_data _file_l ength 8 00 00 00 00 00 00 00 00

133

My | SAMStorage Engine

base->max_key_file_l ength
base- >r ecords

base- >rel oc

base- >nean_row_| engt h
base- >recl ength

base- >pack_recl engt h
base->m n_pack_| engt h
base- >max_pack_| engt h
base->m n_bl ock_| engt h
base->fi el ds

base->pack_fi el ds
base->rec_refl ength
base->key_reflength

base- >keys

base- >aut o_key

base- >pack_bits
base- >bl obs

base- >max_key_bl ock_| engt h

base- >max_key_| engt h

base->extra_al | oc_bytes
base- >extra_al | oc_procent
base->rai d_type

base- >rai d_chunks

base- >r ai d_chunksi ze
[extra] i.e. filler

keydef

00 00 00 00 00
00 00 00 00 00
00 00 00 00 00
00
07

00
00
00

10
00
00

00 00 00
00 00 00 00 00

ORANREREN N NNNRRRRE BMRARMDMDN DMDNOOO®
o
s

I engt h(s1) +l engt h(s2)
+l engt h(s3) =7

4 fields: 3 defined
plus 1 extra

was 0 at start

| ength of block = 1024
byt es (0x0400)
i ncl udi ng | ength of

poi nt er

Thissectioniswrittenby mi _open. c, m _keydef write() . Thecorresponding structurein ny-

i sandef. hisM _KEYDEF.

Thisisamultiple-occurrence structure. Since there are two indexesin our example (11 and 12), we will
seethat keydef occurstwo times below. There is a subordinate structure, keyseg, which also occurs
multiple times (once within the keydef for I1 and two timeswithin thekeydef for 12).

Name

/* key definition for 11 */
keydef - >keysegs
keydef - >key_al g
keydef - >f | ag

keydef - >bl ock_| engt h
key def->keyl ength

keydef - >m nl engt h
keydef - >max| engt h
/* keyseg for S1 in I1 */
keyseg- >t ype

keyseg- >l anguage
keyseg->nul | _bit
keyseg->bit_start
keyseg- >bi t “end
[0] i.e. filler
keyseg- >fl ag

keyseg- >l engt h
keyseg- >start
keyseg- >nul | _pos
/* key definition for 12 */
keydef - >keysegs

keydef - >key_al g

Si ze Dunp From Exanple File

N

00 49

04
00

00
00

00
06

06
06

= NN NN

01

14

01
00 00 01
00 00 00

ABRN NRRRRRE
o
o

Coment

there is 1 keyseg (for
colum S1).
al gorithm= Rtree or
Btree
HA_NCSAME +
HA_SPACE_PACK_USED +
HA_NULL PART_KEY
.e. 1024
i el d- count +si zeof (S1)
si zeof (RON D)

* Il(Sl) S|ze(Sl) =1,
colum =1
= HA_KEYTYPE_TEXT

HA NULL_PART +
HA PART KEY
Iength(Sl) =1
offset in the row

keysegs=2, for columms
S2 and S3

algorithm = Rtree or

134

My | SAMStorage Engine

Btree
keydef - >f | ag 2 00 48 HA SPACE_PACK USED +
HA_NULL_PART_KEY
keydef - >bl ock_| engt h 2 04 00 i.e. 1024
key def->keyl ength 2 00 OB field-count+ sizeof(all fields)+
si zeof (RI D)
keydef - >m nl engt h 2 00 0B
keydef - >max| engt h 2 00 0B
/* keyseg for S2 in 12 */
keyseg- >t ype 1 01 /* 12(S2) size(S2)=2
colum = 2 */
keyseg- >l anguage 1 08
keyseg->nul | _bit 1 04
keyseg->bit _start 1 00
keyseg- >bi t _end 1 00
[0] i.e. filler 1 00
keyseg->fl ag 2 00 14 HA NULL_PART +
HA_PART_KEY
keyseg- >l engt h 2 00 02 length(S2) = 2
keyseg- >start 4 00 00 00 02
keyseg- >nul | _pos 4 00 00 00 00
/* keyseg for S3 in 12 */
keyseg- >t ype 1 01 /* 12(S3) size(S3)=3
colum = 3 */
keyseg- >l anguage 1 08
keyseg->nul | _bit 1 08
keyseg->bit _start 1 00
keyseg- >bit _end 1 00
[O] i.e. filler 1 00
keyseg- >f | ag 2 00 14 HA NULL_PART +
HA_PART_KEY
keyseg- >l engt h 2 00 03 length(S3) = 3
keyseg- >start 4 00 00 00 04
keyseg- >nul | _pos 4 00 00 00 00

recinfo

Ther eci nf o sectioniswrittenby mi _open. c,m _recinfo_wite().Thecorresponding struc-
tureinnyi sandef . hisM _COLUVNDEF.

Thisis another multiple-occurrence structure. It appears once for each field that appearsin akey, includ-
ing an extrafield that appears at the start and has flags (for deletion and for null fields).

Nane Si ze Dunp From Exanple File Comment

00 00 extra
00 01

00 00

00 00 11 (S1)
00 01

reci nf o- >t ype
reci nfo->| engt h
reci nfo->nul | _bit
reci nf o- >nul | _pos

reci nfo- >t ype
reci nfo->l ength

2
2
1
2
2
2
reci nfo->nul | _bit 1 02
reci nfo->nul | _pos 2 00 00
reci nf o- >t ype 2 00 00 12 (S2)
reci nfo->l ength 2 00 02
reci nfo->nul |l _bit 1 04
reci nfo->nul | _pos 2 00 00
reci nf o- >t ype 2 00 00 12 (S3)
reci nfo->| engt h 2 00 03
reci nfo->nul | _bit 1 08
reci nf o- >nul | _pos 2 00 00

We are now at offset 0xA2 within thefile T. MY| . Notice that the value of the third field in the header,
header _| engt h, isOxA2. Anything following this point, up till the first key value, isfiller.

The. Myl Key Values

And now we look at the part which is not the information header: we look at the key values. The key

135

My | SAMStorage Engine

values are in blocks (MySQL 's term for pages). A block contains values from only oneindex. To contin-
ue our example: thereisablock for the 11 key values, and ablock for the 12 key values.

According to the header information (st at e- >key_r oot above), the I1 block starts at offset 0x0400
inthe file, and the 12 block starts at offset 0x0800 in the file.

At offset 0x0400 in the file, we have this:

Nane Si ze Dunp From Exanple File Conment

(bl ock header) 2 00 OE = si ze (inclusive)
(first bit of word =
0 neaning this is a
B-Tree | eaf, see the
m _test_if_nod macro)

(first key val ue) 2 01 31 Value is "1" (0x31)

(first key pointer) 4 00 00 00 00 Pointer is to Record
#0000

(second key val ue) 2 01 33 Val ue is "3" (0x33)

(second key pointer) 4 00 00 00 02 Pointer is to Record
#0002.

(j unk) 1010 .. rest of the 1024-byte

bl ock i s unused

At offset 0800x in the file, we have this:

Nane Si ze Dunp From Exanple File Comment

(bl ock header) 2 00 18 = size (inclusive)

(first key val ue) 7 01 61 61 01 62 20 20 Value is "aa/lb "

(first key pointer) 4 00 00 00 00 Pointer is to Record
#0000

(second key val ue) 7 01 61 61 01 62 62 62 Val ue i s "aal bbb"

(second key pointer) 4 00 00 00 02 Pointer is to Record
#0002.

(j unk) 1000 .. rest of the 1024-byte

bl ock i s unused

From the above illustrations, these facts should be clear:

Each key contains the entire contents of all the columns, including trailing spacesin CHAR columns.
Thereis no front truncation. There is no back truncation. (There can be space truncation if key-
seg- >f | ag HA_SPACE_PACK flag ison.)

For fixed-row tables: The pointer is afixed-size (4-byte) number which contains an ordinal row
number. The first row is Record #0000. Thisitem is analogous to the ROWID, or RID (row identifi-
er), which other DBMSs use. For dynamic-row tables: The pointer is an offset inthe . MYDfile.

The normal block length is 0x0400 (1024) bytes.

These facts are not illustrated, but are also clear:

If akey valueis NULL, then the first byte is 0x00 (instead of 001 as in the above examples) and
that's all. Even for afixed CHAR(3) column, the size of the key valueisonly 1 byte.

Initially the junk at the end of ablock isfiller bytes, value = OxA5. If MySQL shifts key values up
after a DELETE, the end of the block is not overwritten.

A normal block is at least 65% full, and typically 80% full. (Thisis somewhat denser than the typical
B-tree algorithm would cause, it isthus because nyi santhk -r g will make blocks nearly 100%

136

My | SAMStorage Engine

full.)

» Thereisapool of free blocks, which increasesin size when deletions occur. If all blocks have the
same normal block length (1024), then MySQL will always use the same pool.

* The maximum number of keysis32 (M _ MAX_KEY). The maximum number of segmentsin akey is
16 (M _MAX_KEY_SEG). The maximum key length is500 (M _ MAX_KEY_LENGTH). The maim-

um block lengthis 16384 (M _MAX_KEY_ BLOCK LENGTH). All these MI_... constants are ex-
pressed by #definesinthe myi sandef . h file.

10.2.1. Myl SAMFiles

Some notes about My SAMfile handling:
» If atableisnever updated, MySQL will never touch the table files, so it would never be marked as
closed or corrupted.

» If atableis marked readonly by the OS, it will only be opened in readonly mode. Any updatesto it
will fail.

* When anormal tableisopened for reading by a SELECT, MySQL will open it in read/write mode,
but will not write anything to it.

e A tablecan be closed during one of the following events:
e Out of spacein table cache
» Someone executed flush tables
e MySQL was shut down
« flush_time expired (which causes an automatic flush-tables to be executed)
* When MySQL opens atable, it checksif thetableis clean. If it isn't and the server was started with

the- - myi sam r ecover option, check the table and try to recover it if it's crashed. (The safest
automatic recover option isprobably - - myi sam r ecover =BACKUP.)

10.3. My| SAMCompressed Data File Layout

This chapter describes the layout for the data file of compressed Myl SAMtables.

10.3.1. Huffman compression

Myl SAMcompression is based on Huffman compression. In his article from 1952 Huffman proved that
his algorithm uses the least possible number of bits to encode a sequence of messages. The number of
bits assigned to each message depends on its probability to appear in the sequence.

Huffman did not specify exactly, what those "messages" are. One could take all possible values - say of
atable column - as "messages’. But if there are too many of them, the code tables could become bigger
than the uncompressed table. One would need to specify every possible value once and the code tree
with itsindexes and offsets. Not to forget the effort to step through big binary trees for every value and -
on the encoding side - the comparison of each value against the already collected distinct values.

The usua way to define "Huffman messages" is to take the possible 256 values, which a byte can ex-

137

My | SAMStorage Engine

press, as the "messages’. That way the code trees are of limited size. On the other hand, the theoretical
maximum compression is 1:8 (12.5%) in this case.

10.3.2. The nyi sanpack Program

nmyi sanpack tries both ways to compress the column values. When starting to analyze the existing un-
compressed data, it collects distinct column values up to alimit of 8KB. If there are more, it falls back to
byte value compression for this column.

Thismeans aso that myi sanpack may use different algorithms for different columns. Besides a
couple of other tricks, myi sanpack determines for every column if distinct column value compression
or byte value compression is better. After that it tries to combine byte value compression trees of differ-
ent columnsinto one or more code trees. This means that finally we may have less code trees than
columns. Therefore the column information in the file header contains the number of the code tree used
for each column. Some columns might not need a code tree at all. This happens for columns which have
the same value in al records.

10.3.3. Record and Blob Length Encoding

Since the compressed data file should be usable for read-only purposes by the MySQL database man-
agement system, every record starts on a byte boundary. Fore easier handling by the system, every re-
cord begins with alength information for the compressed record and a length information for the total
size of al uncompressed blobs of this record. Both lengths are encoded in 1 to 5 bytes, depending on its
value.

A length from 1 to 253 bytes is represented in one byte. A length of 254 to 65536 bytes (64KB) is rep-
resented by three bytes. The first contains the value 254 and the next two bytes contain the plain length.
The low order byte goesfirst. A length of 65537 to 4294967296 bytes (4GB) is represented by five
bytes. The first contains the value 255 and the next four bytes contain the plain length. The low order
byte goesfirst.

The encoded compressed record length does not include these length bytes. It tells the number of bytes
which follow behind the length bytes for this record.

10.3.4. Code Tree Representation

The code trees are binary trees. Every node has exactly two childs. The childs can be leafs or nodes.
Each leaf contains one original, uncompressed value. The nodes do not contain values, but only pointers
to the left and right child. The Huffman codes represent the navigation through the tree. Every left
branch gets a 0 hit, every right branch getsa 1 bit.

Thein-memory representation of the trees are two unsigned integers per node. Each describes either a
leaf value or an offset (in unsigned integers) to the child node. To distinguish values from offsets, the
15th bit (decimal value 32768) is set together with offsets. Thisis safe as the size of the treesis limited
by either having a maximum of 256 elements for byte value compression or 4096 elements for distinct
column value compression.

The representaion of the treesin the compressed datafile is amost the same. But instead of writing all

bits of the unsigned integers, only as many bits are written as are required to represent the highest value
or offset respectively. One more bit per value/offset is written in advance, to distinguish both. The num-
ber of bitsrequired per value and per offset is computed in advance and part of the code tree description.

10.3.5. Usage of the Index File

While the header of the compressed data file contains alot of information, there are still some things
which need to be taken fron the index file. These are the number of columns of the table and the length

138

My | SAMStorage Engine

of each column. The latter isrequired for columns with suppressed leading spaces or suppressed trailing
Spaces or zeros.

10.3.6. nyi sanpack Tricks

Asaready mentioned, myi sanmpack uses some tricks to decrease the amount of data to be encoded.
These cope with leading and trailing spaces or zeros or with al blank or NULL fields.

| do not describe these in detail here. They do not materialize in the compressed data files other than the
later mentioned field and pack types. They are however important to know for decoding the records.

10.3.7. Detailed Specification of the Decoding:

Below follows the detailed specification of the encoding:

Datafile fixed header (32 bytes):

byt e
byt e
byt e
byt e
byt e
byt e
byt e
byt e
byt e
byt e

ARPRPNARMRMDDD

magi ¢ nunber

total header length (fixed + colum info + code trees)

m ni num packed record | ength

maxi mum packed record | ength

total nunber of elenents in all code trees

total nunber of bytes collected for distinct colum val ues

nunber of code trees

maxi mum nunber of bytes required to represent record+bl ob | engths
nunber of bytes required to represent the conpressed data file I ength
zer os

Column Information. For every column in the table:

5 bits

FI ELD_NORMAL
FI ELD_SKI P_ENDSPACE
FI ELD_SKI P_PRESPACE
FI ELD_SKI P_ZERO

FI ELD_BLOB

FI ELD_CONSTANT

FI ELD_| NTERVALL

Fl ELD_ZERO

Fl ELD_VARCHAR

FI ELD_CHECK

6 bits

field type

CoOoO~NOURAWNRERO

pack type as a set of flags

PACK_TYPE_SELECTED
PACK_TYPE_SPACE FI ELDS 2
PACK_TYPE_ZERO FI LL 4

5 bits

if pack type contai ns PACK TYPE ZERO FI LL

m ni mum nunber of trailing zero bytes in this colum

el se

nunber of bits to encode the nunber of
packed bytes in this colum (length_bits)

X bits

nunber of the code tree used to encode this colum

X is the m ni mum nunber of bits required to represent the highest
tree nunber.

Code Trees. For every tree:

1 bit
0

conpr essi on type

byt e val ue conpressi on

8 bits mninmmbyte value coded by this tree

9 bits nunber of byte values encoded by this tree

5 bits nunber of bits used to encode the byte val ues

5 bits nunber of bits used to encode offsets to next tree el ements
di stinct colum val ue conpression

15 bits nunber of distinct colum val ues encoded by this tree

16 bits length of the buffer with all columm val ues

5 bits nunber of bits used to encode the index of the colum val ue

139

My | SAMStorage Engine

5 bits nunber of bits used to encode offsets to next tree el enents
For each code tree el enent:
1 bit | S_OFFSET
x bits the announced nunber of bits for either a value or an offset
X bits alignment to the next byte border
I f conpression by distinct colum val ues
The nunmber of 8-bit values that make up the col um val ue buffer

Compressed Records. For every record:

1-5 bytes length of the conpressed record in bytes
1-5 bytes total length of all expanded bl obs of this record
For every col um:
I f pack type includes PACK TYPE_SPACE_FI ELDS
1 bit 1 = spaces only, O = not only spaces
In case the filed type is of:
FI ELD_SKI P_ZERO
1 bit 1 = zeros only, 0 = not only zeros
In the latter case
x bits the Huf fman code for every byte
FI ELD_NORVAL
X bits the Huf fman code for every byte
FI ELD_SKI P_ENDSPACE
I f pack type includes PACK TYPE_SELECTED,
1 bit 1 = nore than mn endspace, 0 = not nore
In the forner case
x bits nr of extra spaces, x = length_bits
el se
x bits nr of extra spaces, x = length_bits
X bits the Huf fman code for every byte
FI ELD_SKI P_PRESPACE
I f pack type includes PACK TYPE_SELECTED,
1 bit 1 = nore than mn prespace, 0 = not nore
In the forner case
x bits nr of extra spaces, x = length_bits
el se
x bits nr of extra spaces, x = length_bits
X bits the Huf fman code for every byte
FI ELD_CONSTANT or FI ELD_ZERO or FI ELD_CHECK
not hing for these
FI ELD_| NTERVALL
x bits the Huffrman code for the buffer index of the colum val ue
FI ELD_BLOB
1 bit 1 =Dblob is enpty, 0 = not enpty
In the latter case
x bits blob length, x = length_bits
x bits the Huffrman code for every byte
FI ELD_VARCHAR
1 bit 1 = varchar is enpty, 0 = not enpty
In the latter case
x bits blob length, x = length_bits
x bits the Huf fman code for every byte
x bits alignment to the next byte border

140

Chapter 11. | nnoDB Storage Engine
11.1. | nnoDB Record Structure

This page contains:

* A high-atitude "summary" picture of the parts of aMySQL/l nnoDB record structure.
* A description of each part.

* Anexample

After reading this page, you will know how MySQL/I nnoDB stores a physical record.

11.1.1. High-Altitude Picture

The chart below shows the three parts of a physical record.

Name Size

Field Start Offsets (F*1) or (F*2) bytes
ExtraBytes 6 bytes

Field Contents depends on content

Legend: Theletter 'F stands for 'Number Of Fields.

The meaning of the partsisasfollows:

» TheFIELD START OFFSETS isalist of numbers containing the information "where afield starts'.
 The EXTRA BYTESisafixed-size header.

e TheFIELD CONTENTS contains the actua data.

An Important Note About The Word " Origin"

The "Origin" or "Zero Point" of arecord isthe first byte of the Field Contents --- not the first byte of the
Field Start Offsets. If there is a pointer to arecord, that pointer is pointing to the Origin. Therefore the
first two parts of the record are addressed by subtracting from the pointer, and only the third part is ad-
dressed by adding to the pointer.

11.1.1.1. FIELD START OFFSETS

The Field Start Offsetsisalist in which each entry is the position, relative to the Origin, of the start of
the next field. The entries are in reverse order, that is, thefirst field's offset is at the end of the list.

An example: suppose there are three columns. The first column'slength is 1, the second column's length
is 2, and the third column'slength is 4. In this case, the offset values are, respectively, 1, 3 (1+2), and 7
(1+2+4). Because values are reversed, a core dump of the Field Start Offsets would look like this:

07, 03, 01.

141

| nnoDB Storage Engine

There are two complications for special cases:

» Complication #1: The size of each offset can be either one byte or two bytes. One-byte offsets are
only usableif thetotal record sizeislessthan 127. Thereisaflag in the "Extra Bytes' part which
will tell you whether the sizeis one byte or two bytes.

e Complication #2: The most significant bits of an offset may contain flag values. The next two para-
graphs explain what the contents are.

When The Size Of Each Offset Is One Byte

* 1bit=0if fieldisnon-NULL, = 1 if field is NULL

* 7 bits = the actual offset, a number between 0 and 127

When The Size Of Each Offset s Two Bytes

» 1bit=0if fieldisnon-NULL, = 1if field is NULL
* 1bit=0if field ison same page as offset, = 1 if field and offset are on different pages

» 14 bits = the actual offset, a number between 0 and 16383

It isunlikely that the "field and offset are on different pages' unless the record contains alarge BL OB.

11.1.1.2. EXTRA BYTES

The Extra Bytes are afixed six-byte header.

Name Size Description

info_bits:

0 1 bit unused or unknown

0 1 bit unused or unknown

deleted flag 1 bit 1if record is deleted

min_rec_flag 1 bit 1if record is predefined minimum record

n_owned 4 hits number of records owned by this record

heap no 13 hits record's order number in heap of index page

n_fields 10 hits number of fieldsin thisrecord, 1 to 1023

lbyte offs flag 1 bit 1if each Field Start Offsetsis 1 bytelong (thisitem is
also called the "short” flag)

next 16 bits 16 hits pointer to next record in page

TOTAL 48 bits

Total sizeis48 bits, which issix bytes.

If you're just trying to read the record, the key bit in the Extra Bytesis 1byte offs flag — you need to
know if 1byte offs flagis1 (i.e.: "short 1-byteoffsets’) or O (i.e.: "2-byte offsets").

142

| nnoDB Storage Engine

Given apointer to the Origin, | nnoDB finds the start of the record as follows:

Let X = n_fields (the number of fieldsis by definition equal to the number of entriesin the Field
Start Offsets Table).

If 1byte offs flag equals O, then let X = X * 2 because there are two bytes for each entry instead of
just one.

Let X = X + 6, because the fixed size of ExtraBytesis 6.

The start of the record is at (pointer value minus X).

11.1.1.3. FIELD CONTENTS

The Field Contents part of the record has al the data. Fields are stored in the order they were defined in.

There are no markers between fields, and there is no marker or filler at the end of arecord.

Here's an example.

| made a table with this definition:

CREATE TABLE T

(FI ELD1 VARCHAR(3), FIELD2 VARCHAR(3), FIELD3 VARCHAR(3))
Type=I nnoDB;

To understand what follows, you must know that table T has six columns — not three — because

| nnoDB automatically added three "system columns" at the start for its own housekeeping. It hap-
pens that these system columns are the row 1D, the transaction D, and the rollback pointer, but their
values don't matter now. Regard them as three black boxes.

| put some rows in the table. My last three | NSERT statements were:

INSERT INTO T VALUES (' PP, 'PP', 'PP);
INSERT INTOT VALUES ('Q, 'Q, 'Q);
INSERT INTO T VALUES (' R, NULL, NULL);

| ran Borland's TDUMP to get a hexadecimal dump of the contents of \ nysql \ dat a\ i bdat al,
which (in my case) isthe MySQL/I nnoDB datafile (on Windows).

Here is an extract of the dump:

Address Valuesin Hexadecimal Valuesin ASCI|

0D4280: 00 00 2D 00 84 4F 4F 4F 4F 4F 4F 4F |..-.. 0O000CO0Q0Q. .
4F 4F 19 17

0D4290: 15 13 0C 06 00 00 78 OD 02 BF 00 00 |...... D SN !
00 00 04 21

0OD42A0: 00 00 00 00 09 2A 80 00 00 00 2D 00 |..... *.o...-..PPP
84 50 50 50

0D42B0: 50 50 50 16 15 14 13 0C 06 00 00 80 |PPP.............
0D 02 E1 00

0D42C0: 00 00 00 04 22 00 00 00O OO0 09 2B 80 |...."..... oo
00 00 00 2D

143

| nnoDB Storage Engine

0D42D0: 00 84 51 51 51 94 94 14 13 0C 06 00

00 88 0D 00

OD42EO: 74 00 00 00 OO 04 23 00 00 00 00 09 |t

2C 80 00 00

OD42F0: 00 2D 00 84 52 00 00 OO0 00 OO0 00 OO |.-..

00 00 00 00

A reformatted version of the dump, showing only the relevant bytes, looks like this (I've put aline break
after each field and added |abels):

Reformatted Hexadecimal Dump

17 15 13 0C 06 Field Start O fsets /* First Row */
00 78 0D 02 BF Extra Bytes

00 00 00 04 21 System Col utm #1

00 00 00 09 2A System Col utmm #2

00 00 00 2D 00 84 System Col umm #3

50 Fieldl 'PP

50 Field2 'PP

50 Field3 'PP

15 14 13 0C 06 Field Start Ofsets /* Second Row */
00 80 OD 02 E1 Extra Bytes

00 00 00 04 22 System Col umm #1

00 00 00 09 2B 80 System Col umm #2

00 00 2D 00 84 System Col urm #3

Fieldl 'Q

Field2 'Q

Field3 'Q

94 14 13 0C 06 Field Start Ofsets /* Third Row */
00 88 OD 00 74 Extra Bytes

00 00 00 04 23 System Col utm #1

00 00 00 09 2C System Col unm #2

00

00 00 2D 00

Fieldl 'R

84 System Col um #3

Y ou won't need explanation if you followed everything I've said, but I'll add helpful notes for the three
trickiest details.

Helpful Notes About "Field Start Offsets":

Notice that the sizes of the record's fields, in forward order, are: 6, 6, 7, 2, 2, 2. Since each offset is
for the start of the "next" field, the hexadecimal offsets are 06, Oc (6+6), 13 (6+6+7), 15 (6+6+7+2),
17 (6+6+7+2+2), 19 (6+6+7+2+2+2). Reversing the order, the Field Start Offsets of the first record
are: 19, 17, 15, 13, Oc, 06.

Helpful Notes About "Extra Bytes":

Look at the Extra Bytes of the first record: 00 00 78 0D 02 BF. Thefourth byteisOD hexa-

deci mal ,whichis1101 bi nary ...the110isthelast bitsof n_fields (110 bi nary is6 which
isindeed the number of fieldsin the record) and the final 1 bit is 1byte offs flag. The fifth and sixth
bytes, which contain 02 BF, constitute the "next" field. Looking at the original hexadecimal dump,
at address 0D42BF (which is position 02BF within the page), you'll see the beginning bytes of Sys-
tem Column #1 of the second row. In other words, the "next" field points to the "Origin" of the fol-
lowing row.

Helpful Notes About NULLSs:

For the third row, | inserted NULLsin FIELD2 and FIELD3. Thereforein the Field Start Offsets the
top bitison for thesefields (the valuesare 94 hexadeci nal , 94 hexadeci mal , instead of

144

| nnoDB Storage Engine

14 hexadeci mal ,14 hexadeci nal). And the row is shorter because the NUL Ls take no
space.

11.1.2. Where to Look For More Information

Refer ences:

The most relevant | nnoDB source-code filesarer enOr ec. ¢, renDrec. i ¢c,andr enDr ec. h inthe
r em("Record Manager") directory.

11.2. | nnoDB Page Structure

I nnoDB stores all records inside a fixed-size unit which is commonly called a"page” (though | nnoDB
sometimes callsit a"block™ instead). Currently all pages are the same size, 16KB.

A page contains records, but it also contains headers and trailers. I'll start this description with a high-

altitude view of a page's parts, then I'll describe each part of apage. Finaly, I'll show an example. This
discussion deals only with the most common format, for the leaf page of adatafile.

11.2.1. High-Altitude View

An | nnoDB page has seven parts:

* Fil Header

e Page Header

* Infimum + Supremum Records

* User Records

* Free Space

e Page Directory

* Fil Traler

Asyou can see, a page has two header/trailer pairs. The inner pair, "Page Header" and "Page Directory",
are mostly the concern of the \page program group, while the outer pair, "Fil Header" and "Fil Trailer",
are mostly the concern of the \fil program group. The "Fil" header also goes goes by the name of "File
Page Header".

Sandwiched between the headers and trailers, are the records and the free (unused) space. A page aways
begins with two unchanging records called the Infimum and the Supremum. Then come the user records.

Between the user records (which grow downwards) and the page directory (which grows upwards) there
is space for new records.

11.2.1.1. Fil Header

The Fil Header has eight parts, as follows:

Name Size Remarks
FI L_PAGE_SPACE 4 41D of the space the pageisin

145

| nnoDB Storage Engine

FI L_PAGE OFFSET |4 ordinal page number from start of space
FI L_PAGE_PREV 4 offset of previous pagein key order
FI L_PAGE_NEXT 4 offset of next page in key order
FI L_PAGE LSN 8 log serial number of page's latest log record
FI L_PAGE_TYPE 2 current defined types are: FI L_PAGE | NDEX,
FI L_PAGE_UNDO LOG, FI L_PAGE | NODE,
FI L_PAGE | BUF_FREE_LI ST
FIL_PAGE FILE FL |8 "the file has been flushed to disk at least up to thislsn" (log serial
USH_LSN number), valid only on the first page of thefile
FI L_PAGE ARCH LO |4 the latest archived log file number at the time that
G _NO FI L_PAGE_FI LE_FLUSH_LSNwaswritten (in the log)

 FI L_PAGE SPACE isanecessary identifier because different pages might belong to different
(table) spaces within the same file. The word "space” is generic jargon for either "log" or "ta-
blespace”.

e FIL_PAGE PREVandFI L_PAGE NEXT arethe page's "backward" and "forward" pointers. To
show what they're about, I'll draw atwo-level B-tree.

Everyone has seen a B-tree and knows that the entries in the root page point to the leaf pages. (I in-
dicate those pointers with vertical '[' barsin the drawing.) But sometimes people miss the detail that
leaf pages can aso point to each other (I indicate those pointers with a horizontal two-way pointer
'<-->'in the drawing). This feature allows | nnoDB to navigate from leaf to leaf without having to
back up to the root level. This is a sophistication which you won't find in the classic B-tree, which is
why | nnoDB should perhaps be called a B+-tree instead.

» ThefiddsFI L_PAGE FI LE FLUSH LSN, FI L_PAGE PREV, and FI L_PAGE NEXT al have
to do with logs, so I'll refer you to my article “How Logs Work With MySQL And InnoDB” on
devarticl es.com

e FIL _PACE FILE FLUSH LSNandFI L_PAGE ARCH LOG NOarevalid only for thefirst page
of adatafile.

11.2.1.2. Page Header

The Page Header has 14 parts, as follows:

Name Size Remarks

PAGE N DIR SLOTS |2 number of directory slotsin the Page Directory part; initia value =
2

PAGE_HEAP_TOP 2 record pointer to first record in heap

PAGE_N_HEAP 2 number of heap records; initial value =2

146

| nnoDB Storage Engine

PAGE_FREE 2 record pointer to first free record

PAGE GARBAGE 2 "number of bytesin deleted records"

PAGE_LAST | NSERT |2 record pointer to the last inserted record

PAGE DI RECTION |2 either PAGE_LEFT, PAGE_RI GHT, or PAGE_NO DI RECTI ON

PAGE_N DI RECTI ON |2 number of consecutive insertsin the same direction, e.g. "last 5
were dl to the left"

PAGE_N_RECS 2 number of user records

PAGE MAX TRX ID |8 the highest 1D of atransaction which might have changed a record
on the page (only set for secondary indexes)

PAGE LEVEL 2 level within theindex (O for aleaf page)

PAGE | NDEX I D 8 identifier of the index the page belongs to

PAGE BTR SEG LEA |10 "file segment header for the leaf pagesin aB-tree" (thisisirrelev-

F ant here)

PAGE BTR SEG TOP |10 "file segment header for the non-leaf pagesin aB-tree" (thisisir-
relevant here)

(Note: I'll clarify what a"heap" iswhen | discuss the User Records part of the page.)

Some of the Page Header parts require further explanation:

*» PAGE_FREE:

Records which have been freed (due to deletion or migration) arein aone-way linked list. The
PAGE_FREE pointer in the page header points to the first record in the list. The "next" pointer in the
record header (specifically, in the record's Extra Bytes) points to the next record in the list.

« PAGE_DI RECTI ONand PAGE_N_DI RECTI ON:

It's useful to know whether inserts are coming in a constantly ascending sequence. That can affect
I nnoDB's efficiency.

* PAGE_HEAP_TOP and PAGE_FREE and PAGE_LAST_| NSERT:

Warning: Like all record pointers, these point not to the beginning of the record but to its Origin (see
the earlier discussion of Record Structure).

« PAGE_BTR_SEG LEAF and PAGE_BTR _SEG TOP:

These variables contain information (space |D, page number, and byte offset) about index node file
segments. | nnoDB uses the information for alocating new pages. There are two different variables
because | nnoDB allocates separately for leaf pages and upper-level pages.

11.2.1.3. The Infimum and Supremum Records

"Infimum" and "supremum™ are real English words but they are found only in arcane mathematical treat-
ises, and in | nnoDB comments. To | nnoDB, an infimum is lower than the the lowest possible real
value (negative infinity) and a supremum is greater than the greatest possible real value (positive infin-
ity). | nnoDB sets up an infimum record and a supremum record automatically at page-create time, and
never deletes them. They make a useful barrier to navigation so that "get-prev" won't pass the beginning
and "get-next" won't pass the end. Also, the infimum record can be a dummy target for temporary record
locks.

147

| nnoDB Storage Engine

The | nnoDB code comments distinguish between "the infimum and supremum records’ and the "user
records’ (all other kinds).

It's sometimes unclear whether | nnoDB considers the infimum and supremum to be part of the header
or not. Their sizeisfixed and their position is fixed, so | guess so.

11.2.1.4. User Records

In the User Records part of a page, you'll find all the records that the user inserted.

There are two ways to navigate through the user records, depending whether you want to think of their
organization as an unordered or an ordered list.

An unordered list is often called a"heap”. If you make a pile of stones by saying "whichever one | hap-
pen to pick up next will go on top" — rather than organizing them according to size and colour — then
you end up with aheap. Similarly, | nnoDB does not want to insert new rows according to the B-tree's
key order (that would involve expensive shifting of large amounts of data), so it inserts new rows right
after the end of the existing rows (at the top of the Free Space part) or wherever there's space left by a
deleted row.

But by definition the records of a B-tree must be accessible in order by key value, so thereis arecord
pointer in each record (the "next" field in the Extra Bytes) which points to the next record in key order.
In other words, the records are a one-way linked list. So | nnoDB can access rows in key order when
searching.

11.2.1.5. Free Space

| think it's clear what the Free Space part of apage is, from the discussion of other parts.

11.2.1.6. Page Directory

The Page Directory part of a page has a variable number of record pointers. Sometimes the record point-
ersare caled "dots" or "directory slots'. Unlike other DBMSs, | nnoDB does not have aslot for every
record in the page. Instead it keeps a sparse directory. In afullish page, there will be one slot for every
Six records.

The dotstrack the records logical order (the order by key rather than the order by placement on the
heap). Therefore, if therecordsare’ A' 'B' 'F ' D thedotswill be(pointer to "A")
(pointer to 'B') (pointer to "D) (pointer to 'F').Becausethedotsareinkey
order, and each dot has afixed size, it's easy to do a binary search of the records on the page viathe
slots.

(Since the Page Directory does not have a dlot for every record, binary search can only give arough pos-
ition and then | nnoDB must follow the "next" record pointers. | nnoDB's "sparse slots" policy also ac-

counts for the n_owned field in the Extra Bytes part of arecord: n_owned indicates how many more re-
cords must be gone through because they don't have their own slots.)

11.2.1.7. Fil Trailer

The Fil Trailer has one part, as follows:

Name Size Remarks

FI L_PAGE END LSN |8 low 4 bytes = checksum of page, last 4 bytes = same as
FI L_PAGE LSN

148

| nnoDB Storage Engine

Thefinal part of a page, thefil trailer (or File Page Trailer), exists because | nnoDB's architect worried
about integrity. It'simpossible for a page to be only half-written, or corrupted by crashes, because the
log-recovery mechanism restores to a consistent state. But if something goes really wrong, then it's nice
to have a checksum, and to have avalue at the very end of the page which must be the same asavalue at
the very beginning of the page.

11.2.2. Example

For this example, | used Borland's TDUMP again, as| did for the earlier chapter on Record Format. This
iswhat a page looked like:

Address Valuesin Hexadecimal Valuesin ASCI|

0D4000: 00 00 00 00 00 00 00 35 FF FF FF FF |....... 5.
FF FF FF FF

0D4010: 00 00 00 00 OO0 00 E2 64 45 BF 00 00 |....... dE.......
00 00 00 00

0D4020: 00 00 OO0 00 OO0 00 00 05 02 F5 00 12 |................
00 00 00 00

0D4030: 02 E1 00 02 00 OF 00 10 00 00 00 OO0 |................
00 00 00 00

0D4040: 00 00 OO0 OO0 OO OO0 OO 00 00 14 00 00 . vvvv vt
00 00 00 00

0D4050: 00 02 16 B2 00 00 00 00 00 00 00 02 |................
15 F2 08 01

0D4060: 00 00 03 00 89 69 6E 66 69 6D 75 6D |..... infimm...
00 09 05 00

0D4070: 08 03 00 00 73 75 70 72 65 6D 75 6D |....supremum"”..
00 22 1D 18

0D4080: 13 0C 06 00 00 10 OD 00 B7 00 00 00 |......cvvvvvnn..
00 04 14 00

0D4090: 00 00 00 09 1D 80 00 00 00 2D 00 84 |......... -. . AAAA
41 41 41 41

OD40AO0: 41 41 41 41 41 41 41 41 41 41 41 1F |AAAAAAAAAAA.
1B 17 13 0C

OD7FEO: 00 00 00 00 OO0 OO 00 00 00 00 00 00 |............... t
00 00 00 74

OD7FFO: 02 47 01 AA 01 OA 00 65 BAE0O AA71 |.G....e..Q...d
00 00 E2 64

Let's skip past the first 38 bytes, which are Fil Header. The bytes of the Page Header start at location
0d4026 hexadeci nmal :

L ocation Name Description
00 05 PAGE N DI R SLOTS |Thereare5 directory dots.
02 F5 PAGE_HEAP_TOP At location 0402F5, not shown, is the beginning

of free space. Maybe a better name would have
been PAGE_HEAP_END.

149

| nnoDB Storage Engine

00 12 PAGE_N_HEAP There are 18 (hexadecimal 12) recordsin the page.

00 00 PAGE FREE There are zero free (deleted) records.

00 00 PAGE_GARBAGE There are zero bytesin deleted records.

02 E1 PAGE_LAST_| NSERT |Thelast record was inserted at location 02E1, not
shown, within the page.

00 02 PAGE DI RECTI ON A glance at pageOpage.h will tell you that 2 isthe
#defined value for PAGE_RI GHT.

00 OF PAGE N _DI RECTI ON |Thelast 15 (hexadecimal OF) inserts were al done
"to the right" because | was inserting in ascending
order.

00 10 PAGE_N_RECS There are 16 (hexadecimal 10) user records. Notice
that PAGE_N_RECS is smaller than the earlier
field, PAGE_N_HEAP.

00 00 00 00 00 PAGE_MAX_TRX_ I D

00 00

00 00 PAGE_LEVEL Zero because thisis aleaf page.

00 00 00 00 00 PAGE_| NDEX_I D Thisisindex number 20.

00 00 14

00 00 00 00 00 PAGE_BTR_SEG LEA

00 00 02 16 B2 F

00 00 00 00 00 PAGE BTR SEG TOP

00 00 02 15 F2

Immediately after the page header are the infimum and supremum records. Looking at the "Values In
ASCII" column in the hexadecimal dump, you will see that the contents are in fact the words "infimum”
and "supremum" respectively.

Skipping past the User Records and the Free Space, many bytes later, is the end of the 16KB page. The
values shown there are the two trailers.

Thefirst trailer (00 74, 02 47, 01 AA, 01 0A, 00 65)isthepagedirectory. It has5
entries, because the header field PAGE_N DI R_SLOTS saysthereare 5.

Thenexttrailer (3A EO AA 71, 00 00 E2 64)isthefil trailer. Notice that the last four bytes,
00 00 E2 64, appeared beforein the fil header.

11.2.3. Where to Look For More Information

References:

The most relevant | nnoDB source-code files are pageOpage. ¢, pageOpage. i ¢, and
pageOpage. h inthe page directory.

150

Chapter 12. Writing a Custom Storage Engine
12.1. Introduction

With MySQL 5.1, MySQL AB hasintroduced a pluggabl e storage engine architecture that makes it pos-
sible to create new storage engines and add them to arunning MySQL server without recompiling the
server itself.

This architecture makes it easier to develop new storage engines for MySQL and deploy them.

This chapter isintended as a guide to assist you in devel oping a storage engine for the new pluggable
storage engine architecture.

Additional resources

» A forum dedicated to custom storage enginesis available at http://forums.mysqgl.conVlist.php?94.

12.2. Overview

The MySQL server is built in amodular fashion:

Figure 12.1. MySQL architecture

; Connectors
%l Mative C API, JDBC, ODBC, .MET, PHP, Python, Perl. Ruby, Cobol
;ﬁ HF’SQL Server
(-] il
Connection Pool
Management

Authentication -Thread Reuse - Connection Limits - Check Memory - Caches
Services L

& Urilities
Backup & I/ SQL Interface Parser Optimizer Caches & Buﬂer;\
R A
sef::ﬁ{: ML, DOL Query Translation, Access Paths, Global and
Replication, Stored Procedures Object Privilege Statistics Engine Specific
Cluster, iews, Triggers, elc. Caches & Buffers
Adm inigtration,
Configuration,
Magr ation,

_ B Matadata l‘\‘_

¥ Pluggable Storage Engines
R Memory, Index & Storage Management

‘Tﬂ 3} gsl_:ﬁ] a| _i,...lﬁl 5 ;11

MyrISAM InnoDB Archive Federated Maml:m,r Mergq {!Iuster BDB Custom

File System Files & Logs
NTFS - NFS Eedo, Undo, Data, Index, Binary,

SAN - NAS Error, Query, and Sow

151

http://forums.mysql.com/list.php?94

Writing a Custom Storage Engine

The storage engines manage data storage and index management for MySQL . The MySQL server com-
muni cates with the storage engines through a defined API.

Each storage engine is a class with each instance of the class communicating with the MySQL server
through a specia handl er interface.

Handlers are instanced on the basis of one handler for each thread that needs to work with a specific ta-
ble. For example: If three connections all start working with the same table, three handler instances will
need to be created.

Once ahandler instanceis created, the MySQL server issues commands to the handler to perform data
storage and retrieval tasks such as opening atable, manipulating rows, and managing indexes.

Custom storage engines can be built in a progressive manner: Developers can start with aread-only stor-
age engine and later add support for | NSERT, UPDATE, and DEL ETE operations, and even later add
support for indexing, transactions, and other advanced operations.

12.3. Creating Storage Engine Source Files

The easiest way to implement a new storage engine is to begin by copying and modifying the EXAMPLE
storage engine. Thefilesha_exanpl e. cc and ha_exanpl e. h canbefound inthest or age/ ex-
anpl e directory of the MySQL 5.1 source tree. For instructions on how to obtain the 5.1 source tree,
see MySQL Installation Using a Source Distribution

[http://dev.mysql.com/doc/refman/5.1/en/instal ling-source.html].

When copying the files, change the namesfrom ha_exanpl e. cc and ha_exanpl e. h to something
appropriate to your storage engine, suchasha_f oo. cc and ha_f 0o. h.

After you have copied and renamed the files you must replace all instances of EXAMPLE and exanpl e
with the name of your storage engine. If you are familiar with sed, these steps can be done automatic-
ally (in this example, the name of your storage engine would be “FOQ"):

sed s/ EXAMPLE/ FOO g ha_exanple. h | sed s/exanpl e/foo/g ha_foo.h
sed s/ EXAMPLE/ FOO' g ha_exanpl e.cc | sed s/exanpl e/foo/g ha_foo.cc

12.4. Creating the handl ert on

Thehandl er t on (short for “handler singleton”) defines the storage engine and contains method
pointers to those methods that apply to the storage engine as awhole, as opposed to methods that work
on a per-table basis. Some examples of such methods include transaction methods to handle commits
and rollbacks.

Here's an example from the EXAVPLE storage engine:

handl ert on exanpl e_ht on= {
" EXAMPLE",
SHOW OPTI ON_YES,
"Exanpl e storage engi ne",
DB_TYPE_EXAMPLE_DB,

NULL, /* Initialize */

0, /* slot */

0, /* savepoint size. */
NULL, /* cl ose_connection */
NULL, /* savepoi nt */

NULL, /* rol |l back to savepoint */
NULL, /* rel ease savepoi nt */
NULL, [* commit */

NULL, /* rol |l back */

NULL, [* prepare */

NULL, /* recover */

NULL, /* comm t_by xid */
NULL, /* roll back_by xid */

152

http://dev.mysql.com/doc/refman/5.1/en/installing-source.html

Writing a Custom Storage Engine

NULL, [* create_cursor_read_view */

NULL, /* set_cursor_read_view */

NULL, /* close_cursor_read_view */

exarrpl e_creat e_handl er, /* Create a new handl er */
NULL, /* Drop a dat abase */

NULL, /* Panic call */

NULL, /* Rel ease tenporary |atches */
NULL, /* Update Statistics */

NULL, [* Start Consistent Snapshot */
NULL, /* Flush | ogs */

NULL, /* Show status */

NULL, /* Replication Report Sent Binlog */

HTON_CAN_RECREATE

Thisisthe definition of the handl er t on from handl er . h:

typedef struct
{

const char *nane;

SHOW COVP_OPTI ON st at e;

const char *comment;

enum db_t ype db type

bool (*init)();

uint slot;

ui nt savepoi nt _of f set;

nt (*close_connection)(THD *thd),

nt (*savepoint_set)(THD *thd, void *sv);

nt (*savep0| nt _rol | back) (THD *thd, void *sv);

nt (*savepoi nt “rel ease) (THD *thd, void *sv);
nt (*commt)(THD *thd, bool all);

nt (*rollback)(THD *t hd bool al i)

nt (*prepare)(THD *thd, bool all);

nt (*recover)(XID*X|d list, uint len);

nt (*commit_by xid)(XID *xi d)
nt (*roI | back_by_xi d) (XI D *xi d)
void *(*create_cursor_read_vi ew)()
voi d (*set_cursor_read_vi ew) (voi d *);
void (*close_cursor_read_view) (void *);
handl er *(*create)(TABLE *tabl e);
voi d (*drop_dat abase) (char* path);
int (*panic)(enum ha_panic_function flag);
int (*rel ease_tenporary_| atches) (THD *t hd);
i nt (*update statistics)();
int (*start_consistent snapshot)(THD *t hd) ;
bool (*flush_l ogs)();
bool (*show st at us)(THD *thd, stat_print_fn *print, enum ha_stat type at);
int (*repl_report_sent_binl og)(THD *thd, char *log file_name, ny_off _t end offset)
ui nt 32 fl ags;
} handl erton;

There are atotal of 30 handlerton elements, only afew of which are mandatory (specifically the first
four elementsand thecr eat e() method).

1. Thename of the storage engine. Thisisthe name that will be used when creating tables (CREATE
TABLE ... ENG NE = FQOQ,).

2. Thevalueto bedisplayedinthe st at us field when a user issues the SHOWV STORAGE EN-
G NES command.

3. The storage engine comment, a description of the storage engine displayed when using the SHOW
STORAGE ENG NES command.

4. Aninteger that uniquely identifies the storage engine within the MySQL server. The constants used
by the built-in storage engines are defined in the handl er . h file. Custom engines should use
DB _TYPE_CUSTOM

5. A method pointer to the storage engine initializer. This method is only called once when the server
starts to allow the storage engine class to perform any housekeeping that is necessary before hand-

153

Writing a Custom Storage Engine

10.

11.

12.

13.

14.
15.

16.
17.
18.
19.

lers are instanced.

The slot. Each storage engine has its own memory area (actually apointer) inthet hd, for storing
per-connection information. It isaccessed ast hd- >ha_dat a[f oo_ht on. sl ot] . Theslot
number isinitialized by MySQL after f oo_i ni t () iscalled. For more information on thet hd,
see Section 12.16.3, “Implementing ROLLBACK”.

The savepoint offset. To store per-savepoint data the storage engine is provided with an area of a
requested size (0, if no savepoint memory is necessary).

The savepoint offset must be initialized statically to the size of the needed memory to store per-
savepoint information. After f oo_i ni t itischanged to be an offset to the savepoint storage area
and need not be used by the storage engine.

For more information, see Section 12.16.5.1, “ Specifying the Savepoint Offset”.

Used by transactional storage engines, clean up any memory allocated in their slot.

A method pointer to the handler'ssavepoi nt _set () method. Thisis used to create a savepoint
and storeit in memory of the requested size.

For more information, see Section 12.16.5.2, “Implementing the savepoi nt _set Method”.

A method pointer to the handler'sr ol | back_t o_savepoi nt () method. Thisisused to return
to a savepoint during a transaction. It's only populated for storage engines that support savepoints.

For more information, see Section 12.16.5.3, “Implementing the savepoi nt _r ol | back()
Met hod”.

A method pointer to the handler'sr el ease_savepoi nt () method. Thisis used to release the
resources of a savepoint during atransaction. It's optionally populated for storage engines that sup-
port savepoints.

For more information, see Section 12.16.5.4, “Implementing the savepoi nt _r el ease()
Method”.

A method pointer to the handler'sconmi t () method. Thisis used to commit atransaction. It's
only populated for storage engines that support transactions.

For more information, see Section 12.16.4, “Implementing COMMIT".

A method pointer to the handler'sr ol | back() method. Thisisused to roll back atransaction. It's
only populated for storage engines that support transactions.

For more information, see Section 12.16.3, “Implementing ROLLBACK”.
Required for XA transactional storage engines. Prepare transaction for commit.

Required for XA transactional storage engines. Returns alist of transactions that are in the prepared
state.

Required for XA transactional storage engines. Commit transaction identified by XID.
Required for XA transactional storage engines. Rollback transaction identified by XID.
Called when acursor is created to allow the storage engine to create a consistent read view.

Called to switch to a specific consistent read view.

154

Writing a Custom Storage Engine

20.
21.

22.

23.
24.
25.
26.
27.
28.

29.
30.

Called to close a specific read view.
MANDATORY - Construct and return a handler instance.
For more information, see Section 12.5, “Handling Handler Instantiation”.

Used if the storage engine needs to perform specia steps when aschemais dropped (such asina
storage engine that uses tabl espaces).

Cleanup method called during server shutdown and crashes.

I nnoDB-specific method.

I nnoDB-specific method called at start of SHOW ENG NE | nnoDB STATUS.
Method called to begin a consistent read.

Called to indicate that logs should be flushed to reliable storage.

Provides human readabl e status information on the storage engine for SHOW ENG NE f oo
STATUS.

I nnoDB-specific method used for replication.

Handlerton flags that indicate the capabilities of the storage engine. Possible values are defined in
sql / handl er . h and copied here:

#defi ne HTON_NO_FLAGS 0

#defi ne HTON_CLOSE_CURSORS AT COMM T (1 << 0)
#defi ne HTON_ALTER_NOT_SUPPORTED (1 << 1)
#def i ne HTON_CAN_RECREATE (1 << 2)
#def i ne HTON_FLUSH_AFTER RENAME (1 << 3)
#def i ne HTON_NOT_USER SELECTABLE (1 << 4)

HTON_ALTER_NOT_SUPPORTED s used to indicate that the storage engine cannot accept AL -
TER TABLE statements. The FEDERATED storage engine is an example.

HTON_FLUSH AFTER RENANE indicatesthat FLUSH LOGS must be called after atable re-
name.

HTON_NOT_USER_SELECTABLE indicates that the storage engine should not be shown when a
user calls SHOW STORAGE ENG NES. Used for system storage engines such as the dummy stor-
age engine for binary logs.

12.5. Handling Handler Instantiation

The first method call your storage engine needs to support is the call for a new handler instance.

Beforethe handl er t on isdefined in the storage engine source file, a method header for the instanti-
ation method must be defined. Here is an example from the CSV engine:

static handler* tina_create_handl er (TABLE *tabl e);

Asyou can see, the method accepts a pointer to the table the handler is intended to manage, and returns
ahandler object.

After the method header is defined, the method is named with a method pointer inthecr eat e()
handl er t on element, identifying the method as being responsible for generating new handler in-

155

Writing a Custom Storage Engine

stances.

Hereis an example of the My| SAMstorage engine's instantiation method:

static handl er *nyi sam create_handl er (TABLE *t abl e)

return new ha_nyi san(tabl e);

This call then worksin conjunction with the storage engine's constructor. Here is an example from the
FEDERATED storage engine:

ha_f eder at ed: : ha_f eder at ed(TABLE *t abl e_ar g)
:handl er (&f ederat ed_hton, table_arg),
nysql (0), stored_result(0), scan_flag(0),
ref | engt h(si zeof (MYSQL_ROW OFFSET)), current_position(0)
{1
And here's one more example from the EXAMPLE storage engine:

ha_exanpl e: : ha_exanpl e(TABLE *t abl e_ar g)
: handl er (&exanpl e_ht on, tabl e_arg)
{}

The additional elements in the FEDERATED example are extrainitializations for the handler. The min-
imum implementation required isthe handl er () initialization shown in the EXAMPLE version.

12.6. Defining Filename Extensions

Storage engines are required to provide the MySQL server with alist of extensions used by the storage
engine with regard to a given table, its data and indexes.

Extensions are expected in the form of a null-terminated string array. The following isthe array used by
the CSV engine:

static const char *ha_tina_exts[] = {

NullS '
e

Thisarray isreturned when thebas_ext () method is called:

const char **ha_tina::bas_ext() const

return ha_tina_exts;

By providing extension information you can also omit implementing DROP TABLE functionality as the
MySQL server will implement it for you by closing the table and deleting all files with the extensions

you specify.
12.7. Creating Tables

Once a handler isinstanced, the first operation that will likely be required is the creation of atable.

Y our storage engine must implement the cr eat e() virtual method:

virtual int create(const char *name, TABLE *form HA CREATE_| NFO *i nf o) =0;

This method should create all necessary files but does not need to open the table. The MySQL server

156

Writing a Custom Storage Engine

will call for the table to be opened later on.

The * nane parameter isthe name of the table. The * f or mparameter is a TABLE structure that defines
the table and matches the contents of thet abl enane. f r mfile already created by the MySQL server.
Storage engines must not modify thet abl enane. f r mfile.

The*i nf o parameter is a structure containing information on the CREATE TABLE statement used to
create the table. The structure is defined in hand! er . h and copied here for your convenience:

typedef struct st_ha_create_information

CHARSET | NFO *t abl e_charset, *default _tabl e _charset;

LEX_STRI NG connect _stri ng;

const char *comment, *password;

const char *data_file_name, *index_file_nane;

const char *ali as;

ul ongl ong max_r ows, m n_r ows;

ul ongl ong aut o_i ncrenment _val ue;

ul ong tabl e_opti ons;

ul ong avg_row_| engt h;

ul ong rai d_chunksi ze;

ul ong used_fi el ds;

SQL_LI ST nerge_list;

enum db_t ype db_type;

enum row_type row_type;

uint null _bits; /* NULL bits at start of record */
ui nt options; /* OR of HA CREATE_ options */
uint raid_type,raid_chunks;

uint nerge_insert_nethod;

uint extra_size;

/ gth of extra data segnment */
bool tabl e_exi sted; [* 1 i

/

/

n
create if table existed */
if no ha _create_table() */
i

bool frmonly;
f table has a VARCHAR */

bool varchar;
} HA_CREATE_I| NFQ,

e
n
1
1

A basic storage engine can ignore the contents of * f or mand *i nf o, asall that isreally required isthe
creation and possibly the initialization of the data files used by the storage engine (assuming the storage
engine is file-based).

For example, here is the implementation from the CSV storage engine:

int ha_tina::create(const char *name, TABLE *tabl e_arg,
HA CREATE_| NFO *cr eat e_i nf 0)
{

char nanme_buf f [FN_REFLEN] ;

File create_file;

DBUG ENTER("ha_tina::create");

if ((create_file= ny_create(fn_format(nanme_buff, nane, "", ".CSV',
MY_REPLACE_EXT] MY_UNPACK_FI LENANE) , O,
O RDWR | O TRUNC, WWF(MY_WVE))) < 0)

DBUG_RETURN(- 1) ;

ny_cl ose(create_file, MYF(0));

DBUG_RETURN(0)

In the preceding example, the CSV engine does not refer at al tothe*t abl e_ar g or
*creat e_i nf o parameters, but smply creates the required data files, closes them, and returns.

Theny_creat e andny_cl ose methods are helper methods defined in
src/include/ nmy_sys. h.

12.8. Opening a Table

Before any read or write operations are performed on atable, the MySQL server will call the hand-
ler::open() method to open the table data and index files (if they exist).

157

Writing a Custom Storage Engine

int open(const char *nane, int node, int test_if_|ocked);

Thefirst parameter is the name of the table to be opened. The second parameter determines what file to
open or what operation to take. The values are defined in handl er . h and are copied here for your

convenience:
O RDONLY - Open read only
O_RDWR - Open read/wite

Thefinal option dictates whether the handler should check for alock on the table before opening it. The
following options are available:

#define HA OPEN ABORT |F LOCKED 0 /* default */

#defi ne HA OPEN WAI T_I| F_LOCKED 1

#define HA OPEN | GNORE_| F_LOCKED 2

#defi ne HA OPEN_TMP_TABLE 4 |/* Table is a tenp table */
#defi ne HA_OPEN DELAY KEY WRITE 8 /* Don't update index */
#defi ne HA_OPEN ABORT_| F_CRASHED 16

#defi ne HA_OPEN_FOR_REPAI R 32 /* open even if crashed */

Typically your storage engine will need to implement some form of shared access control to prevent file
corruption is a multi-threaded environment. For an example of how to implement file locking, see the
get _share() andfree_share() methodsof sql / exanpl es/ ha_ti na. cc.

12.9. Implementing Basic Table Scanning

The most basic storage engines implement read-only table scanning. Such engines might be used to sup-
port SQL queries of logs and other data files that are populated outside of MySQL.

The implementation of the methods in this section provide the first steps toward the creation of more ad-
vanced storage engines.

The following shows the method calls made during a nine-row table scan of the CSV engine:

ha_tina::store_| ock

ha_tina:: external _| ock

ha_tina::info

ha_tina::rnd_init

ha_tina::extra - ENUM HA EXTRA CACHE Cache record in HA rrnd()
ha_ti na::rnd_next

ha_tina::rnd_next

ha_ti na:: rnd_next

ha_ti na:: rnd_next

ha_ti na:: rnd_next

ha_ti na::rnd_next

ha_ti na:: rnd_next

ha_tina::rnd_next

ha_tina::rnd_next

ha_tina::extra - ENUM HA EXTRA NO CACHE End caching of records (def)
ha_tina:: external _| ock

ha_tina::extra - ENUM HA EXTRA RESET Reset database to after open

12.9.1. Implementing the st ore | ock() Method
Thest ore_ | ock() method is called before any reading or writing is performed.
Before adding the lock into the table lock handler mysql d calls store lock with the requested locks.
Store lock can modify the lock level, for example change blocking write lock to non-blocking, ignore
the lock (if we don't want to use MySQL table locks at al) or add locks for many tables (like we do
when we are using a MERGE handler).

When releasing locks, st or e_| ock() isalso called. Inthis case, one usually doesn't have to do any-

158

Writing a Custom Storage Engine

thing.

If the argument of st ore_| ock isTL_| GNORE, it meansthat MySQL reguests the handler to store
the samelock level asthe last time.

The potential lock typesaredefinedini ncl udes/t hr _| ock. h and are copied here:

enum thr _| ock_type

TL_| GNORE=-1,
TL_UNLOCK, /* UNLOCK ANY LOCK */
TL_READ, /* Read | ock */
TL_READ W TH_SHARED LOCKS,
TL_READ HI GH PRI ORI TY, /* High prior. than TL_WRITE. Allow concurrent insert */
TL_READ NO_| NSERT, /* READ, Don't allow concurrent insert */
TL_WRI TE_ALLON WRI TE, /* Wite lock, but allow other threads to read / wit
TL_WRI TE_ALLOW READ, /* Wite |ock, but allow other threads to read / wite. */
TL_WRI TE_CONCURRENT_| NSERT, /* WRI TE | ock used by concurrent insert. */
TL_W\RI TE_DELAYED, /* Wite used by | NSERT DELAYED. Allows READ | ocks */
TL_WRI TE_LOW PRI ORI TY, /* WRITE | ock that has |lower priority than TL_READ */
TL_WRI TE, /* Normal W\RITE | ock */
TL_WRI TE_ONLY /* Abort new | ock request with an error */

Actua lock handling will vary depending on your locking implementation and you may choose to im-
plement some or none of the requested lock types, substituting your own methods as appropriate. The
following is the minimal implementation, for a storage engine that does not need to downgrade |ocks:

THR_LOCK DATA **ha_tina::store_| ock(THD *t hd,
THR_LOCK_DATA **t o,
enum thr _| ock_type | ock_type)
if (lock_type !'= TL_| GNORE && | ock.type == TL_UNLOCK)
| ock. t ype=l ock_t ype;
*t o++= &l ock;
return to;

}

Seealsoha_nyi sammr g: : store_| ock() for amore complex implementation.

12.9.2. Implementing the ext ernal | ock() Method

Theext ernal | ock() methodiscaled at the start of a statement or when aLOCK TABLES state-
ment is issued.

Examples of using ext er nal _| ock() canbefoundinthesql / ha_i nnodb. cc file, but most
storage engines can simply return 0, as is the case with the EXAMPLE storage engine:

int ha_exanple::external _| ock(THD *thd, int |ock_type)
DBUG _ENTER(" ha_exanpl e: : ext ernal _| ock");

DBUG_RETURN(0) ;
}

12.9.3. Implementing thernd_init() Method

The method called before any table scanisther nd_i ni t () method. Ther nd_i ni t () methodis
used to prepare for atable scan, resetting counters and pointers to the start of the table.

The following example is from the CSV storage engine:
int ha_tina::rnd_init(bool scan)
DBUG ENTER("ha_tina::rnd_init");

current _position= next_position= 0;

159

Writing a Custom Storage Engine

records= O;
chai n_ptr= chain;

DBUG_RETURN(0)

If the scan parameter istrue, the MySQL server will perform a sequential table scan, if false the
MySQL server will perform random reads by position.

12.9.4. Implementing the i nf o() Method

Prior to commencing atable scan, thei nf o() method is called to provide extra table information to the
optimizer.

Theinformation required by the optimizer is not given through return values but instead by populating
certain properties of the storage engine class, which the optimizer reads after thei nf o() call returns.

In addition to being used by the optimizer, many of the values set during acall to thei nf o() method
are also used for the SHOW TABLE STATUS statement.

The public properties arelisted in full insql / handl er . h; severa of the more common ones are

copied here:
ul ongl ong data file_length; /* Length off data file */
ul ongl ong max_data _file_length; /* Length off data file */
ul ongl ong i ndex_file_length;
ul ongl ong max_i ndex_fil e_Il engt h;
ul ongl ong del et e_I engt h; /* Free bytes */
ul ongl ong aut o_i ncrenent _val ue;
ha_rows records; /* Records in table */
ha_rows del et ed; /* Del eted records */
ul ong raid_chunksi ze;
ul ong nean_rec_| engt h; /* physical reclength */
me_t create_tine; /* When tabl e was created */

ti
ti t check_ti nme;
ti

rre_
me_t update_tine;

For the purposes of atable scan, the most important property isr ecor ds, which indicates the number
of recordsin the table. The optimizer will perform differently when the storage engine indicates that
there are zero or one rows in the table than it will when there are two or more. For thisreason it isim-
portant to return a value of two or greater when you do not actually know how many rows arein the ta-
ble before you perform the table scan (such asin a situation where the data may be externally popu-
lated).

12.9.5. Implementing the extra() Method

Prior to some operations, theext r a() method is called to provide extra hints to the storage engine on
how to perform certain operations.

Implementation of the hintsin the ext r a call isnot mandatory, and most storage engines return O:

int ha_tina::extra(enum ha_extra_function operation)
DBUG ENTER("ha_ti na::extra");

DBUG_RETURN(0) ;
}

12.9.6. Implementing the r nd_next () Method

After thetableisinitialized, the MySQL server will call the handler'sr nd_next () method once for
every row to be scanned until the server's search condition is satisfied or an end of fileisreached, in

160

Writing a Custom Storage Engine

which case the handler returnsHA_ERR_END_OF FI LE.

Ther nd_next () method takes a single byte array parameter named * buf . The * buf parameter must
be populated with the contents of the table row in the internal MySQL format.

The server uses three data formats: fixed-length rows, variable-length rows, and variable-length rows
with BLOB pointers. In each format, the columns appear in the order in which they were defined by the
CREATE TABLE statement. (The table definition is stored in the . f r mfile, and the optimizer and the
handler are both able to access table metadata from the same source, its TABLE structure).

Each format begins with a“NULL bitmap” of one bit per nullable column. A table with as many as eight
nullable columns will have a one-byte bitmap; atable with nine to sixteen nullable columns will have a
two-byte bitmap, and so forth. One exception is fixed-width tables, which have an additional starting bit
so that atable with eight nullable columns would have a two-byte bitmap.

After the NULL bitmap come the columns, one by one. Each column is of the size indicated in MySQL
Data Types [http://dev.mysqgl.com/doc/refman/5.1/en/data-types.html]. In the server, column data types
aredefinedinthesql / fi el d. cc file. Inthefixed length row format, the columns are simply laid out
one by one. In avariable-length row, VARCHAR columns are coded as a one or two-byte length, fol-
lowed by astring of characters. In avariable-length row with BLOB columns, each blob is represented
by two parts: first an integer representing the actual size of the BLOB, and then a pointer to the BLOB in
memory.

Examples of row conversion (or “packing”) can be found by starting at r nd_next () inany table
handler. Inha_t i na. cc, for example, thecodeinfi nd_current _row() illustrates how the TA-
BLE structure (pointed to by table) and a string object (named buffer) can be used to pack character data
froma CSV file. Writing arow back to disk requires the opposite conversion, unpacking from the in-
ternal format.

The following example is from the CSV storage engine:
int ha_tina::rnd_next(byte *buf)
DBUG ENTER("ha_tina::rnd_next");
statistic_increnent(table->i n_use->status_var.ha_read_rnd_next _count, & OCK status);

current _position= next_position;

if (!share->mapped_file)
DBUG _RETURN(HA_ERR END_OF FI LE);

if (HA_ERR END OF FI LE == find_current_row buf))
DBUG_RETURN(HA_ERR END_OF FI LE);

recor ds++;

: DBUG_RETURN(0) ;

The conversion from theinternal row format to CSV row format is performed in the
find_current_row() method:

int ha_tina::find_current_row byte *buf)

byte *mapped_ptr= (byte *)share->mapped_file + current_position;
byte *end_ptr;
DBUG ENTER("ha_tina::find_current_row');

/* ECF shoul d be counted as new |ine */
if ((end_ptr= find_eoln(share->mapped_file, current_position,
share->file_stat.st_size)) == 0)
DBUG_RETURN(HA ERR END OF FI LE);

for (Field **field=table->field ; *field ; field++)
buffer.length(0);
mapped_ptr++; // Increment past the first quote
for(;mapped_ptr != end_ptr; mapped_ptr ++)

/1l Need to convert |ine feeds!

161

http://dev.mysql.com/doc/refman/5.1/en/data-types.html
http://dev.mysql.com/doc/refman/5.1/en/data-types.html

Writing a Custom Storage Engine

if (*mapped_ptr =="""' &&
(((mapped _ptr[1] =="',") &&(rmpped ptr(2] =="'"")) ||
(mapped_ptr == end ptr -1)))

mapped_ptr += 2; // Move past the , and the "

br eak;
}
if (*mapped_ptr == '\\' &% mapped_ptr != (end_ptr - 1))
{
mapped_pt r ++;
if (*mapped_ptr == "'r")
buffer.append('\r');
else if (*mapped_ptr == 'n')
buf fer. append("\n');
else if ((*mapped ptr == '\\') || (*mapped_ptr =="'""))

buf f er. append(* rrapped ptr);
else /* This could only happed with an externally created file */

buf fer. append('\\"');
buf f er. append(* rrapped ptr);
el se
buf f er. append(* mapped_ptr);
}
(*field)->store(buffer.ptr(), buffer.length(), systemcharset_info);
next _position= (end_ptr - share->mapped_file)+1;
/* Maybe use \N for null? */
menset (buf, 0, table->s->null_bytes); /* W do not inplenent nulls! */

DBUG_RETURN(0) ;

12.10. Closing a Table

When the MySQL server isfinished with atable, it will call the close() method to close file pointers and
release any other resources.

Storage engines that use the shared access methods seen in the CSV engine and other example engines
must remove themselves from the shared structure:

int ha_tina::close(void)

DBUG ENTER("ha_ti na: : cl ose"
DBUG_RETURN(free_ shar e(shar e))

Storage engines using their own share management systems should use whatever methods are needed to
remove the handler instance from the share for the table opened in their handler.

12.11. Adding Support for | NSERT to a Storage Engine

Once you have read support in your storage engine, the next feature to implement is support for | N-
SERT statements. With | NSERT support in place, your storage engine can handle WORM (write once,
read many) applications such aslogging and archiving for later analysis.

All | NSERT operations are handled throughthewr i t e _r ow() method:

int ha foo::wite_ rowmbyte *buf)

The* buf parameter contains the row to be inserted in the internal MySQL format. A basic storage en-
gine could simply advance to the end of the data file and append the contents of the buffer directly (this
would also make reading rows easier as you could read the row and passit directly into the buffer para-
meter of ther nd_next () method.

162

Writing a Custom Storage Engine

The process for writing arow is the opposite of the process for reading one: take the data from the
MySQL internal row format and write it to the data file. The following example is from the Myl SAM
storage engine:

int ha_nyisam:wite_row(byte * buf)
{
statistic_increment(tabl e->i n_use->status_var.ha_wite_count, & OCK_st at us) ;

/* If we have a tinmestanp colum, update it to the current tinme */

if (table->timestanp field type & TI MESTAMP_AUTO SET_ON_| NSERT)
tabl e->ti mestanp_fiel d->set _tinme();

/*
If we have an auto_increnment columm and we are witing a changed row
or a new row, then update the auto_increment value in the record.

*/
if (table->next_nunber_field & buf == tabl e->record[0])

updat e_auto_i ncrenent () ;
return m_wite(file,buf);

Three items of note in the preceding example include the updating of table statistics for writes, the set-
ting of the timestamp prior to writing the row, and the updating of AUTO_| NCREMENT values.

12.12. Adding Support for UPDATE to a Storage Engine

The MySQL server executes UPDATE statements by performing a (table/index/range/etc.) scan until it
locates a row matching the WHERE clause of the UPDATE statement, then calling the updat e_r ow()
method:

int ha_foo::update_rowconst byte *ol d_data, byte *new_dat a)

The* ol d_dat a parameter contains the data that existed in the row prior to the update, while the
*new_dat a parameter contains the new contents of the row (in the MySQL internal row format).

Performing an update will depend on row format and storage implementation. Some storage engines will
replace data in-place, while other implementations delete the existing row and append the new row at
the end of the datafile.

Non-indexed storage engines can typically ignore the contents of the * ol d_dat a parameter and just
deal with the* new_dat a buffer. Transactional engines may need to compare the buffers to determine
what changes have been made for alater rollback.

If the table being updated contains timestamp columns, the updating of the timestamp will have to be
managed inthe updat e_r ow() call. Thefollowing exampleisfrom the CSV engine:

int ha_tina::update_row(const byte * old_data, byte * new data)

int size,;
DBUG _ENTER(" ha_ti na: : update_row') ;

statistic_increnment(tabl e->i n_use->status_var.ha_read_rnd_next_count,
&L OCK_st at us) ;

if (table->timestanp_field_type & TI MESTAMP_AUTO SET_ON_UPDATE)
tabl e->ti mestanp_fiel d->set _tinme();

si ze= encode_quot e(new_dat a) ;

if (chain_append())
DBUG_RETURN(- 1) ;

if (ny_wite(share->data_file, buffer.ptr(), size, MYF(MY_WVE | MY_NABP)))
DBUG RETURN(- 1) ;
DBUG_RETURN(0) ;
}

163

Writing a Custom Storage Engine

Note the setting of the timestamp in the previous example.

12.13. Adding Support for DELETE to a Storage Engine

The MySQL server executes DELETE statements using the same approach as for UPDATE statements: 1t
advances to the row to be deleted using ther nd_next () method and then callsthedel et e_row()
method to delete the row:

int ha foo::delete row const byte *buf)

The*buf parameter contains the contents of the row to be deleted. For non-indexed storage engines the
parameter can be ignored, but transactional storage engines may need to store the deleted data for roll-
back purposes.

The following example is from the CSV storage engine:

int ha_tina::delete_rowconst byte * buf)

DBUG ENTER("ha_ti na: : del ete_row');
statistic_increnment(tabl e->i n_use->status_var.ha_del ete_count,
&L OCK_st at us) ;

if (chain_append())
DBUG_RETURN(- 1) ;

--records;

DBUG_RETURN(0) ;

The steps of note in the preceding example are the update of the del et e_count statistic and there-
cord count.

12.14. Supporting Non-Sequential Reads

In addition to table scanning, storage engines can implement methods for non-sequential reading. The
MySQL server uses these methods for certain sort operations.

12.14.1. Implementing the posi ti on() Method

Theposi tion() method iscalled after every call tor nd_next () if the data needs to be reordered:

voi d ha_foo::position(const byte *record)

The contents of *r ecor d are up to you — whatever value you provide will be returned in alater call to
retrieve the row. Most storage engines will store some form of offset or primary key value.

12.14.2. Implementing the r nd_pos() Method

Ther nd_pos() method behavesin asimilar fashiontother nd_next () method but takes an addi-
tional parameter:

int ha_foo::rnd_pos(byte * buf, byte *pos)

The* pos parameter contains positioning information previously recorded using the posi ti on()
method.

A storage engine must locate the row specified by the position and return it through * buf in the internal

164

Writing a Custom Storage Engine

MySQL row format.

12.15. Supporting Indexing

Once basic read/write operations are implemented in a storage engine, the next stage isto add support
for indexing. Without indexing, a storage engine's performance is quite limited.

This section documents the methods that must be implemented to add support for indexing to a storage
engine.

12.15.1. Indexing Overview

Adding index support to a storage engine revolves around two tasks: providing information to the optim-
izer and implementing index-related methods. The information provided to the optimizer helps the op-
timizer to make better decisions about which index to use or even to skip using an index and instead per-
form atable scan.

Theindexing methods either read rows that match a key, scan a set of rows by index order, or read in-
formation directly from the index.

The following example shows the method calls made during an UPDATE query that uses an index, such
asUPDATE foo SET ts = now() WHERE id = 1:

ha_foo::index_init
ha_foo::index_read
ha_f oo: : i ndex_read_i dx
ha_f oo: : r nd_next

ha_f oo: : updat e_r ow

In addition to index reading methods, your storage engine must support the creation of new indexes and
be able to keep table indexes up to date as rows are added, modified, and removed from tables.

12.15.2. Getting Index Information During CREATE TABLE Op-

erations
It is preferable for storage engines that support indexing to read the index information provided during a
CREATE TABLE operation and store it for future use. The reasoning behind thisisthat the index in-

formation is most readily available during table and index creation and is not as easily retrieved after-
ward.

Thetable index information is contained withinthe key i nf o structure of the TABLE argument of the
creat e() method.

Withinthekey i nf o structurethereisaf | ag that definesindex behavior:

#defi ne HA NOSAME 1 /* Set if not duplicated records */
#def i ne HA_PACK_KEY 2 /* Pack string key to previous key */
#defi ne HA_AUTO KEY 16

#defi ne HA Bl NARY_PACK KEY 32 /* Packing of all keys to prev key */
#defi ne HA FULLTEXT 128 /* For full-text search */
#def i ne HA_UNI QUE_CHECK 256 /* Check the key for uniqueness */
#defi ne HA SPATI AL 1024 /* For spatial search */
#define HA NULL_ARE EQUAL 2048 /* NULL 1 n key are cnp as equal */
#defi ne HA_GENERATED_KEY 8192 /* Automatically generated key */

In additiontothef | ag, thereis an enumerator named al gor i t hmthat specifies the desired index
type:

enum ha_key_al g {
HA KEY_ALG_UNDEF= 0, /* Not specified (old file) */

165

Writing a Custom Storage Engine

HA KEY_ALG BTREE= 1, /* B-tree, default one */
HA KEY_ALG RTREE= 2, [|/* Rtree, for spatial searches */
HA_KEY_ALG HASH= 3, [/* HASH keys (HEAP tabl es) */
HA KEY_ALG FULLTEXT= 4 /* FULLTEXT (M/I SAM t abl es) */

Inadditiontothef | ag and al gori t hm thereisan array of key part elementsthat describethein-
dividual parts of acomposite key.

The key parts define the field associated with the key part, whether the key should be packed, and the
data type and length of the index part. See ha_rnyi sam cc for an example of how thisinformation is
parsed.

As an alternative, a storage engine can instead read index information from the TABLE structure of the
handler during each operation.

12.15.3. Creating Index Keys

As part of every table-write operation (I NSERT, UPDATE, DELETE), the storage engineis required to
update itsinternal index information.

The method used to update indexes will vary from storage engine to storage engine, depending on the
method used to store the index.

In general, the storage engine will have to use row information passed in methods such as
wite row(),delete row(),andupdate row() incombination with index information for
the table to determine what index data needs to be modified, and make the needed changes.

The method of associating an index with its row will depend on your storage approach. Current storage
engines store the row offset.

12.15.4. Parsing Key Information

Many of the index methods pass a byte array named * key that identifies the index entry to beread in a
standard format. Y our storage engine will need to extract the information stored in the key and translate
it into itsinternal index format to identify the row associated with the index.

The information in the key is obtained by iterating through the key, which is formatted the same asthe
definitionint abl e- >key i nfo[i ndex] - >key_part[part_num.

12.15.5. Providing Index Information to the Optimizer

In order for indexing to be used effectively, storage engines need to provide the optimizer with informa-
tion about the table and its indexes. This information is used to choose whether to use an index, and if
s0, which index to use.

12.15.5.1. Implementing the i nf o() Method

The optimizer requests an update of table information by calling the handl er: : i nf o() method. The
i nf o() method does not have areturn value, instead it is expected that the storage engine will set a
variety of public variables that the server will then read as needed. These values are also used to popu-
late certain SHOWoutputs such as SHON TABLE STATUS and for queries of the | NFORNVA-

TI ON_SCHENA.

All variables are optional but should befilled if possible:

166

Writing a Custom Storage Engine

» records - The number of rowsin thetable. If you cannot provide an accurate number quickly you
should set the value to be greater than 1 so that the optimizer does not perform optimizations for zero
or one row tables.

» del et ed - Number of deleted rowsin table. Used to identify table fragmentation, where applicable.

« data_file_I|ength - Sizeof thedatafile, in bytes. Helps optimizer calculate the cost of reads.

e index file_length-Sizeof theindex file, in bytes. Helps optimizer calculate the cost of
reads.

 nean_rec_| engt h - Average length of asinglerow, in bytes.

e scan_tine-Costinl/O seeksto perform afull table scan.

e delete_length-

* check_tine-

When calculating values, speed is more important than accuracy, as there isno sense in taking along

time to give the optimizer clues as to what approach may be the fastest. Estimates within an order of
magnitude are usually good enough.

12.15.5.2. Implementing the records_i n_range Method

Therecords_i n_range() method is called by the optimizer to assist in choosing which index on a
table to use for aquery or join. It is defined as follows:

ha_rows ha_foo::records_in_range(uint inx, key_range *min_key, key_range *max_key)

Thei nx parameter isthe index to be checked. The* mi n_key parameter isthe low end of the range
whilethe* max_key parameter isthe high end of the range.

m n_key. f | ag can have one of the following values:

e HA READ KEY_EXACT - Include the key in the range

e HA READ AFTER KEY - Don'tinclude key in range
max_key. f | ag can have one of the following values:

« HA READ BEFORE KEY - Don'tinclude key in range

« HA READ AFTER KEY - Includeall 'end_key' valuesin the range
The following return values are allowed:

» 0 - There are no matching keysin the given range
e nunber > O - Thereisapproximately nunmber matching rowsin the range

* HA POS_ERROR - Something iswrong with the index tree

167

Writing a Custom Storage Engine

When calculating values, speed is more important than accuracy.

12.15.6. Preparing for Index Use with i ndex_init()

Thei ndex_i ni t () method is called before an index is used to alow the storage engine to perform
any necessary preparation or optimization:

int ha_foo::index_init(uint keynr, bool sorted)

Most storage engines do not need to make special preparations, in which case a default implementation
will be used if the method is not explicitly implemented in the storage engine:

int handler::index_init(uint idx) { active_index=idx; return 0; }

12.15.7. Cleaning up with i ndex_end()

Thei ndex_end() method isacounterpart tothei ndex i ni t () method. The purpose of thei n-
dex_end() method isto clean up any preparations made by thei ndex_i ni t () method.

If astorage engine does not implement i ndex_i ni t () it does not need to implement
i ndex_end().

12.15.8. Implementing the i ndex_read() Method

Thei ndex_r ead() method is used to retrieve arow based on akey:

int ha_foo::index_read(byte * buf, const byte * key, uint key_len, enum ha_rkey_function find_flag)

The* buf parameter isabyte array that the storage engine populates with the row that matches the in-
dex key specifiedin * key. Thekey_| en parameter indicates the prefix length when matching by pre-
fix,andthef i nd_f | ag parameter is an enumerator that dictates the search behavior to be used.

The index to be used is previously defined inthei ndex_i nit () call andisstoredintheact -
i ve_i ndex handler variable.

Thefollowing values are allowed for f i nd_f | ag:

HA READ AFTER KEY
HA_READ_BEFORE_KEY
HA_READ_KEY_EXACT
HA_READ_KEY_OR_NEXT
HA_READ_KEY_OR_PREV
HA_READ_PREFI X

HA_READ_PREFI X_LAST
HA_READ_PREFI X_LAST_CR _PREV

Storage engines must convert the * key parameter to a storage engine-specific format, use it to find the
matching row according to thef i nd_f | ag, and then populate * buf with the matching row in the
MySQL internal row format. For more information on the internal row format, see Section 12.9.6,
“Implementing ther nd_next () Method”.

In addition to returning a matching row, the storage engine must also set a cursor to support sequential
index reads.

If the* key parameter is null the storage engine should read the first key in the index.

12.15.9. Implementing the i ndex_read i dx() Method

168

Writing a Custom Storage Engine

Thei ndex_read_i dx() methodisidentical tothei ndex_r ead() withtheexceptionthati n-
dex_read i dx() acceptsanadditiona keynr parameter:

int ha_foo::index_read_idx(byte * buf, uint keynr, const byte * key,
uint key_len, enum ha_rkey_function find_fl ag)

The keynr parameter specifies theindex to be read, as opposed toi ndex_r ead where theindex is
already set.

Aswiththei ndex_read() method, the storage engine must return the row that matches the key ac-
cordingtothef i nd_f | ag and set acursor for future reads.

12.15.10. Implementing the i ndex_next () Method
Thei ndex_next () method is used for index scanning:

int ha_foo::index_next(byte * buf)

The* buf parameter is populated with the row that corresponds to the next matching key value accord-
ing to the internal cursor set by the storage engine during operations such asi ndex_r ead() andi n-
dex_first().

12.15.11. Implementing the i ndex prev() Method
Thei ndex_prev() method is used for reverse index scanning:

int ha_foo::index_prev(byte * buf)

The*buf parameter is populated with the row that corresponds to the previous matching key value ac-
cording to the internal cursor set by the storage engine during operations such asi ndex_r ead() and
i ndex_last ().

12.15.12. Implementing the i ndex _first() Method
Thei ndex_first () methodisused for index scanning:

int ha_foo::index_first(byte * buf)

The* buf parameter is populated with the row that corresponds to the first key valuein the index.

12.15.13. Implementing the i ndex | ast () Method
Thei ndex_| ast () method is used for reverse index scanning:

int ha_foo::index_|ast(byte * buf)

The*buf parameter is populated with the row that corresponds to the last key value in the index.

12.16. Supporting Transactions

This section documents the methods that must be implemented to add support for transactionsto a stor-
age engine.

Please note that transaction management can be complicated and involve methods such as row version-

169

Writing a Custom Storage Engine

ing and redo logs, which is beyond the scope of this document. Instead coverageis limited to a descrip-
tion of required methods and not their implementation. For examples of implementation, please see
ha_i nnodb. cc.

12.16.1. Transaction Overview

Transactions are not explicitly started on the storage engine level, but are instead implicitly started
through callsto either st art _st nt () orexternal _| ock() . If the preceding methods are called
and atransaction already exists the transaction is not replaced.

The storage engine stores transaction information in per-connection memory and a so registers the trans-
action in the MySQL server to allow the server to later issue COVM T and ROLLBACK operations.

As operations are performed the storage engine will have to implement some form of versioning or log-
ging to permit arollback of al operations executed within the transaction.

After work is completed, the MySQL server will call either thecommi t () method or ther ol | -
back() method defined in the storage engine's handlerton.

12.16.2. Starting a Transaction

A transaction is started by the storage engine in response to a call to either thest art _st nmt () or ex-
ternal _| ock() methods.

If there is no active transaction, the storage engine must start a new transaction and register the transac-
tion with the MySQL server so that ROLLBACK or COVM T can later be called.

12.16.2.1. Starting a Transaction fromastart _stnt () Call
Thefirst method call that can start atransactionisthest art st nt () method.

The following example shows how a storage engine could register a transaction:

int ny_handler::start_stnt(THD *thd, thr_|l ock_type |ock_type)
{

int error= 0;
nmy_txn *txn= (nmy_txn *) thd->ha_data[my_handl er _hton.slot];

if (txn == NULL)
t hd->ha_dat a[ny_handl er _hton. sl ot] = txn= new ny_t xn;

}
if (txn->stnt == NULL & ! (error= txn->tx_begin()))

{

txn->stnt = t xn->new_savepoi nt () ;
trans_regi ster_ha(thd, FALSE, &ny_handl er _hton);

return error,;

THD isthe current client connection. It holds state relevant data for the current client, such as identity,
network connection and other per-connection data.

t hd- >ha_dat a[ny_handl er _ht on. sl ot] isapointerint hd to the connection-specific data of
this storage engine. In this example we use it to store the transaction context.

An additional example of implementingst art _stnt () canbefoundinha_i nnodb. cc.

12.16.2.2. Starting a Transaction from aext ernal | ock() Method

MySQL callshandl er: : ext ernal _I ock() for every tableit is going to use at the beginning of

170

Writing a Custom Storage Engine

every statement. Thus, if atable istouched for the first time, it implicitly starts atransaction.

Note that because of pre-locking, all tables that can be potentially used between the beginning and the
end of a statement are locked before the statement execution begins and hand-
| er::external | ock() iscaledforal thesetables. That is, if an | NSERT fires atrigger, which
calls a stored procedure, that invokes a stored method, and so forth, all tables used in the trigger, stored
procedure, method, etc., are locked in the beginning of the | NSERT. Additionally, if there's a construct
like
IF
.. use one table
ELSE

use anot her table

both tables will be locked.

Also, if auser callsLOCK TABLES, MySQL will call handl er: : ext ernal _| ock only once. In
this case, MySQL will call handl er: : start _stnt () atthebeginning of the statement.

The following example shows how a storage engine can start a transaction and take locking requests into
account:

int nmy_handl er::external _| ock(THD *thd, int |ock_type)
{

int error= 0;
my_txn *txn= (my_txn *) thd->ha_data[ny_handl er _hton. sl ot];

if (txn == NULL)

t hd- >ha_dat a[ny_handl er _hton. sl ot]= t xn= new ny_t xn;

if (lock_type != F_UNLCK)

bool all_tx= 0;
if (txn->l ock _count == 0)

txn->l ock_count = 1;
txn->tx_i sol ati on= t hd->vari abl es. t x_i sol ati on;

al | _tx= test(thd->options & (OPTI ON_NOT_AUTOCOMM T | OPTI ON_BEG N | OPTI ON TABLE_LOCK));
}

if (all _tx)

t xn->t x_begi n() ;
trans_regi ster_ha(thd, TRUE, &my_handl er _hton);

el se
if (txn->stnt == 0)

txn->stnt = t xn->new_savepoi nt () ;
trans_regi ster_ha(thd, FALSE, &nmy_handl er _hton);

el se
if (txn->stnt != NULL)
{

/* Commit the transaction if we're in auto-commit node */
nmy_handl er _conmm t (t hd, FALSE);

delete txn->stnmt; // del ete savepoint
txn->stnt= NULL,;
}
}

return error;

Every storageenginemust call t r ans_r egi st er _ha() every timeit starts atransaction. The
trans_regi ster_ha() method registers atransaction with the MySQL server to allow for future
COW T and ROLLBACK cdlls.

171

Writing a Custom Storage Engine

An additional example of implementing ext er nal _| ock() canbefoundinha_i nnodb. cc.

12.16.3. Implementing ROLLBACK

Of the two major transactional operations, ROLLBACK is the more complicated to implement. All opera-
tions that occurred during the transaction must be reversed so that all rows are unchanged from before
the transaction began.

To support ROLLBACK, create a method that matches this definition:

int (*rollback)(THD *thd, bool all);

The method nameisthen listed inther ol | back (thirteenth) entry of the handlerton.

The THD parameter is used to identify the transaction that needs to be rolled back, whilethe bool al |
parameter indicates whether the entire transaction should be rolled back or just the last statement.

Details of implementing a ROLLBACK operation will vary by storage engine. Examples can be found in
ha_i nnodb. cc.

12.16.4. Implementing COMMIT

During a commit operation, al changes made during a transaction are made permanent and a rollback
operation is not possible after that. Depending on the transaction isolation used, this may be the first
time such changes are visible to other threads.

To support COMM T, create a method that matches this definition:

int (*comit)(THD *thd, bool all);

The method nameisthen listed inthecommi t (twelfth) entry of the handlerton.

The THD parameter is used to identify the transaction that needs to be committed, whilethe bool al |
parameter indicates if thisis afull transaction commit or just the end of a statement that is part of the
transaction.

Details of implementing a COVMM T operation will vary by storage engine. Examples can be found in
ha_i nnodb. cc.

If the server isin auto-commit mode, the storage engine should automatically commit al read-only
statements such as SELECT.

In a storage engine, "auto-committing” works by counting locks. Increment the count for every call to

ext ernal | ock(),decrement whenext ernal | ock() iscaled with an argument of F_ UNLCK.
When the count drops to zero, trigger a commit.

12.16.5. Adding Support for Savepoints

First, the implementor should know how many bytes are required to store savepoint information. This
should be afixed size, preferably not large as the MySQL server will allocate space to store the save-
point for all storage engines with each named savepoint.

The implementor should store the data in the space preallocated by mysqgld - and use the contents from
the preallocated space for rollback or release savepoint operations.

When a COVM T or ROLLBACK operation occurs (withbool al | settot r ue), al savepoints are as-

172

Writing a Custom Storage Engine

sumed to be released. If the storage engine allocates resources for savepoaints, it should free them.

The following handlerton elements need to be implemented to support savepoints (elements 7,9,10,11):

ui nt savepoi nt _of f set;

int (*savepoint_set)(THD *thd, void *sv);

int (*savepoint_rollback)(THD *thd, void *sv);
int (*savepoint_release)(THD *thd, void *sv);

12.16.5.1. Specifying the Savepoint Offset

The seventh element of the handlerton isthe savepoi nt _of f set :

ui nt savepoi nt_of fset;

Thesavepoi nt _of f set must beinitialized statically to the size of the needed memory to store per-
savepoint information.

12.16.5.2. Implementing the savepoi nt _set Method
Thesavepoi nt _set () method is called whenever a user issues the SAVEPO NT statement:

int (*savepoint_set)(THD *thd, void *sv);

The* sv parameter points to an uninitialized storage area of the size defined by
savepoi nt _of f set.

When savepoi nt _set () iscalled, the storage engine needs to store savepoint information into sv
so that the server can later roll back the transaction to the savepoint or rel ease the savepoint resources.

12.16.5.3. Implementing the savepoi nt _rol | back() Met hod

Thesavepoi nt _rol | back() method is called whenever a user issuesthe ROLLBACK TO SAVE-
PO NT statement:

int (*savepoint_rollback) (THD *thd, void *sv);

The* sv parameter points to the storage area that was previously passed to the savepoi nt _set ()
method.

12.16.5.4. Implementing the savepoi nt _rel ease() Method

Thesavepoi nt _rel ease() method iscaled whenever a user issuesthe RELEASE SAVEPO NT
Statement:

int (*savepoint_release) (THD *thd, void *sv);

The* sv parameter points to the storage area that was previously passed to the savepoi nt _set ()
method.

12.17. APl Reference
12.17.1. bas_ext

Purpose

173

Writing a Custom Storage Engine

Defines the file extensions used by the storage engine.
Synopsis

virtual const char ** bas_ext ();

Description

Thisisthebas_ext method. It iscalled to provide the MySQL server with alist of file extensions used
by the storage engine. The list returned is a null-terminated string array.

By providing alist of extensions, storage engines can in many casesomit thedel et e_t abl e()
method as the MySQL server will close all references to the table and delete all files with the specified
extension.

Parameters

There are no parameters for this method.

Return Values

» Returnvalueisanull-terminated string array of storage engine extensions. The following is an ex-
ample from the CSV engine:

static const char *ha_tina_exts[] =
" CsV',
Nul | S

b

Usage

static const char *ha_tina_exts[] =
", CSV',

Nul | S
b

const char **ha_tina::bas_ext() const

return ha_tina_exts;

Default Implementation

static const char *ha_exanple_exts[] = {
Nul | S
IE

const char **ha_exanpl e: : bas_ext () const

return ha_exanpl e_exts;

12.17.2. close

174

Writing a Custom Storage Engine

Purpose
Closes an open table.
Synopsis
virtual int close (void);
void ;
Description
Thisisthecl ose method.
Closes atable. A good time to free any resources that we have allocated.
Called from sgl_base.cc, sgl_select.cc, and table.cc. In sgl_select.cc it isonly used to close up temporary

tables or during the process where atemporary table is converted over to being a Myl SAMtable. For
sgl_base.cc look at close_data tables().

Parameters
e void

Return Values
There are no return values.
Usage

Example from the CSV engine:
i nt ha_exanpl e: : cl ose(voi d)

DBUG ENTER(" ha_exanpl e: : cl ose");
DBUG_RETURN(free_share(share));

12.17.3. create

Purpose
Creates anew table.
Synopsis

virtual int create (name, form info);
const char *nane ;

TABLE *form ;

HA CREATE I NFO *info ;

Description

Thisisthecr eat e method.

175

Writing a Custom Storage Engine

creat e() iscaledto create atable. The variable name will have the name of the table. When cr e-
at e() iscalled you do not need to open the table. Also, the . f r mfile will have already been created
soadj usti ng create_infoisnot recommended.

Cdled fromhandl er.cc byha create table().

Parameters
* name
e form
e info

Return Values

There are no return values.
Usage

Example from the CSV storage engine:

int ha_tina::create(const char *name, TABLE *tabl e_arg,
HA CREATE_| NFO *cr eat e_i nf 0)
{

char nane_buf f [FN_REFLEN] ;
File create_file;
DBUG ENTER("ha_ti na::create");
if ((create_file= ny_create(fn_format(name_buff, name, "" . Csv',
MY_ REPLACE - EXT]| Nh(UNPACK FI LENANE) 0,
O RDWR | O TRUNC, WWF(MY_WMVE))) < 0)
DBUG_RETURN(- 1) ;
ny_cl ose(create_file, MYF(0));

DBUG_RETURN(0)

12.17.4. delete_row

Purpose
Deletesarow.
Synopsis
virtual int delete_row (buf);
const byte *buf ;
Description
Thisisthedel et e_r owmethod.
buf will contain a copy of the row to be deleted. The server will call thisright after the current row has

been called (from either apreviousr nd_next () orindex cal). If you keep a pointer to the last row or
can access a primary key it will make doing the deletion quite a bit easier. Keep in mind that the server

176

Writing a Custom Storage Engine

does not guarantee consecutive deletions. ORDER BY clauses can be used.
Cdledinsqgl _acl . cc andsql _udf. cc to manage internal table information. Called in

sql __delete.cc,sql _insert.cc,andsql _select.cc.Insql _sel ect itisusedfor re-
moving duplicates, whileini nser t itisused for REPLACE calls.

Parameters

e buf

Return Values

There are no return values.

Usage

Default Implementation

{ return HA ERR WRONG COMVAND; }

12.17.5. delete_table

Pu rpose
Delete al fileswith extension from bas_ext () .

Synopsis
virtual int delete_table (nane);
const char *nane ;

Description
Thisisthedel et e_t abl e method.
Used to delete atable. By thetimedel et e_t abl e() hasbeen called al opened referencesto thista
ble will have been closed (and your globally shared references released). The variable name will be the
name of the table. Y ou will need to remove any files you have created at this point.
If you do not implement this, the default del et e_t abl e() iscaled fromhandl er. cc, and it will
delete all files with the file extensions returned by bas_ext () . We assume that the handler may return

more extensions than were actually used for thefile.

Cdledfromhandl er. cc by del et e_tabl eandha_creat e_tabl e() . Only used during create
if thet abl e_fl ag HA DROP_BEFORE_CREATE was specified for the storage engine.

Parameters

e nane: Base name of table

177

Writing a Custom Storage Engine

Return Values

e 0 if wesuccessfully deleted at least one filefrom base ext and didn't get any other errorsthan
ENOENT

e #: Error

Usage

Most storage engines can omit implementing this method.

12.17.6. external _lock

Purpose

Handles table locking for transactions.

Synopsis
virtual int external lock (thd, |ock type);
THD *t hd ;
intlock type ;

Description

Thisistheext er nal _| ock method.

The “locking methods for mysgl” sectionin| ock. cc hasadditional comments on thistopic that may
be useful to read.

This creates alock on the table. If you are implementing a storage engine that can handle transactions,

look at ha_i nnodb. cc to see how you will want to go about doing this. Otherwise you should con-
sider callingf | ock() here.

Called from| ock. cc byl ock_external () andunl ock_ext ernal (). Alsocaled from
sql _tabl e.cc bycopy data between_tabl es().

Parameters

* thd

 lock_ type

Return Values

There are no return values.

Default Implementation

{ return 0; }

178

Writing a Custom Storage Engine

12.17.7. extra

Pur pose
Passes hints from the server to the storage engine.
Synopsis

virtual int extra (operation);
enum ha_extra_functionoperation ;

Description
Thisistheext r a method.

ext ra() iscalled whenever the server wishes to send a hint to the storage engine. The My| SAMen-
gine implements the most hints. ha_i nnodb. cc hasthe most exhaustive list of these hints.

Parameters

e operation

Return Values

There are no return values.

Usage

Most storage engines will simply return O.

{ return 0; }

Default Implementation

By default your storage engine can opt to implement none of the hints.

{ return 0; }

12.17.8. index_end

Purpose

Indicates end of index scan, clean up any resources used.
Synopsis

virtual int index_end ();

Description

179

Writing a Custom Storage Engine

Thisisthei ndex_end method. Generaly it is used as a counterpart to thei ndex_i ni t method,
cleaning up any resources allocated for index scanning.

Parameters

This method has no parameters.
Return Values

This method has no return values.
Usage

Clean up al resources all ocated, return 0.

Default Implementation

{ active_i ndex=MAX_KEY; return 0; }

12.17.9. index_first

Purpose
Retrieve first row in index and return.
Synopsis

virtual int index first (buf);
byte *buf ;

Description
Thisisthei ndex_first method.
i ndex_first () asksfor thefirst key in the index.

Called from opt_range.cc, opt_sum.cc, sgl_handler.cc, and sgl_select.cc.

Parameters

* buf - bytearray to be populated with row.

Return Values

There are no return values.
Usage
Implementation depends on indexing method used.

Default Implementation

180

Writing a Custom Storage Engine

{ return HA ERR WRONG COMVAND; }

12.17.10. index_init

Purpose

Signals the storage engine that an index scan is about to occur. Storage engine should allocate any re-
sources needed.

Synopsis
virtual int index_init (idx, sorted);
uint idx ;
bool sorted ;

Description

Thisisthei ndex_i ni t method. This method is called before an index scan, allowing the storage en-
gine to allocate resources and make preparations.

Parameters

e jdx

e sorted

Return Values

Usage

This method can typically just return O if there is no preparation needed.

Default Implementation

{ active_index=idx; return O; }

12.17.11. index_last

Purpose
Return the last row in the index.
Synopsis

virtual int index_|last (buf);
byte *buf ;

181

Writing a Custom Storage Engine

Description
Thisisthei ndex | ast method.
i ndex_| ast () asksfor thelast key in the index.

Called from opt_range.cc, opt_sum.cc, sgl_handler.cc, and sgl_select.cc.

Parameters

» buf - bytearray to be populated with matching row.

Return Values

This method has no return values.
Usage
Advanceto last row in index and return row in buffer.

Default Implementation

{ return HA ERR WRONG COMVAND; }

12.17.12. index_next

Purpose

Return next row in index.
Synopsis

virtual int index_next (buf);
byte *buf ;

Description
Thisisthei ndex_next method.

Used to read forward through the index.

Parameters

e buf

Return Values

This method has no return values.

Usage

182

Writing a Custom Storage Engine

Advance to next row in index using pointer or cursor, return row in buffer.

Default Implementation

{ return HA ERR WRONG COMVAND; }

12.17.13. index_prev

Purpose
Advance to previous row in index.
Synopsis

virtual int index_prev (buf);
byte *buf ;

Description
Thisisthei ndex_pr ev method.
Used to read backward through the index.

Parameters

e buf

Return Values
This method has no return values.
Usage
Move to previous row inindex, retun in buffer.

Default Implementation

{ return HA ERR WRONG COMVAND; }

12.17.14. index_read _idx

Purpose
Find arow based on akey and return.
Synopsis

virtual int index read idx (buf, index, key, key len, find flag);
byte *buf ;

183

Writing a Custom Storage Engine

ui ntindex ;

const byte *key ;

ui ntkey_len ;

enum ha_rkey_functionfind_flag ;
Description

Thisisthei ndex_read i dx method.

Positions an index cursor to the index specified in key. Fetches the row if any. Thisisonly used to read
whole keys.

Parameters

o Dbuf

* index
 key

e key_ len

« find flag

Return Values
This method has no return values.
Usage

L ocate the row that matches the key passed and return it in the buffer provided.
12.17.15. index_read

Purpose
Find arow based on akey and return.
Synopsis
virtual int index_read (buf, key, key len, find_flag);
byte *buf ;
const byte *key ;
uintkey len ;
enum ha_rkey functionfind flag ;
Description

Thisisthei ndex_r ead method.

Positions an index cursor to the index specified in the handle. Fetchesthe row if available. If the key
valueisnull, begin at the first key of the index.

184

Writing a Custom Storage Engine

Parameters
* buf
» key
* key_len
« find_flag

Return Values

This method has no return values.
Usage

Default Implementation

{ return HA ERR WRONG COWVAND; }

12.17.16. info

Pur pose
Prompts storage engine to report statistics.

Synopsis
virtual void info (uint);
ui nt

Description
Thisisthei nf o method.
::info() is used to return information to the optimizer. Currently, this table handler doesn't implement
most of the fields really needed. SHOW also makes use of this data Another note, you will probably
want to have the following in your code: if (records < 2) records = 2; The reason is that the server will
optimize for cases of only asingle record. If in atable scan you don't know the number of recordsit will
probably be better to set records to two so you can return as many records as you need. Along with re-
cords afew more variables you may wish to set are: records deleted data file length index_file length
delete length check_time See public variables in handler.h for more information.
Called in: filesort.cc ha_heap.cc item_sum.cc opt_sum.cc sgl_delete.cc sgl_delete.cc sql_derived.cc

sql_select.cc sgl_select.cc sgl_select.cc sql_select.cc sgl_select.cc sgl_show.cc sgl_show.cc sgl_show.cc
sgl_show.cc sgl_table.cc sgl_union.cc sgl_update.cc

Parameters

e uint

185

Writing a Custom Storage Engine

Return Values

There are no return values.

Usage

This exampleis from the CSV storage engine:
voi d ha_tina::info(uint flag)
DBUG ENTER("ha_tina::info");
/* This is alie, but you don't want the optim zer to see zero or 1 */
if (records < 2)
records= 2;
DBUG VO D_RETURN;
}

12.17.17. open

Purpose

Opens atable.

Synopsis
virtual int open (name, node, test if | ocked);
const char *nane ;

i nt rode ;
uinttest if | ocked ;

Description
Thisisthe open method.

Used for opening tables. The name will be the name of thefile. A table is opened when it needs to be
opened. For instance when a request comes in for a select on the table (tables are not open and closed for
each request, they are cached).

Called from handler.cc by handler::ha_open(). The server opens all tables by calling ha_open() which
then calls the handler specific open().

A handler object is opened as part of itsinitialization and before being used for normal queries (not be-
fore meta-data changes always.) If the object was opened it will also be closed before being deleted.

Thisisthe open method. open is called to open a database table.

Thefirst parameter is the name of the table to be opened. The second parameter determines what file to
open or what operation to take. The values are defined in handl er . h and are copied here for your

convenience:
#def i ne HA OPEN_KEYFI LE 1
#def i ne HA_ OPEN_RNDFI LE 2
#def i ne HA GET_I| NDEX 4
#define HA CET_I| NFO 8 /* do a ha_info() after open */
#defi ne HA_READ ONLY 16 /* File opened as readonly */
#defi ne HA_TRY_READ ONLY 32 /* Try readonly if can't open with read and wite */
#define HA WAIT IF_ LOCKED 64 /* Wait if |ocked on open */
#define HA_ABORT_I F_LOCKED 128 /* skip if |ocked on open.*/
#defi ne HA BLOCK_LOCK 256 /* unlock when reading sone records */
#defi ne HA OPEN_TEMPORARY 512

186

Writing a Custom Storage Engine

Thefina option dictates whether the handler should check for alock on the table before opening it.

Typically your storage engine will need to implement some form of shared access control to prevent file
corruption is a multi-threaded environment. For an example of how to implement file locking, see the
get _share() andfree_share() methodsof sql / exanpl es/ ha_ti na. cc.

Parameters
* nane
e node

e test if_|ocked

Return Values

There are no return values.
Usage

This exampleis from the CSV storage engine:

int ha_tina::open(const char *nanme, int node, uint test_if_|ocked)
{
DBUG ENTER("ha_ti na:: open");

if (!(share= get_share(nane, table)))

DBUG _RETURN(1) ;

thr_lock _data_init(&share->l ock, & ock, NULL) ;
ref | engt h=si zeof (of f _t);

I}:)BUG_RETURN(0);

12.17.18. position

Purpose

Provide the MySQL server with position/offset information for last-read row.
Synopsis

virtual void position (record);

const byte *record ;
Description

Thisisthe posi t i on method.

position() is called after each call to rnd_next() if the data needs to be ordered. Y ou can do something
like the following to store the position: my_store ptr(ref, ref_length, current_position);

The server uses ref to store data. ref_|ength in the above case is the size needed to store current_position.
ref isjust abyte array that the server will maintain. If you are using offsets to mark rows, then cur-
rent_position should be the offset. If it isa primary key, then it needs to be a primary key.

187

Writing a Custom Storage Engine

Called from filesort.cc, sql_select.cc, sql_delete.cc and sgl_update.cc.

Parameters

e record

Return Values
This method has no return values.
Usage

Return offset or retrieval key information for last row.

12.17.19. records_in_range

Purpose
For the given range how many records are estimated to be in thisrange.
Synopsis
virtual ha_rows records_in_range (inx, mn_key, max_key);
uintinx ;
key_range *mi n_key ;
key range *max_key ;
Description

Thisisther ecor ds_i n_r ange method.

Given astarting key, and an ending key estimate the number of rows that will exist between the two.
end_key may be empty which in case determine if start_key matches any rows.

Used by optimizer to calculate cost of using a particular index.

Called from opt_range.cc by check _quick keys().
Parameters

e inx

* mn_key

e max_key

Return Values

Return the approxamite number of rows.

Usage

188

Writing a Custom Storage Engine

Determine an approxamite count of the rows between the key values and return.

Default Implementation

{ return (ha_rows) 10; }

12.17.20. rnd_init

Purpose
Initializes a handler for table scanning.
Synopsis
virtual int rnd_init (scan);
bool scan ;
Description
Thisisther nd_i ni t method.
rnd_init() is called when the system wants the storage engine to do atable scan.
Unlike index_init(), rnd_init() can be called two times without rnd_end() in between (it only makes
senseif scan=1). then the second call should prepare for the new table scan (e.g if rnd_init allocates the
cursor, second call should position it to the start of the table, no need to deallocate and allocate it again

Called from filesort.cc, records.cc, sgl_handler.cc, sgl_select.cc, sql_table.cc, and sql_update.cc.

Parameters

e Scan

Return Values

There are no return values.

Usage

This exampleis from the CSV storage engine:
int ha_tina::rnd_init(bool scan)
DBUG ENTER("ha_tina::rnd_init");
current_positi on= next_position= 0;
records= O;

chai n_ptr= chain;
DBUG RETURN(0) ;

12.17.21. rnd_next

189

Writing a Custom Storage Engine

Purpose

Reads the next row from atable and returnsit to the server.
Synopsis

virtual int rnd_next (buf);
byte *buf ;

Description
Thisisther nd_next method.

Thisis called for each row of the table scan. When you run out of records you should return
HA_ERR_END_OF FILE. Fill buff up with the row information. The Field structure for the table isthe
key to getting data into buf in amanner that will allow the server to understand it.

Called from filesort.cc, records.cc, sgl_handler.cc, sgl_select.cc, sql_table.cc, and sql_update.cc.

Parameters

e buf

Return Values

There are no return values.

Usage

This example is from the ARCHI VE storage engine:
int ha_archive::rnd_next (byte *buf)

int rc;
DBUG _ENTER(" ha_ar chi ve: : rnd_next");

i f (share->crashed)
DBUG_RETURN(HA_ERR CRASHED ON_USAGE) ;

if (!scan_rows)

DBUG_RETURN(HA_ERR END_OF FI LE) ;
scan_r ows- -;
statistic_increnent(tabl e->i n_use->status_var. ha_read_rnd_next_count,

&LOCK_st at us) ;

current _position= gztell (archive);

rc= get_row(archive, buf);

if (rc !'= HA ERR END OF FILE)
recor ds++;

DBUG_RETURN(r C) ;

12.17.22. rnd_pos

Purpose

Return row based on position.

190

Writing a Custom Storage Engine

Synopsis
virtual int rnd_pos (buf, pos);
byte *buf ;
byte *pos ;
Description
Thisisther nd_pos method.
Used for finding row previously marked with position. Thisis useful for large sorts.

Thisislike rnd_next, but you are given a position to use to determine the row. The position will be of
the type that you stored in ref. You can use ha_get_ptr(pos,ref_length) to retrieve whatever key or posi-
tion you saved when position() was called. Called from filesort.cc records.cc sql_insert.cc sql_select.cc
sgl_update.cc.

Parameters

e buf

e pos

Return Values
This method has no return values.
Usage

L ocate row based on position value and return in buffer provided.

12.17.23. start_stmt

Pur pose
Called at the beginning of a statement for transaction purposes.
Synopsis

virtual int start_stm (thd, |ock type);
THD *t hd ;
thr | ock typel ock _type ;

Description
Thisisthest art st nt method.

When table is locked a statement is started by calling start_stmt instead of external _lock

Parameters

« thd

191

Writing a Custom Storage Engine

* lock_type

Return Values

This method has no return values.
Usage
Make any preparations needed for atransaction start (if there is no current running transaction).

Default Implementation

{return 0;}

12.17.24. store_lock

Purpose

Creates and releases table locks.

Synopsis
virtual THR LOCK DATA ** store lock (thd, to, lock type);
THD *t hd ;

THR_LOCK_DATA **to ;
enum thr | ock_typel ock_type ;

Description

Thisisthest or e_| ock method.
The ideawith handler::store_lock() isthe following:

The statement decided which locks we should need for the table for updates/del etes/inserts we get
WRITE locks, for SELECT... we get read locks.

Before adding the lock into the table lock handler mysql d calls store lock with the requested locks.
Store lock can modify the lock level, e.g. change blocking write lock to non-blocking, ignore the lock (if
we don't want to use MySQL table locks at al) or add locks for many tables (like we do when we are us-
ing aMERGE handler).

When releasing locks, store_lock() are aso caled. In this case one usually doesn't have to do anything.

If the argument of store lock is TL_IGNORE, it means that MySQL requests the handler to store the
same lock level asthelast time.

Called from lock.cc by get_lock_data().

Parameters

« thd

192

Writing a Custom Storage Engine

e to

e |lock_type

Return Values

There are no return values.

Usage

The following example is from the ARCHI VE storage engine:

/*
Bel ow i s an exanpl e of how to setup row | evel | ocking.
*
/
THR_LOCK_DATA **ha_ar chi ve: : store_| ock(THD *t hd,
THR_LOCK_DATA **t o,
enum thr_| ock_type |ock_type)

if (lock_type == TL_WRI TE_DELAYED)
del ayed_i nsert = TRUE;

el se
del ayed_i nsert = FALSE;

if (lock _type !'= TL_| GNORE && | ock.type == TL_UNLOCK)
{

/*
Here is where we get into the guts of a row | evel | ock.
If TL_UNLOCK is set
If we are not doing a LOCK TABLE or DI SCARD/ | MPORT
TABLESPACE, then allow multiple witers

*/

if ((lock_type >= TL_WRI TE_CONCURRENT_| NSERT &&
| ock_type <= TL_WRI TE) && !thd->in_|l ock_tabl es
&& !t hd- >t abl espace_op)
| ock_type = TL_WRI TE_ALLOW WRI TE;

/*
In queries of type INSERT INTOt1 SELECT ... FROMt2 ...
M/SQL woul d use the | ock TL_READ NO | NSERT on t2, and that
woul d conflict with TL_WRI TE_ ALLONWRI TE, blocking all inserts
to t2. Convert the lock to a normal read |ock to allow
concurrent inserts to t2.

*/

if (lock _type == TL_READ NO | NSERT && !thd->i n_| ock_t abl es)
| ock_type = TL_READ,

| ock. t ype=I ock_t ype;
}

*t o++= &l ock;

return to;

The following is the minimal implementation, for a storage engine that does not need to downgrade
locks:

THR_LOCK DATA **ha_tina::store_| ock(THD *t hd,
THR_LOCK_DATA **t o,
enum thr _| ock_type | ock_type)

/* Note that if the lock type is TL_| GNORE we don't update | ock.type,
preserving the previous |ock |evel */

if (lock_type !'= TL_| GNORE && | ock.type == TL_UNLOCK)
| ock. t ype=l ock_t ype;

/* the heart of the store_lock() nethod and it's main purpose -
storing the (possibly changed) lock |evel into the provided
menmory */

*t o++= &l ock;

193

Writing a Custom Storage Engine

return to;

Seealsoha_nmnyi sammr g: : store_| ock() for more complex implementation

12.17.25. update_row

Purpose
Updates the contents of an existing row.
Synopsis
virtual int update_row (ol d_data, new data);
const byte *old_data ;
byte *new data ;
Description
Thisistheupdat e_r owmethod.

old_datawill have the previous row record in it, while new_datawill have the newest datain it.

The server can do updates based on ordering if an ORDER BY clause was used. Consecutive ordering is
not guaranteed.

Currently, new_datawill not have an updated auto_increament record, or and updated timestamp field.
Y ou can do these for example by doing these: if (table->timestamp _field type &
TIMESTAMP_AUTO_SET_ON_UPDATE) table->timestamp_field->set_time(); if
(table->next_number_field & & record == table->record[0]) update_auto_increment();

Called from sgl_select.cc, sgl_acl.cc, sgl_update.cc, and sql_insert.cc.

Parameters

« old data

* new data

Return Values

There are no return values.

Usage

Default Implementation

{ return HA_ERR VWRONG COMVAND; }

194

Writing a Custom Storage Engine

12.17.26. write_row

Purpose
Adds anew row to atable,
Synopsis
virtual int wite_row (buf);
byte *buf ;
Description
Thisisthewr i t e_r owmethod.

write row() insertsarow. Noextra() hintisgiven currently if abulk load is happening. buf isa
byte array of datawith a size of table->s->reclength

Y ou can use the field information to extract the data from the native byte array type. Example of this
would be: for (Field **field=table->field ; *field ; field++) { ... }

BLOBs must be handled specialy:

for (ptr= table->s->blob_field, end= ptr + table->s->blob_fields ; ptr != end ; ptr++)
{

char *data_ptr;
uint 32 size= ((Field_blob*)table->field[*ptr])->get_|ength();
((Fi el d_blob*)table->field[*ptr])->get_ptr(&ata_ptr);

See ha _tina.cc for an example of extracting all of the data as strings.

See the note for updat e_r ow() on auto_increments and timestamps. This case aso applied to
write_row().

Called from item_sum.cc, item_sum.cc, sql_acl.cc, sgl_insert.cc, sgl_insert.cc, sgl_select.cc,
sgl_table.cc, sgl_udf.cc, and sgl_update.cc.

Parameters

* buf bytearray of data

Return Values

There are no return values.

Usage

Default Implementation

{ return HA ERR WRONG COMVAND; }

195

Writing a Custom Storage Engine

196

Chapter 13. Error Messages

This chapter describes how error messages are defined and how to add the capability of generating error
messages to atable handler.

13.1. Adding New Error Messages to MySQL

The procedure for adding error messages depends on which version of MySQL you are using:

» Before MySQL 5.0.3, error messagesare stored iner r nsg. t xt filesin the language directories
under sql / shar e. That is, the fileshave nameslikeczech/ err nsg. t xt , dani sh/ er -
rmsg. t xt, and so forth, and each one is language-specific. Each of these language-specific files
must contain aline for each error message, so adding a new message involves adding aline to the
errmsg. t xt filefor every language. The procedure involves adding the English message to the
engl i sh/errnmsg. t xt fileand running a script that adds the message to the other language-spe-
cific files. Trandators may translate the message in other er r nsg. t xt fileslater.

* Beginning with MySQL 5.0.3, error messages are stored inasingleer r nsg. t xt fileinthesql /
shar e directory, and it contains the error messages for all languages. The messages are grouped by
error symbol. For each symbol, there must be an English message, and messages can be present for
other languages as well. If there is no message for a given language, the English version is used.

For all versions, theconp_er r program compiles the text error message file or files into language-spe-
cificerrnsg. sys filesthat each are located in the appropriate language directory under sqgl / shar e.
In MySQL 5.0.3and up, conp_er r aso generates anumber of header filesinthei ncl ude directory.
The MySQL build processrunsconp_er r automatically.

Note: Y ou should observe some general considerations regarding error messages that apply no matter

your version of MySQL:

e Themaximum error message length is MYSQL_ERRVSG_SI ZE = 512. Ensure by using constructs
suchas" %s- . 64s" that there are no buffer overflows!

* You should never add new parameters (such as %s) to existing error messages. Error messages are
always supposed to be backward compatible. If a parameter is added, older serverswill crash.

For versions of MySQL older than 5.0.3, use the following procedure to add new error messages:

1. Openthefilesql / share/ english/errnsg.txt inan editor.

2. Add new error messages at the end of thisfile. Each message should be on a separate line, and it
must be quoted within double quote ("™) characters. By convention, every message line except the
last should end with acomma (',) following the second double quote.

3. For each new error message, add a#def i ne linetothei ncl ude/ mysql d_error. h file be-
forethelast line (#def i ne ER_ERROR_MESSAGES).

4. Adjust thevalue of ER_ ERROR MESSAGES to the new number of error messages.
5. Addthe defined error symbolstoi ncl ude/ sql _st at e. h. Thisfile contains the SQL states for

the error messages. If the new errors don't have SQL states, add a comment instead. Note that this
file must be kept sorted according to the value of the error number. That is, although the

197

Error Messages

sql _st at e. h file might not contain an entry for every symbol inmysql d_error. h, those
entriesthat are presentinsqgl _st at e. h must appear in the same order as those for the corres-
ponding entriesinmysql d_error. h.

6. Gotothesql directory inatermina window andtype./add_errnsg N. Thiswill copy the
last N error messages from shar e/ engl i sh. t xt to all the other language filesinshar e/ .

7. Trandate the error message for those languages that you know by editing the filesshar e/ | an-
guage/ errmnsg. t xt.

8. Makeafull build (confi gur e + make). A nake al | isinsufficient to build thesql /
share/ */ errnsg. sys files.

For MySQL 5.0.3 and up, the procedure for adding error messages is less tedious. Y ou need edit only a
single message text file, and it's not necessary to edit * . h header files. Instead, conp_er r generates
the header files for you based on the contents of the message text file.

Theerrnsg. t xt file beginswith some lines that define general characteristics of error messages, fol-
lowed by sections for particular messages. The following example shows a partial listing of an er -
rnsg. t xt file. (Thel anguages lineiswrapped here; it must be given all on oneline.)

| anguages czech=cze | atin2, danish=dan |latinl, dutch=nla latinl
engl i sh=eng | atinl, estonian=est |latin7, french=fre |atinl, gernman=ger
latinl, greek=greek greek, hungarian=hun latin2, italian=ita latinl

j apanese=j pn ujis, japanese-sjis=jps sjis, korean=kor euckr

nor wegi an- ny=norwegi an-ny | atinl, norwegi an=nor |atinl, polish=po

| ati n2, portuguese=por |atinl, romani an=rum |l atin2, russian=rus

koi 8r, serbian=serbi an cpl1250, slovak=slo latin2, spanish=spa latinl
swedi sh=swe | atinl, ukral ni an=ukr koi 8u

def aul t - | anguage eng
start-error-nunber 1000
ER_HASHCHK

eng "hashchk"
ER_NI SAMCHK

eng "isanchk"
ER_NO

cze "NE'

dan " NEJ"

nl a " NEE"

eng "NO'

est "El"

Indentation is significant. Unless otherwise specified, leading whitespace should not be used.

The“grammar” of theer r nsg. t xt filelookslikethis:
| anguages | angspec [, | angspec]
start-error-nunber nunber

def aul t -1 anguage | angcode

error-nmessage-sect I on
error-nessage-section

Thel anguages line lists the languages for which language-specific er r nsg. sys files should be
generated. A language specification | angspec inthel anguages line has this syntax:

| angspec: | angnanme=l angcode | angchar set

198

Error Messages

| angnane isthelong language name, | angcode isthe short language code, and | angchar set is
the character set to use for error messages in the language.

Thedef aul t - | anguage line specifies the short language code for the default language. (If thereis
no translation into a given language for a given error message, the message from the default language
will be used.)

Thestart-error-nunber lineindicates the number to be assigned to the first error message. Mes-
sages that follow the first one are numbered consecutively from this value.

Eacherror - nessage- sect i on beginswith alinethat lists an error (or warning) symbol, option-
ally followed by one or two SQLSTATE values. The error symbol must begin with ER_ for an error or
WARN_ for awarning. Lines following the error symbol line provide language-specific error messages
that correspond to the error symbol. Each message line consists of atab, a short language code, a space,
and the text of the error message within double quote (") characters. Presumably, there must be a mes-
sage in the default language. There may be message trand ations for other languages. Order of message
lines within a section does not matter. If no trandation is given for a given language, the default lan-
guage message will be used. The following example defines several language translations for the

ER BAD FI ELD_ERROR symbol:

ER_BAD Fl ELD ERROR 42S22 S0022
dan "Wkendt kol onne '%.64s' i tabel %"
nl a "Onbekende kolom'%.64s' in %"
eng "Unknown columm '%.64s' in '%.64s""
est "Tundmatu tulp '%.64s' '%.64s'-s"
fre "Chanp ' % .64s' inconnu dans %"
ger "Unbekanntes Tabellenfeld '%.64s' in %.64s"

In the preceding example, two SQLSTATE values are given following the error symbol (42522,
S0022). Interndly (insql / sql _st at e. c), theseareknown asodbc_st at e andj dbc_st at e.
Currently, only the first appears ever to be used.

Message strings for a given language must be written in the character set indicated for that languagein
thel anguages line. For example, the language information for Japanesein that lineisj apan-
ese=j pn uji s, so messages with alanguage code of j pn must be writteninthe uj i s character set.
Y ou might need to be careful about the editor you use for editingtheer r nsg. t xt file. For example,
thereisareport that using Enmacs will mangle thefile, whereasvi will not.

Within a message string, C-style escape sequences are allowed:

—

A

\
new i ne
N, where N is an octal nunber

\
\
\
\
\ X, for any other X

n
N
X

A line beginning with a'#' character is taken as a comment. Comments and blank lines are ignored.

Use the following procedure to add new error messages.

1. Toadd anew language translation for an existing error message, find the section for the appropriate
error symbol. Then add a new message line to the section. For example:

Before:

ER_UNKNOWN_COLLATI ON
eng "Unknown collation: '%.64s""
ger "Unbekannte Kol lation: '%.64s""
por "Col |l ati on desconhecida: '%.64s"'"

199

Error Messages

After (with anew Spanish trandlation):

ER_UNKNOAN_COLLATI ON
eng "Unknown collation: '%.64s"'"
ger "Unbekannte Kol lation: '9%.64s""
por "Col |l ati on desconhecida: '%.64s"'"
spa "Col | ati on desconoci da: '%.64s'"

2. Toadd an entirely new error message, go to theend of theer r nsg. t xt file. Add anew error
symbol line, followed by a message line for the default language, and message lines for any tranda-
tions that you can supply.

3. Makeafull build (conf i gur e + make). A nake al | isinsufficient to build thesql /
share/ */ errnsg. sys files.

conp_err will generatetheer r nsg. sys files, aswell asthe header filesrmysql d_error. h,
nysql d_ernane. h,andsql _st ate. hinthei ncl ude directory.

Be aware that if you make a mistake editing a message text file, conp_er r printsacryptic error mes-
sage and gives you no other feedback. For example, it does not print the input line number where it
found a problem. It's up to you to figure this out and correct the file. Perhaps that is not a serious diffi-
culty: errnsg. t xt tendsto grow by gradual accretion, so if an error occurswhen conp_err pro-
cesses it, the problem islikely due to whatever change you just made.

13.2. Adding Storage Engine Error Messages

To add error messages for table handlers, the following example may be helpful.

Purpose: Implement thehandl er: : get _error _nessage function as
ha_federated::get_error_nessage toreturn the handler-specific error message.

Example:

1. When an error occurs you return an error code. (It should not be in the range of those that HA ERR
uses, which currently is 120-159.)

2. Whenhandl er:: print_error iscaledto convert the handler error code to aMySQL error
code, it will enter the default label of theswi t ch(error) statement:

handl er. cc: 1721
defaul t:

/* The error was "unknown" to this function.

Ask handler if it has got a nessage for this error */
bool tenporary= FALSE;

String str;

temporary= get _error_nessage(error, &str);

i{f (!'str.is_enpty())

const char* engine= table_type();
if (temporary)

ny_error (ER_GET_TEMPORARY_ERRMSG, MYF(0), error, str.ptr(), engine);
el se

ny_error (ER_GET_ERRMSG, MYF(0), error, str.ptr(), engine);

}

el se
my_error (ER_ GET_ERRNO errfl ag, error);
DBUG VO D_RETURN;

200

Error Messages

3. Thusthehandl er:: get _error_nessage iscalled and you can return the handler-specific
error message, which is either a static error message that you retrieve from an error/string array, or
aadynamic one that you format when the error occurs.

When you have returned the error message it will be passed to MySQL and formatted as Got err or
%l ' % .100s' from %. For example:

CGot error 788 'Could not connect to rempte server fed.bb.pl' from FEDERATED

TheGot error %l part will bereturned in the user's selected language, but the handler-specific one
will use English (unless the handler supports returning the handler error message in the user's selected

language).

201

Appendix A. MySQL Source Code Distribution

Thisis adescription of the files that you get when you download the source code of MySQL. This de-
scription begins with alist of the main directories and a short comment about each one. Then, for each
directory, in alphabetical order, alonger description is supplied. When a directory contains significant
program files, alist of each C program is given along with an explanation of its intended function.

A.l. Directory Listing

Directory — Short Comment

* bdb — The Berkeley Database table handler

» BitKeeper — BitKeeper administration (not part of the source distribution)
» BUILD — Frequently used build scripts

» client — Client library

* cmd-line-utils — Command-line utilities (libedit and readline)

» config — Some files used during build

» dbug — Fred Fish's dbug library

* Docs— documentation files

* extra— Some minor standalone utility programs

* heap — The HEAP table handler

* include — Header (*.h) files for most libraries; includes all header files distributed with the MySQL
binary distribution

e innobase — The Innobase (InnoDB) table handler

* libmysgl — For producing MySQL as alibrary (e.g. aWindows .DLL)
e libmysgl_r — For building athread-safe libmysqgl library

* libmysgld — The MySQL Server as an embeddable library

e man — Some user-contributed manual pages

* myisam — The Myl SAMtable handler

e myisammrg — The Myl SAMMerge table handler

* mysgl-test — A test suite for mysgld

e mysys— MySQL system library (Low level routines for file access etc.)
* ndb— MySQL Cluster

» netware — Filesrelated to the Novell NetWare version of MySQL

* NEW-RPMS— Directory to place RPMs while making a distribution

202

A.1.1.

A.l.2.

A.1.3.

MySQL Source Code Distribution

» 0s2 — Routines for working with the OS/2 operating system

* pstack — Process stack display (not currently used)

* regex — Henry Spencer's Regular Expression library for support of REGEXP function
* SCCS— Source Code Control System (not part of source distribution)

» scripts— SQL batches, e.g. mysqlbug and mysgl_install_db

* server-tools — instance manager

* sgl — Programs for handling SQL commands; the "core" of MySQL

* ggl-bench — The MySQL benchmarks

» ggl-common — Some .c files related to sql directory

» SSL — Secure Sockets Layer; includes an example certification one can use to test an SSL (secure)
database connection

» strings— Library for C string routines, e.g. atof, strchr

e support-files— Files used to build MySQL on different systems

* tests— TestsinPerl andinC

e tools— mysglmanager.c (tool under development, not yet useful)

* VC++Files— Includes this entire directory, repeated for VC++ (Windows) use
e vio— Virtual I/O Library

» zlib — Data compression library, used on Windows

The bdb Directory

The Berkeley Database table handler.

The Berkeley Database (BDB) is maintained by Sleepycat Software. MySQL AB maintains only afew
small patches to make BDB work better with MySQL.

The documentation for BDB is available at http://www.sleepycat.com/docs/. Sinceit's reasonably thor-
ough documentation, a description of the BDB program filesis not included in this document.

The Bi t Keeper Directory

BitK eeper administration.

Bitkeeper administration is not part of the source distribution. This directory may be present if you
downloaded the MySQL source using BitKeeper rather than viathe mysgl.com site. Thefilesin the Bit-
Keeper directory are for maintenance purposes only — they are not part of the MySQL package.

The MySQL Reference Manual explains how to use Bitkeeper to get the MySQL source. Please see ht-
tp://www.mysgl.com/doc/en/installing-source-tree.html. for more information.

The BUI LD Directory

203

http://www.sleepycat.com/docs/
http://www.mysql.com/doc/en/installing-source-tree.html
http://www.mysql.com/doc/en/installing-source-tree.html

A.14.

A.1.5.

A.l1.6.

MySQL Source Code Distribution

Frequently used build scripts.

This directory contains the build switches for compilation on various platforms. There is a subdirectory
for each set of options. The main ones are:

» apha

o iab4

» pentium (with and without debug or bdb, etc.)

* solaris

The cl i ent Directory

Client library.

Theclient library includesmysgl . cc (the source of the nysql executable) and other utilities. Most of
the utilities are mentioned in the MySQL Reference Manual. Generally these are standalone C programs
which one runsin "client mode", that is, they call the server.

The C program filesin the directory are:

» get password.c --- ask for a password from the console

* mysgl.cc--- "The MySQL command tool"

* mysgladmin.cc --- maintenance of MySQL databases

» mysglcheck.c --- check al databases, check connect, etc.

* mysgldump.c --- dump table's contents as SQL statements, suitable to backup a MySQL database
* mysglimport.c --- import text filesin different formats into tables

* mysglmanager-pwgen.c --- pwgen stands for "password generation” (not currently maintained)

e mysglmanagerc.c --- entry point for mysgl manager (not currently maintained)

* mysglshow.c --- show databases, tables or columns

* mysgltest.c --- test program used by the mysgl-test suite, mysqgl-test-run

The confi g Directory

Macros for use during build.

Thereisasingle subdirectory: \ ac- macr os. All thefilesin it have the extension .m4, which is a nor-
mal expectation of the GNU autoconf tool.

The cnd- 1 i ne-util s Directory

Command-line utilities (libedit and readline).

204

MySQL Source Code Distribution

There are two subdirectories: \ r eadl i ne and\ | i bedi t . All thefiles here are "non-MySQL" files,
in the sense that MySQL AB didn't produce them, it just uses them. It should be unnecessary to study
the programs in these files unless you are writing or debugging atty-like client for MySQL, such as

nmysql . exe.

The\ r eadl i ne subdirectory contains the files of the GNU Readline Library, "alibrary for reading
lines of text with interactive input and history editing”. The programs are copyrighted by the Free Soft-
ware Foundation.

The\ | i bedi t (library of edit functions) subdirectory has files written by Christos Zoulas. They are
distributed and modifed under the BSD License. These files are for editing the line contents.

These are the program files in the \libedit subdirectory:

» chared.c --- character editor

« common.c --- common editor functions

* ¢l.c--- editline interface functions

* emacs.c --- emacs functions

» fgetln.c--- get line

e hist.c --- history access functions

» history.c --- more history access functions

» key.c --- procedures for maintaining the extended-key map
* map.c --- editor function definitions

* parse.c --- parse an editline extended command

e prompt.c --- prompt printing functions

* read.c --- termina read functions

» readline.c--- read line

» refresh.c --- "lower level screen refreshing functions'
» search.c --- "history and character search functions'
e sig.c--- for signa handling

» strlcpy.c --- string copy

e term.c --- "editor/termcap-curses interface”

» tokenizer.c --- Bourne shell line tokenizer

e tty.c--- for atty interface

* unvis.c --- reverse effect of vis.c

e vi.c --- commands used when in the vi (editor) mode

* vis.c --- encode characters

205

MySQL Source Code Distribution

A.1.7. The dbug Directory

Fred Fish's dbug library.

Thisisnot really part of the MySQL package. Rather, it's a set of public-domain routines which are use-
ful for debugging MySQL programs. The MySQL Server and all .c and .cc programs support the use of
this package.

How it works: Oneinserts afunction call that begins with DBUG_* in one of the regular MY SQL pro-
grams. For example, in get_password.c, you will find thisline:

DBUG _ENTER("get _tty_password");

at the start of aroutine, and thisline:

DBUG_RETURN(ny_st rdup(t o, MYF(MY_FAE))) ;

at the end of the routine. These lines don't affect production code. Features of the dbug library include
extensive reporting and profiling (the latter has not been used by the MySQL team).

The C programs in this directory are:

» dbug.c --- The main module

» dbug_anayze.c --- Reads afile produced by trace functions
» examplel.c --- A tiny example

e example2.c --- A tiny example

» example3.c --- A tiny example

» factoria.c --- A tiny example

* main.c --- A tiny example

e my_main.c --- MySQL-specific main.c variant

* sanity.c --- Declaration of avariable

A.1.8. The Docs Directory

With the BitK eeper downloads, /Docs is nearly empty. Binary and source distributions include some
pre-formatted documentation files, such as the MySQL Reference manual in Info format (for Unix) or
CHM format (for Windows).

A.1.9. The ext r a Directory

Some minor standalone utility programs.

These programs are all standalone utilities, that is, they have amain() function and their main roleisto
show information that the MySQL server needs or produces. Most are unimportant. They are as follows:

e charset2html.c --- checks your browser's character set

206

MySQL Source Code Distribution

e comp_err.c --- makes error-message files from a multi-language source

e my_print_defaults.c --- print parameters from my.ini files. Can also be used in scripts to enable pro-
cessing of my.ini files.

* mysgl_waitpid.c --- wait for aprogram to terminate. Useful for shell scripts when one needs to wait
until a process terminates.

e perror.c --- "print error" --- given error number, display message
» replace.c --- replace strings in text files or pipe

» resolve stack_dump.c --- show symbolic information from aMySQL stack dump, normally found in
the mysgl.er file

» resolveip.c --- convert an | P address to a hostname, or vice versa

A.1.10. The heap Directory

The HEAP (MEMORY) table handler.

All the MySQL table handlers (i.e. the handlers that MySQL itself produces) have files with similar
names and functions. Thus, this (heap) directory contains alot of duplication of the myisam directory
(for the Myl SAMtable handler). Such duplicates have been marked with an "*" in the following list. For
example, you will find that \ heap\ hp_ext r a. ¢ hasaclose equivalent in the myisam directory
(\nyi sam mi _ext r a. c) with the same descriptive comment. (Some of the differences arise because
HEAP has different structures. HEAP does not need to use the sort of B-tree indexing that | SAMand
Myl SAMuse; instead there is a hash index. Most importantly, HEAP is entirely in memory. File-1/O
routines lose some of their vitality in such a context.)

» hp_block.c --- Read/write a block (i.e. a page)

e hp_clear.c --- Remove all recordsin the table

* hp_close.c--- * close database

e hp_create.c --- * create atable

* hp_delete.c--- * deletearow

e hp_extra.c --- * for setting options and buffer sizes when optimizing

» hp_hash.c --- Hash functions used for saving keys

e hp_info.c --- * Information about database status

* hp_open.c --- * open database

e hp_panic.c --- * the hp_panic routine, for shutdowns and flushes

* hp_rename.c --- * rename atable

e hp_rfirst.c --- * read first row through a specific key (very short)

* hp_rkey.c--- * read record using a key

e hp_rlast.c --- * read last row with same key as previously-read row

207

MySQL Source Code Distribution

» hp_rnext.c --- * read next row with same key as previously-read row

* hp_rprev.c --- * read previous row with same key as previously-read row
* hp_rrnd.c --- * read arow based on position

* hp_rsame.c --- * find current row using positional read or key-based read
» hp_scan.c--- * read al rows sequentially

* hp_static.c --- * static variables (very short)

* hp_testl.c--- * testing basic functions

* hp_test2.c --- * testing database and storing results

* hp_update.c --- * update an existing row

* hp_write.c --- * insert a new row

There are fewer files in the heap directory than in the myisam directory, because fewer are necessary.

For example, thereis no need for a\myisam\mi_cache.c equivalent (to cache reads) or a
\myisam\mi_log.c equivalent (to log statements).

A.1.11. Thei ncl ude Directory

Header (*.h) files for most libraries; includes all header files distributed with the MySQL binary distri-
bution.

These files may be included in C program files. Note that each individual directory will also haveits
own *.h files, for including in its own *.c programs. The *.h files in the include directory are ones that
might be included from more than one place.

For example, the mysys directory contains a C file named rijndagl.c, but does not include rijndael .h. The
include directory contains rijndagl .h. Looking further, you'll find that rijndael .h is also included in other
places: by my aes.c and my_aes.h.

Theinclude directory contains 55 *.h (header) files.

A.1.12. The i nnobase Directory

The Innobase (InnoDB) table handler.

A full description of these files can be found el sewhere in this document.

A.1.13. The |l i bnysgl Directory

The MySQL Library, Part 1.

Thefiles here are for producing MySQL asalibrary (e.g. aWindowsDLL). Theideaisthat, instead of
producing separate mysql (client) and mysql d (server) programs, one produces alibrary. Instead of
sending messages, the client part merely calls the server part.

Thel i bnysql filesare split into three directories: | i bnysql (thisone), | i brrysqgl _r (the next
one), and | i brmysql d (the next one after that).

The "library of mysgl" has some client-connection modules. For example, as described in an earlier sec-

208

MySQL Source Code Distribution

tion of this manual, thereisadiscussion of | i bnysql /| i brysqgl . ¢ which sends packets from the
client to the server. Many of the entriesinthel i brmysql directory (and in the following | i brmysqgl d
directory) are 'symlinks on Linux, that is, they arein fact pointersto filesin other directories.

The program files on this directory are:

e conf_to_src.c --- hasto do with charsets

e dll.c---initiaization of the dll library

e errmsg.c --- English error messages, compare \mysys\errors.c
» Qet_password.c --- get password

e libmysgl.c --- the code that implements the MySQL API, i.e. the functions a client that wants to con-
nect to MySQL will call

* manager.c --- initialize/connect/fetch with MySQL manager

A.1.14. The |l i brysqgl _r Directory

The MySQL Library, Part 2.

Thereisonly onefile here, used to build athread-safe libmysql library:

* makefile.am

A.1.15. Thel i brrysqgl d Directory

The MySQL library, Part 3.

The Embedded MySQL Server Library. The product of | i brmysqgl d isnot aclient/server affair, but a
library. There is awrapper to emulate the client calls. The program files on this directory are:

* libmysgld.c --- The called side, compare the mysgld.exe source

* lib_sgl.c --- Emulate the vio directory's communication buffer

A.1.16. The nan Directory

Some user-contributed manual pages
These are user-contributed "man" (manual) pages in a special markup format. The format is described in

a document with a heading like "man page for man" or "macros to format man pages' which you can
find in a Linux directory or on the Internet.

A.1.17. The nyi samDirectory

The Myl SAMtable handler.

The Cfilesin this subdirectory come in six main groups:

209

MySQL Source Code Distribution

ft*.c files --- ft stands for "Full Text", code contributed by Sergei Golubchik
mi*.c files --- mi stands for "My Isam”, these are the main programs for Myisam
myisam*.c files --- for example, "myisamchk" utility routine functions source
rt*.c files--- rt stands for "rtree", some code was written by Alexander Barkov
sp*.c files --- sp stands for "spatial", some code was written by Ramil Kalimullin

sort.c --- thisisasingle file that sorts keys for index-create purposes

The "full text" and "rtree" and "spatial" program sets are for special purposes, so this document focuses
only on the mi*.c "myisam" C programs. They are:

mi_cache.c --- for reading records from a cache
mi_changed.c --- asingle routine for setting a"changed" flag (very short)

mi_check.c --- for checking and repairing tables. Used by the myisamchk program and by the
MySQL server.

mi_checksum.c --- calculates a checksum for arow

mi_close.c --- close database

mi_create.c --- create atable

mi_dbug.c --- support routines for use with "dbug" (see \dbug description)
mi_delete.c --- delete arow

mi_delete all.c --- delete al rows

mi_delete table.c --- delete atable (very short)

mi_dynrec.c --- functions to handle space-packed records and blobs
mi_extra.c --- setting options and buffer sizes when optimizing
mi_info.c --- return useful base information for an open table
mi_key.c --- for handling keys

mi_keycache.c --- for handling key caches

mi_locking.c --- lock database

mi_log.c --- save commands in alog file which myisamlog program can read. Can be used to exactly
replay a set of changesto atable.

mi_open.c --- open database
mi_packrec.c --- read from a data file compresed with myisampack
mi_page.c --- read and write pages containing keys

mi_panic.c --- the mi_panic routine, probably for sudden shutdowns

210

MySQL Source Code Distribution

* mi_preload.c --- preload indexes into key cache

* mi_range.c --- approximate count of how many records lie between two keys
* mi_rename.c --- rename atable

* mi_rfirst.c --- read first row through a specific key (very short)

* mi_rkey.c --- read arecord using akey

* mi_rlast.c --- read last row with same key as previously-read row

e mi_rnext.c --- read next row with same key as previously-read row

* mi_rnext_same.c --- same as mi_rnext.c, but abort if the key changes

e mi_rprev.c --- read previous row with same key as previously-read row
e mi_rrnd.c --- read arow based on position

* mi_rsame.c --- find current row using positional read or key-based read
* mi_rsamepos.c --- positional read

e mi_scan.c --- read all rows sequentially

e mi_search.c --- key-handling functions

e mi_static.c --- static variables (very short)

e mi_statrec.c --- functions to handle fixed-length records

e mi_testl.c --- testing basic functions

e mi_test2.c --- testing database and storing results

* mi_test3.c --- testing locking

* mi_unigue.c --- functions to check if arow is unique

* mi_update.c --- update an existing row

* mi_write.c --- insert anew row

A.1.18. The nyi sammt g Directory

Myl SAMMerge table handler.

Aswith other table handlers, you'll find that the * . ¢ filesin the nyi ssammr g directory have counter-
partsin the nyi samdirectory. In fact, this general description of amyi sanmr g program isamost al-
waystrue: Thenmyi sanmr g function checks an argument, the myi sanmr g function formul ates an ex-
pression for passing to anyi samfunction, the myi sammr g callsanyi samfunction, the nyi sanm
r g function returns.

These are the 22 filesin the nyi sammt g directory, with notes about the myi samfunctions or pro-
grams they're connected with:

211

MySQL Source Code Distribution

* myrg_close.c--- mi_close.c

e myrg_create.c --- mi_create.c

* myrg_delete.c --- mi_delete.c / delete last-read record

e myrg_extra.c --- mi_extra.c/ "extrafunctions we want to do ..."

* myrg_info.c --- mi_info.c/ display information about a mymergefile

* myrg_locking.c --- mi_locking.c / lock databases

* myrg_open.c --- mi_open.c/ open a Myl SAMMERGE table

* myrg_panic.c --- mi_panic.c/ closein ahurry

* myrg_gqueue.c --- read record based on akey

e myrg_range.c --- mi_range.c/ find recordsin arange

o myrg_rfirst.c --- mi_rfirst.c / read first record according to specific key

e myrg_rkey.c--- mi_rkey.c/ read record based on a key

o myrg_rlast.c --- mi_rlast.c/ read last row with same key as previous read

* myrg_rnext.c --- mi_rnext.c / read next row with same key as previous read

* myrg_rnext_same.c --- mi_rnext_same.c / read next row with same key

* myrg_rprev.c --- mi_rprev.c/ read previous row with same key

* myrg_rrnd.c --- mi_rrnd.c / read record with random access

e myrg_rsame.c --- mi_rsame.c/ call mi_rsame function, see \myisam\mi_rsame.c
* myrg_static.c --- mi_static.c / static variable declaration

* myrg_update.c --- mi_update.c / call mi_update function, see \myisam\mi_update.c

e myrg_write.c --- mi_write.c / call mi_write function, see \myisam\mi_write.c

A.1.19. The nysql -t est Directory

A test suite for nysql d.

The directory has a READIVE file which explains how to run the tests, how to make new tests (in files
with the filename extension * . t est), and how to report errors.

There are four subdirectories:

* \misc --- contains one minor Perl program
e \ndb --- for MySQL Cluster tsts
* \r--- contains *.result, i.e. "what happened” filesand *.required, i.e. "what should happen" file

e \std data--- contains standard data for input to tests

212

MySQL Source Code Distribution

e \t--- contains tests

Thereare400* . t est filesinthe\ t subdirectory. Primarily these are SQL scripts which try out afea
ture, output aresult, and compare the result with what's required. Some samples of what the test files
check are: latinl_de comparisons, date additions, the HAVI NG clause, outer joins, openSSL, load data,
logging, truncate, and UNI ON.

There are other testsin these directories:

e ggl-bench

* tests

A.1.20. The nysys Directory

MySQL system library. Low level routines for file access and so on.

There are 125 *.c programs in this directory:

e array.c --- Dynamic array handling

» charset.c --- Using dynamic character sets, set default character set, ...

e charset-def.c --- Inclcude character setsin the client using

» checksum.c --- Calculate checksum for a memory block, used for pack_isam
» default.c --- Find defaults from *.cnf or *.ini files

» default_modify.c --- edit option file

e errors.c --- English text of global errors

» hash.c --- Hash search/compare/free functions "for saving keys"

+ list.c --- Double-linked lists

» make-conf.c --- "Make a charset .conf file out of a ctype-charset.c file"

e md5.c--- MD5 ("Message Digest 5") algorithm from RSA Data Security

» mf_brkhant.c --- Prevent user from doing a Break during critical execution (not used in MySQL ; can
be used by standalone Myl SAMapplications)

» mf_cache.c --- "Open atemporary file and cache it withio_cache"
» mf_dirname.c --- Parse/convert directory names

» mf_fn_ext.c --- Get filename extension

« mf_format.c --- Format afilename

» mf_getdate.c --- Get date, return in yyyy-mm-dd hh:mm:ss format

 mf_iocache.c --- Cached read/write of filesin fixed-size units

213

MySQL Source Code Distribution

mf_iocache2.c --- Continuation of mf_iocache.c

mf_keycache.c --- Key block caching for certain file types
mf_keycaches.c --- Handling of multiple key caches

mf_loadpath.c --- Return full path name (no ..\ stuff)

mf_pack.c --- Packing/unpacking directory names for create purposes
mf_path.c --- Determine where a program can find its files
mf_gsort.c --- Quicksort

mf_gsort2.c --- Quicksort, part 2 (allows the passing of an extra argument to the sort-compare
routine)

mf_radix.c --- Radix sort

mf_same.c --- Determine whether filenames are the same

mf_sort.c --- Sort with choice of Quicksort or Radix sort

mf_soundex.c --- Soundex algorithm derived from EDN Nov. 14, 1985 (pg. 36)
mf_strip.c --- Strip trail spaces from astring

mf_tempdir.c --- Initialize/find/free temporary directory

mf_tempfile.c --- Create atemporary file

mf_unixpath.c --- Convert filename to UNIX-style filename

mf_util.c --- Routines, #ifdef'd, which may be missing on some machines
mf_wcomp.c --- Comparisons with wildcards

mf_wfile.c --- Finding files with wildcards

mulalloc.c --- Malloc many pointers at the same time

my_access.c --- Check if file or path is accessible

my_aes.c --- AES encryption

my_alarm.c --- Set a variable value when an alarmis received
my_alloc.c --- malloc of results which will be freed simultaneously
my_append.c --- one file to another

my_hit.c --- smallest X where 2*X >= value, maybe useful for divisions
my_bitmap.c --- Handle uchar arrays as large bitmaps

my_chsize.c --- Truncate file if shorter, elsefill with afiller character
my_clock.c --- Time-of-day ("clock()") function, with OS-dependent #ifdef's

my_compress.c --- Compress packet (see also description of \zlib directory)

214

MySQL Source Code Distribution

my_copy.c --- Copy files

my_crc32.c --- Include \zlib\crc32.c

my_create.c --- Create file

my_delete.c --- Deletefile

my_div.c --- Get file's name

my_dup.c --- Open aduplicated file

my_error.c --- Return formatted error to user

my_file.c --- See how many open files we want

my_fopen.c --- File open

my_fstream.c --- Streaming file read/write

my_gethostbyname.c --- Thread-safe version of standard net gethostbyname() func
my_gethwaddr.c --- Get hardware address for an interface

my_getopt.c --- Find out what options are in effect

my_getsystime.c --- Time-of-day functions, portably

my_getwd.c --- Get working directory

my_handler.c --- Compare two keysin various possible formats

my_init.c --- Initialize variables and functions in the mysys library
my_largepage.c --- Getsthe size of large pages from the OS

my_lib.c --- Compare/convert directory names and file names

my_lock.c --- Lock part of afile

my_lockmem.c --- "Allocate a block of locked memory"

my_Iread.c --- Read a specified number of bytes from afile into memory
my_lwrite.c --- Write a specified number of bytes from memory into afile
my_malloc.c --- Malloc (memory allocate) and dup functions
my_messnc.c --- Put out a message on stderr with "no curses’

my_mkdir.c --- Make directory

my_mmap.c --- Memory mapping

my_net.c --- Thread-safe version of net inet_ntoa function

my_netware.c --- Functions used only with the Novell Netware version of MySQL

my_once.c --- Allocation / duplication for "things we don't need to free"

215

MySQL Source Code Distribution

my_open.c --- Open afile

my_os2cond.c --- OS2-specific: "A simple implementation of posix conditions®
my_os2dirsrch.c --- OS2-specific: Emulate a Win32 directory search
my_os2difen.c --- OS2-specific: Emulate UNIX dynamic loading
my_os2file64.c --- OS2-specific: For Fileb4bit setting

my_os2mutex.c --- OS2-specific: For mutex handling

my_os2thread.c --- OS2-specific: For thread handling

my_os2tls.c --- OS2-specific: For thread-local storage

my_port.c --- OS/machine-dependent porting functions, e.g. Al1X-specific my_ulonglong2doubl&()
my_pread.c --- Read a specified number of bytes from afile

my_pthread.c --- A wrapper for thread-handling functionsin different OSs
my_quick.c --- Read/write (labeled a"quicker" interface, perhaps obsolete)
my_read.c --- Read a specified number of bytes from afile, possibly retry
my_realloc.c --- Reallocate memory allocated with my_alloc.c (probably)
my_redel.c --- Rename and delete file

my_rename.c --- Rename without delete

my_seek.c --- Seek, i.e. point to a spot within afile

my_semaphore.c --- Semaphore routines, for use on OS that doesn't support them
my_sleep.c --- Wait n microseconds

my_static.c --- Static variables used by the mysys library

my_symlink.c --- Read a symbolic link (symlinks are a UNIX thing, | guess)
my_symlink2.c --- Part 2 of my_symlink.c

my_sync.c --- Sync dataiin file to disk

my_thr_init.c --- initialize/allocate "al mysys & debug thread variables®
my_wincond.c --- Windows-specific: emulate Posix conditions

my_windac.c --- Windows NT/2000 discretionary access control functions
my_winsem.c --- Windows-specific: emulate Posix threads

my_winthread.c --- Windows-specific: emulate Posix threads

my_write.c --- Write a specified number of bytesto afile

ptr_cmp.c --- Point to an optimal byte-comparison function

216

MySQL Source Code Distribution

» Queues.c --- Handle priority queues asin Robert Sedgewick's book

* raid2.c--- RAID support (the true implementation isin raid.cc)

» rijndagl.c --- "Optimized ANSI C code for the Rijndael cipher (now AES")
» safemalloc.c --- A version of the standard malloc() with safety checking

» shal.c--- Implementation of Secure Hashing Algorithm 1

» gtring.c --- Initialize/append/free dynamically-sized strings; see also sgl_string.cc in the /sl direct-
ory

» testhash.c --- Standalone program: test the hash library routines

e test charset.c --- Standalone program: display character set information

e test dir.c --- Standalone program: placeholder for "test all functions' idea

e test fn.c --- Standalone program: apparently tests a function

* test_ xml.c --- Standalone program: test XML routines

e thr_alarm.c --- Thread alarms and signal handling

e thr_lock.c --- "Read and write locks for Posix threads"

e thr_mutex.c --- A wrapper for mutex functions

» thr_rwlock.c --- Synchronizes the readers thread locks with the writer'slock
e tree.c --- Initialize/search/free binary trees

» typelib.c --- Find astring in a set of strings; returns the offset to the string found

Y ou can find documentation for the main functions in these files elsewhere in this document. For ex-
ample, the main functionsin ny_get wd. ¢ are described thus:

"int my_getwd _A((string buf, uint size, nmyf M/Fl ags));
int ny_setwd _A((const char *dir, nmyf M/Fl ags));
Get and set working directory."

A.1.21. The ndb Directory

The ndb (MySQL Cluster) source code.

MySQL 's shared-nothing in-memory feature is practically a DBMS by itself. We generally use the term
"ndb" when referring to the storage engine, and the term "MySQL Cluster" when referring to the com-
bination of the storage engine and the rest of the MySQL facilities.

The sub-directories within ndb are:

e hin--- Two script files
» config --- Files needed for building

e demos --- Demonstration scripts

217

MySQL Source Code Distribution

» docs--- A doxygen output and a .txt file

* home --- Some scripts and .pl files

* include--- The .hfiles

e lib--- empty

» ndbapi-examples --- Examples for the API
* grc--- The.cppfiles

* test--- Filesfor testing

» tools--- Programs for testing select, drop, and so on

A.1.22. The net war e Directory

Files related to the Novell NetWare version of MySQL.
There are 43 files on this directory. Most have filename extensions of *. def ,*. sql ,or*. c.

Thetwenty-eight *. def filesare all from Novell Inc. They contain import or export symboals. (. def is
acommon filename extension for "definition".)

Thethree* . sql filesare short scripts of SQL statements used in testing.

These are the five *.c files, all from Novell Inc.:

e libmysglmain.c --- Only one function: init_available charsets()
* my_manage.c --- Standal one management utility

e mysgl_instal_db.c --- Compare \scripts\mysgl_install_db.sh

* mysgl_test run.c --- Short test program

* mysgld safe.c --- Compare \scriptsimysgld_safe.sh
Perhaps the most important files are:

* netware/BUILD/*patch --- NetWare-specific build instructions and switches (compare the filesin
the BUILD directory)

For instructions about basic installation, see "Deployment Guide For NetWare AMP" at: ht-
tp://devel oper.novell.com/ndk/whitepapers/namp.htm

A.1.23. The NEW RPN Directory

Directory to place RPMs while making a distribution.

This directory is not part of the Windows distribution. It is atemporary directory used during RPM
builds with Linux distributions. Y ou only see it after you've done a"build".

218

http://developer.novell.com/ndk/whitepapers/namp.htm
http://developer.novell.com/ndk/whitepapers/namp.htm

MySQL Source Code Distribution

A.1.24. The os2 Directory

Routines for working with the OS2 operating system.

Thefilesin this directory are the product of the efforts of three people from outside MySQL: Y uri
Dario, Timo Maier, and John M Alfredsson. Thereareno . C program filesin this directory.

The contents of \os2 are:

* A ReadmeTxt file
* An\include subdirectory containing .h files which are for OS/2 only
» Filesused inthe build process (configuration, switches, and one .obj)

The README filerefersto MySQL version 3.23, which suggests that there have been no updates for
MySQL 4.0 for this section.

A.1.25. The pst ack Directory

Process stack display (not currently used).

Thisisaset of publicly-available debugging aids which all do pretty well the same thing: display the
contents of the stack, along with symbolic information, for a running process. There are versions for
various object file formats (such as ELF and |EEE-695). Most of the programs are copyrighted by the
Free Software Foundation and are marked as "part of GNU Binutils".

In other words, the pstack files are not really part of the MySQL library. They are merely useful when
you re-program some MY SQL code and it crashes.

A.1.26. The r egex Directory

Henry Spencer's Regular Expression library for support of REGEXP function.

Thisisthe copyrighted product of Henry Spencer from the University of Toronto. It'safairly-
well-known implementation of the requirements of POSIX 1003.2 Section 2.8. Thelibrary is bundled
with Apache and is the default implementation for regular-expression handling in BSD Unix. MySQL's
Monty Widenius has made minor changes in three programs (debug.c, engine.c, regexec.c) but thisis

not aMySQL package. MySQL callsit only in order to support two MySQL functions: REGEXP and
RLIKE.

Some of Mr Spencer's documentation for the regex library can be found in the README and WHATS-
NEW files.

One MySQL program which uses regex is\cmd-line-utils\libedit\search.c

This program calls the 'regcomp’ function, which is the entry point in \regex\regexp.c.

A.1.27. The SCCS Directory

Source Code Control System (not part of source distribution).

You will seethisdirectory if and only if you used BitKeeper for downloading the source. Thefiles here
are for BitK egper administration and are not of interest to application programmers.

219

MySQL Source Code Distribution

A.1.28. The scri pt s Directory

SQL batches, e.g. mysglbug and mysqgl_install_db.

The* . sh filename extension stands for "shell script”. Linux programmers use it where Windows pro-
grammerswould usea* . bat (batch filename extension).

Some of the * . sh files on this directory are:

» fill_help_tables.sh --- Create help-information tables and insert

* make binary_distribution.sh --- Get configure information, make, produce tar
» msgl2mysgl.sh --- Convert (partly) mSQL programs and scripts to MySQL

* mysglbug.sh --- Create a bug report and mail it

* mysgld_multi.sh --- Start/stop any humber of mysgld instances

* mysgld_safe-watch.sh --- Start/restart in safe mode

* mysgld_safe.sh --- Start/restart in safe mode

* mysgldumpslow.sh --- Parse and summarize the slow query log

» mysglhotcopy.sh --- Hot backup

* mysgl_config.sh --- Get configuration information that might be needed to compile a client
» mysgl_convert_table format.sh --- Conversion, e.g. from | SAMto Myl SAM
* mysgl_explain_log.sh --- Put alog (made with - - | og) into aMySQL table

* mysgl_find_rows.sh --- Search for queries containing <r egexp>

» mysgl_fix_extensions.sh --- Renames some file extensions, not recommended

* mysgl_fix_privilege tables.sh--- Fix nysql . user etc. when upgrading. Can be safely run during
any upgrade to get the newest MySQL privilege tables

e mysgl_instal_db.sh --- Create privilege tables and func table

* mysgl_secure_installation.sh --- Disallow remote root login, eliminate test, etc.
e mysgl_setpermission.sh --- Aid to add users or databases, sets privileges

* mysgl_tableinfo.sh --- Putsinfo re MySQL tablesinto aMySQL table

e mysgl_zap.sh --- Kill processes that match pattern

A.1.29. The server -t ool s Directory

The instance manager.

Quoting from the README file within this directory: "Instance Manager - manage MySQL instances
locally and remotely. File description: mysglmanager.cc - entry point to the manager, main, op-
tions.{ h,cc} - handle startup options. manager.{ h,cc} - manager process. mysqgl_connection.{ h,cc} -
handle one connection with mysql client. See also instance manager architecture description in mysql-

220

MySQL Source Code Distribution

manager.cc.

A.1.30. The sgl Directory

Programs for handling SQL commands. The "core" of MySQL.

Thesearethe. ¢ and. cc filesinthesql directory:

» derror.cc --- read language-dependent message file
e des key file.cc --- load DES keys from plaintext file
» discover.cc --- Functions for discovery of frm file from handler

« field.cc --- "implement classes defined inf i el d. h" (long); defines all storage methods MySQL
uses to store field information into records that are then passed to handlers

» field_conv.cc --- functionsto copy data between fields
» filesort.cc --- sort aresult set, using memory or temporary files
» frm_crypt.cc --- contains only one short function: get _crypt _for_frm

» gen_lex_hash.cc --- Knuth's algorithm from Vol 3 Sorting and Searching, Chapter 6.3; used to
search for SQL keywordsin aquery

e gstream.cc --- GTextReadStream, used to read GIS objects
» handler.cc --- handler-calling functions

» hash_filo.cc --- static-sized hash tables, used to store info like hostname -> ip tablesin a FIFO man-
ner

* ha berkeley.cc --- Handler: BDB

» ha blackhole.cc --- Handler: Black Hole

» ha federated.cc --- Handler: Federated

e ha heap.cc --- Handler: Heap

* ha_innodb.cc --- Handler: InnoDB

e ha myisam.cc --- Handler: MyISAM

* ha_myisammrg.cc --- Handler: (MylISAM MERGE)

* ha ndbcluster.cc --- Handler: NDB

» hostname.cc --- Given |IP, return hostname

e init.cc --- Init and dummy functions for interface with unireg
* item.cc --- Item functions

e item_buff.cc --- Buffersto save and compare item values

» item_cmpfunc.cc --- Definition of al compare functions

221

MySQL Source Code Distribution

item_create.cc --- Create an item. Used by | ex. h.

item_func.cc --- Numerical functions

item_geofunc.cc --- Geometry functions

item_row.cc --- Row items for comparing rows and for | N on rows
item_strfunc.cc --- String functions

item_subselect.cc --- Subqueries

item_sum.cc --- Set functions (SUM) , AVH) , etc.)

item_strfunc.cc --- String functions

item_subselect.cc --- Item subquery

item_timefunc.cc --- Date/time functions, e.g. week of year

item_unig.cc --- Empty file, here for compatibility reasons

key.cc --- Functions to create keys from records and compare a key to akey in arecord
lock.cc --- Locks

log.cc --- Logs

log_event.cc --- Log event (abinary log consists of a stream of log events)
matherr.c --- Handling overflow, underflow, etc.

mf_iocache.cc --- Caching of (sequential) reads and writes

mysgld.cc --- Sourcefor nysql d. exe; includesthemai n() program that starts mysql d, hand-
ling of signals and connections

mf_decimal.cc --- New decimal and numeric code

my_lock.c --- Lock part of afile (like/ nysys/ nmy_| ock. c, but with timeout handling for
threads)

net_serv.cc --- Read/write of packets on a network socket

nt_servc.cc --- Initialize/register/remove an NT service

opt_range.cc --- Range of keys

opt_sum.cc --- Optimize functionsin presence of (implied) GROUP BY
parse file.cc --- Text .frm files management routines

password.c --- Password checking

procedure.cc --- Procedure interface, asused in SELECT * FROM Tabl e_nanme PROCEDURE
ANALYSE()

protocol.cc --- Low level functions for PACKING data that is sent to client; actual sending done
withnet _serv. cc

222

MySQL Source Code Distribution

protocol_cursor.cc --- Low level functions for storing data to be sent to the MySQL client
records.cc --- Functions for easy reading of records, possible through a cache
repl_failsafe.cc --- Replication fail-save (not yet implemented)

set_var.cc --- Set and retrieve MySQL user variables

slave.cc --- Procedures for aslave in amaster/slave (replication) relation
sp.cc --- DB storage of stored procedures and functions

sp_cache.cc --- For stored procedures

sp_head.cc --- For stored procedures

Sp_pcontext.cc --- For stored procedures

Sp_rcontext.cc --- For stored procedures

spatial.cc --- Geometry stuff (lines, points, etc.)

sgl_acl.cc --- Functions related to ACL security; checks, stores, retrieves, and deletes MySQL user
level privileges

sgl_analyse.cc --- Implements the PROCEDURE ANALYSE() , which analyzes a query result and
returns the ‘optimal’ data type for each result column

sgl_base.cc --- Basic functions needed by many modules, like opening and closing tables with table
cache management

sgl_cache.cc --- SQL query cache, with long comments about how caching works

sgl_class.cc --- SQL class; implements the SQL base classes, of which THD (THREAD object) is
the most important

sgl_client.cc --- A function called by my_net_init() to set some check variables
sgl_crypt.cc --- Encode / decode, very short

sgl_db.cc --- Create / drop database

sgl_delete.cc --- The DELETE statement

sgl_derived.cc --- Derived tables, with long comments

sgl_do.cc --- The DO statement

sgl_error.cc --- Errors and warnings

sgl_handler.cc --- Implements the HANDL ER interface, which gives direct accessto rowsin Myl SAM
and | nnoDB

sgl_help.cc --- The HEL P statement
sgl_insert.cc --- The | NSERT statement

sgl_lex.cc --- Does lexical analysis of aquery; i.e. breaks a query string into pieces and determines
the basic type (number, string, keyword, etc.) of each piece

223

MySQL Source Code Distribution

sgl_list.cc --- Only list_node_end_of_list, short (the rest of thelist classisimplemented in
sql _list.h)

sgl_load.cc --- The LOAD DATA statement

sgl_manager.cc --- Maintenance tasks, e.g. flushing the buffers periodically; used with BDB table
logs

sgl_map.cc --- Memory-mapped files (not yet in use)
sgl_olap.cc --- ROLLUP

sgl_parse.cc --- Parse an SQL statement; do initial checks and then jump to the function that should
execute the statement

sgl_prepare.cc --- Prepare an SQL statement, or use a prepared statement
sgl_rename.cc --- Rename table

sgl_repl.cc --- Replication

sgl_select.cc --- Select and join optimization

sgl_show.cc --- The SHOWstatement

sgl_state.c --- Functions to map mysgld errno to sglstate
sgl_string.cc --- String functions: alloc, realloc, copy, convert, etc.
sgl_table.cc --- The DROP TABLE and ALTER TABLE statements
sgl_test.cc --- Some debugging information

sgl_trigger.cc --- Triggers

sgl_udf.cc --- User-defined functions

sgl_union.cc --- The UNI ON operator

sgl_update.cc --- The UPDATE statement

sgl_view.cc --- Views

stacktrace.c --- Display stack trace (Linux/Intel only)

strfunc.cc --- String functions

table.cc --- Table metadataretrieval; read the table definition from a. f r mfileand store it ina TA-
BLE object

thr_malloc.cc --- Thread-safe interfaceto/ nysys/ nmy_al | oc. ¢
time.cc --- Date and time functions

udf_example.cc --- Example file of user-defined functions
uniques.cc --- Function to handle quick removal of duplicates

unireg.cc --- Create aunireg form file (.frm) from aFl ELD and field-info struct

224

MySQL Source Code Distribution

A.1.31. The sqgl - bench Directory

The MySQL Benchmarks.

This directory has the programs and input files which MySQL uses for its comparisons of MySQL, Post-
greSQL, mSQL, Solid, etc. Since MySQL publishes the comparative results, it's only right that it should
make available all the material necessary to reproduce all the tests.

There are five subdirectories and sub-subdirectories:

» \Comments --- Comments about results from tests of Access, Adabas, etc.

e \DataATIS--- . t xt filescontaining input datafor the"ATIS' tests

» \Data\Wisconsin --- . t xt files containing input datafor the "Wisconsin" tests
* \Results--- old test results

* \Results-win32 --- old test results from Windows 32-bit tests

There are twenty-four * . sh (shell script) files, which involve Perl programs.
Therearethree* . bat (batch) files.

There is one README file and one TODO file.

A.1.32. The sgl - conmon Directory

Threefiles: client.c, my_time.c, pack.c. You will file symlinks to these files in other directories.

A.1.33. The SSL Directory

Secure Sockets Layer; includes an example certification one can use test an SSL (secure) database con-
nection.

Thisisn't acode directory. It contains a short note from Tonu Samuel (the NOTES file) and seven

* . pemfiles. PEM stands for "Privacy Enhanced Mail" and is an Internet standard for adding security to
electronic mail. Finally, there are two short scripts for running clients and servers over SSL connections.

A.1.34. The st ri ngs Directory
The string library.

Many of thefilesin this subdirectory are equivalent to well-known functions that appear in most C
string libraries. For those, there is documentation available in most compiler handbooks.

On the other hand, some of the files are MySQL additions or improvements. Often the MySQL changes
are attempts to optimize the standard libraries. It doesn't seem that anyone tried to optimize for recent
Pentium class processors, though.

The .Cfilesare:

* bchange.c --- short replacement routine written by Monty Wideniusin 1987

* bcmp.c --- binary compare, rarely used

225

MySQL Source Code Distribution

bcopy-duff.c --- block copy: attempt to copy memory blocks faster than cmemcpy
bfill.c --- bytefill, to fill abuffer with (length) copies of abyte

bmove.c --- block move

bmove512.c --- "should be the fastest way to move a multiple of 512 bytes"
bmove_upp.c --- bmove.c variant, starting with last byte

bzero.c --- something like bfill with an argument of 0

conf_to_src.c --- reading a configuration file

ctype*.c --- string handling programs for each char type MySQL handles
decimal.c --- for decimal and numeric conversions

do_ctype.c --- display case-conversion and sort-conversion tables
dump_map.c --- standalonefile

int2str.c --- integer-to-string

is_prefix.c --- checks whether stringl starts with string2

lIstr.c --- convert long long to temporary-buffer string, return pointer
longlong2str.c --- ditto, but to argument-buffer

memcmp.c --- memory compare

memcpy.c --- memory copy

memset.c --- memory set

my_strtoll10.c --- longlong2str for radix 10

my_vsnprintf.c --- variant of printf

r_strinstr.c --- see if one string is within another

str2int.c --- convert string to integer

strappend.c --- fill up astring to n characters

strcat.c --- concatenate strings

strcend.c --- point to where a character C occurs within str, or NULL
strchr.c --- point to first place in string where character occurs

strcmp.c --- compare two strings

strcont.c --- point to where any one of a set of characters appears
strend.c --- point to the \O' byte which terminates str

strfill.c --- fill astring with n copies of a byte

226

MySQL Source Code Distribution

* gtrinstr.c --- find string within string

e dtrlen.c --- return length of string in bytes

» strmake.c --- create new string from old string with fixed length, append end \0 if needed
* strmov.c --- move source to dest and return pointer to end

» strnlen.c --- return min(length of string, n)

e strnmov.c --- move source to dest for source size, or for n bytes

» strrchr.c --- find a character within string, searching from end

» gtrstr.c --- find an instance of pattern within source

e strto.c --- string to long, to long long, to unsigned long, etc.

e dtrtod.c --- string to double

* dtrtol.c --- string to long

e dtrtoll.c --- string to long long

* strtoul.c --- string to unsigned long

e strtoull.c --- string to unsigned long long

e strxmov.c --- move a series of concatenated source strings to dest

e strxnmov.c --- like strxmov.c but with a maximum length n

e tr_test.c--- test of all the string functions encoded in assembler

* uca-dump.c --- shows unicode collation algorithm dump

» udiv.c --- unsigned long divide, for operating systems that don't support these
e utrll-dump.c --- dump east Asian wide text file

» xml.c--- read and parse XML strings; used to read character definition information stored in/

sgl/share/charsets

There are also four .ASM files --- macros.asm, ptr_cmp.asm, strings.asm, and strxmov.asm --- which
can replace some of the C-program functions. But again, they look like optimizations for old members
of the Intel processor family.

A.1.35. The support-fil es Directory

Files used to build MySQL on different systems.
Thefiles here are for building ("making") MySQL given a package manager, compiler, linker, and other

build tools. The support files provide instructions and switches for the build processes. They include ex-
ample my.cnf files one can use as a default setup for MySQL.

A.1.36. The t est s Directory

Testsin Perl andin C.

227

MySQL Source Code Distribution

Thefilesin this directory are test programs that can be used as a base to write a program to simulate
problemsin MySQL in various scenarios: forks, locks, big records, exporting, truncating, and so on.
Some examples are:

* connect_test.c --- test that a connect is possible

e insert_test.c --- test that an insert is possible

o list_test.c --- test that a select is possible

o sdlect test.c --- test that aselect is possible

» showdb_test.c --- test that a show-databases is possible

e sdl_test.c--- test that SSL is possible

» thread_test.c --- test that threading is possible

A.1.37. The t ool s Directory

Tools --- well, actually, one tool.
Theonly fileis:

e mysglmanager.c --- A "server management daemon" by Sasha Pachev. Thisisatool under develop-
ment and is not yet useful. Related to fail-safe replication.

A.1.38. The VC++Fi | es Directory

Visual C++ Files.

Includes this entire directory, repeated for VC++ (Windows) use.

V C++Files includes a complete environment to compile MySQL with the VC++ compiler. To useiit,
just copy the files on this directory; the make win_src_distribution.sh script uses these files to create a
Windows source installation.

This directory has subdirectories which are copies of the main directories. For example, thereis a sub-
directory \V C++Files\heap, which has the Microsoft devel oper studio project file to compile \heap with
VC++. So for adescription of the filesin \V C++Files\heap, see the description of the filesin \heap. The
same applies for amost all of VC++Files's subdirectories (bdb, client, isam, libmysgl, etc.). The differ-
ence is that the \VC++Files variants are specifically for compilation with Microsoft Visual C++ in 32-bit
Windows environments.

In addition to the "subdirectories which are duplicates of directories’, VC++Files contains these subdir-
ectories, which are not duplicates:

* comp_err --- (nearly empty)

e contrib --- (nearly empty)

* InstallShield --- script files

e isamchk --- (nearly empty)

228

MySQL Source Code Distribution

» libmysgltest --- one small non-MySQL test program: mytest.c

* myisamchk --- (nearly empty)

* myisamlog --- (nearly empty)

e myisammrg --- (nearly empty)

» mysglbinlog --- (nearly empty)

* mysglmanager --- MFC foundation class files created by AppWizard
o mysglserver --- (nearly empty)

* mysglshutdown --- one short program, mysglshutdown.c

* mysglwatch.c --- Windows service initialization and monitoring

e my_print_defaults --- (nearly empty)

e pack_isam --- (nearly empty)

* perror --- (nearly empty)

» prepare--- (nearly empty)

* replace --- (nearly empty)

» SCCS--- source code control system

» testl --- tests connecting via X threads

o thr_insert_test --- (nearly empty)

» thr_test --- one short program used to test for memory-allocation bug
* winmysgladmin --- the winmysgladmin.exe source

The "nearly empty" subdirectories noted above (e.g. comp_err and isamchk) are needed because VC++

requires one directory per project (i.e. executable). We are trying to keep to the MySQL standard source
layout and compile only to different directories.

A.1.39. The vi o Directory

Virtual I/O Library.

The VIO routines are wrappers for the various network 1/O calls that happen with different protocols.
Theideaisthat in the main modules one won't have to write separate bits of code for each protocal.
Thusvio's purpose is somewhat like the purpose of Microsoft's winsock library.

The underlying protocols at this moment are: TCP/IP, Named Pipes (for WindowsNT), Shared Memory,
and Secure Sockets (SSL).

The C programs are;

e test-sdl.c --- Short standalone test program: SSL

229

MySQL Source Code Distribution

» test-sdclient.c --- Short standal one test program: clients
» test-sslserver.c --- Short standalone test program: server
» vio.c --- Declarations + open/close functions

» viosocket.c --- Send/retrieve functions

* viossl.c--- SSL variations for the above

» viosdfactories.c --- Certification / Verification

» viotest.cc --- Short standal one test program: general

* viotest-ssl.c --- Short standalone test program: SSL

» viotest-sslconnect.cc --- Short standalone test program: SSL connect

The older functions --- raw_net_read, raw_net_write --- are now obsolete.

A.1.40. The zl i b Directory

Data compression library, used on Windows.

Zlib isadata compression library used to support the compressed protocol and the COMPRESS/UN-
COMPRESS functions under Windows. On Unix, MySQL uses the system libgz.a library for this pur-
pose.

Zlib --- which presumably stands for "Zip Library" --- isnot aMySQL package. It was produced by the

GNU Zip (gzip.org) people. Zlib isavariation of the famous "Lempel-Ziv" method, which is also used

by "Zip". The method for reducing the size of any arbitrary string of bytesis as follows:

* Find asubstring which occurs twicein the string.

» Replace the second occurrence of the substring with (a) a pointer to the first occurrence, plus (b) an
indication of the length of the first occurrence.

Thereisafull description of the library's functionsin the gzip manual at ht-

tp:/lwww.gzip.org/zlib/manual .html. Thereis therefore no need to list the modules in this document.

The MySQL program \mysys\my_compress.c uses zlib for packet compression. The client sends mes-
sages to the server which are compressed by zlib. Seealso: \ sql \ net _serv. cc.

230

http://www.gzip.org/zlib/manual.html
http://www.gzip.org/zlib/manual.html

Appendix B. | nnoDB Source Code Distribution

The | nnoDB source files are the best place to ook for information about internals of the file structure
that MySQL ers can optionally use for transaction support. But when you first look at al the subdirector-
ies and file names you'll wonder: Where Do | Start? It can be daunting.

WEell, I've been through that phase, so I'll pass on what | had to learn on the first day that | looked at | n-
noDB sourcefiles. | am very sure that thiswill help you grasp, in overview, the organization of | n-
noDB modules. I'm aso going to add comments about what is going on -- which you should mistrust!
These comments are reasonable working hypotheses; nevertheless, they have not been subjected to ex-
pert peer review.

Here's how I'm going to organize the discussion. I'll take each of the 31 | nnoDB subdirectories that
come with the MySQL 5.0 source codein\ i nnobase (on my Windows directory). The format of each
section will be like this every time:

\subdirectory-name (LONGER EXPLANATORY NAME)

File |What Name |Size Comment Inside File
Name |StandsFor

file- my-own-guess |in-bytes from-the-file-itself
name

... My-Comments

For example:

\ ha (HASHI NG
File Name \What Nane Stands For Size Conment |nside File
haOha. c Hashi ng/ Hashi ng 8, 145 Hash table with external chains
Comment s about hashing will be here.

The "Comment Inside File" column isadirect copy from the first /* comment */ line inside the file. All
other comments are mine. After |'ve discussed each directory, I'll finish with some notes about naming
conventions and a short list of URLsthat you can use for further reference.

Now let's begin.
\btr (B-TREE)

File Nane What Nane Stands For Si ze Conment Inside File
btrObtr.c B-tree /| B-tree 82, 400 B-tree

bt rOcur.c B-tree / Cursor 103, 233 i ndex tree cursor

btrOsea. c B-tree / Search 41,788 index tree adaptive search
btrOpcur.c B-tree / persistent cursor 16, 720 index tree persistent cursor

If you total up the sizes of the C files, you'll see that \btr is the second-largest file group in InnoDB. This
is understandabl e because maintaining a B-tree is arelatively complex task. Luckily, there has been alot
of work done to describe efficient management of B-tree and B+-tree structures, much of it open-source
or public-domain, since their original invention over thirty years ago.

I nnoDB likesto put everything in B-trees. Thisiswhat 1'd call a"distinguishing characteristic” because
in al the major DBMSs (like IBM DB2, Microsoft SQL Server, and Oracle), the main or default or clas-

231

| nnoDB Source Code Distribution

sic structure is the heap-and-index. In InnoDB the main structureis just the index. To put it another way:
InnoDB keeps the rows in the leaf node of the index, rather than in a separate file. Compare Oracle's In-
dex Organized Tables, and Microsoft SQL Server's Clustered Indexes.

This, by the way, has some consequences. For example, you may as well have a primary key since oth-
erwise InnoDB will make one anyway. And that primary key should be the shortest of the candidate
keys, since | nnoDB will use it as a pointer if there are secondary indexes.

Most importantly, it means that rows have no fixed address. Therefore the routines for managing file
pages should be good. We'll see about that when we look at the \row (ROW) program group later.

\buf (BUFFERING)

File Name \What Nane Stands For Size Comrent Inside File

buf Obuf . ¢ Buffering / Buffering 65,582 The dat abase buffer buf_pool
buf Of l u. ¢ Buffering / Flush 29, 583 ... flush algorithm

buf Ol ru. c | |east-recently-used 27,515 ... replacenent al gorithm
buf Orea. c Buf fering / read 21, 504 ... read

Thereis a separate file group (\mem MEMORY') which handles memory requestsin general. A "buffer"
usually has a more specific definition, as amemory area which contains copies of pages that ordinarily
areinthe main datafile. The "buffer pool" isthe set of all buffers (there are lots of them because In-
noDB doesn't depend on the operating system's caching to make things faster).

The pool sizeisfixed (at the time of thiswriting) but the rest of the buffering architecture is sophistic-
ated, involving ahost of control structures. In general: when InnoDB needs to access a new page it looks
first in the buffer pool; InnoDB reads from disk to a new buffer when the page isn't there; InnoDB
chucks old buffers (basing its decision on a conventional Least-Recently-Used algorithm) when it hasto
make space for a new buffer.

There are routines for checking a page's validity, and for read-ahead. An example of "read-ahead" use: if
asequential scan is going on, then aDBMS can read more than one page at atime, which is efficient be-
cause reading 32,768 bytes (two pages) takes less than twice as long as reading 16,384 bytes (one page).

\data (DATA)
Fil e Nane What Nane Stands For Size Conment | nside File
dat aOdata.c Data / Data 15, 344 SQL data field and tuple
dat aOtype.c Data / Type 7,417 Dat a types

Thisisacollection of minor utility routines affecting rows.
\db (DATABASE)
Thereareno .c filesin\db, just one .h file with some definitions for error codes.

\dict (DICTIONARY)

File Name \What Nane Stands For Size Comrent Inside File
dictOdict.c Dictionary / Dictionary 114,263 Data dictionary system

di ctOboot.c Dictionary / boot 11, 704 ... booting

dictOcrea.c Dictionary / Create 37,278 ... Creation

dictOload.c Dictionary / |oad 34, 049 ... load to nenory cache
dictOmemc Dictionary / nmenory 7,470 ... nenory object creation

The data dictionary (known in some circles as the catalog) has the metadata information about objectsin
the database --- column sizes, table names, and the like.

\dyn (DYNAMICALLY ALLOCATED ARRAY)

232

| nnoDB Source Code Distribution

Fil e Name What Nanme Stands For Size Conment Inside File

dyn0Odyn. c Dynamic / Dynamic 994 dynamically allocated array

Thereisasingle function in the dynOdyn.c program, for adding a block to the dynamically allocated ar-
ray. InnoDB might use the array for managing concurrency between threads.

At the moment, the \dyn program group is trivial.

\eval (EVALUATING)

Fil e Name What Nanme Stands For Size Conment Inside File

eval Oeval . ¢ Eval uati ng/ Eval uating 17,061 SQ. eval uator
eval Oproc. c Eval uati ng/ Procedures 5,001 Executes SQL procedures

The evaluating step is alate part of the process of interpreting an SQL statement --- parsing has already
occurred during \pars (PARSING).

The ability to execute SQL stored procedures is an InnoDB feature, but MySQL handles stored proced-
uresin its own way, so the evalOproc.c program is unimportant.

\fil (FILE)

Fil e Nane What Nane Stands For Size Comment Inside File

filofil.c File/ File 118, 312 The |l ow Il evel file system

The reads and writes to the database files happen here, in coordination with the low-level filei/o
routines (see osOfile.c in the \os program group).

Briefly: atable's contents are in pages, which arein files, which are in tablespaces. Files do not grow;
instead one can add new files to the tablespace. As we saw earlier (discussing the \btr program group)
the pages are nodes of B-trees. Since that's the case, new additions can happen at various placesin the
logical file structure, not necessarily at the end. Reads and writes are asynchronous, and go into buffers,
which are set up by routines in the \buf program group.

\fsp (FILE SPACE)

Fi | e Nane VWhat Nane Stands For Size Comment Inside File

f spOf sp. c Fi | e Space Managenent 110,495 File space nanagenent
| would have thought that the \fil (FILE) and \fsp (FILE SPACE) MANAGEMENT programs would fit
together in the same program group; however, | guess the InnoDB folk are splitters rather than lumpers.

It'sin fspOfsp.c that one finds some of the descriptions and comments of extents, segments, and headers.
For example, the "descriptor bitmap of the pages in the extent" isin here, and you can find as well how
the free-page list is maintained, what's in the bitmaps, and what various header fields' contents are.

\fut (FILE UTILITY)

File Nane \What Nane Stands For Size Conment |nside File
futOfut.c File Uility / Uility 293 Fi |l e-based utilities
futOlst.c File Utility / List 14,176 File-based list utilities

Mainly these small programs affect only file-based lists, so maybe saying "File Utility" istoo generic.
Thereal work with data files goes on in the \fsp program group.

233

| nnoDB Source Code Distribution

\ha (HASHING)

File Name \What Nane Stands For Size Comment Inside File
haOha. c Hashi ng / Hashi ng 8, 145 Hash table with external chains
hashOhash. ¢ Hashi ng / Hashi ng 3,283 Sinpl e hash table utility

The two C programs in the \ha directory --- haOha.c and hashOhash.c --- both refer to a "hash table" but
hashOhash.c is specialized, it is mostly about accessing points in the table under mutex control.

When a"database" is so small that InnoDB can load it all into memory at once, it's more efficient to ac-
cessit viaahash table. After al, no disk i/o can be saved by using an index lookup, if there's no disk.

\ibuf (INSERT BUFFER)

Fil e Name What Nanme Stands For Size Conment Inside File

i buf Oi buf.c Insert Buffer / 91, 397 I nsert buffer

The words "Insert Buffer" mean not "buffer used for INSERT" but "insertion of a buffer into the buffer
pool” (see the \buf BUFFER program group description). The matter is complex due to possibilities for
deadlocks, a problem to which the comments in the ibufOibuf.c program devote considerable attention.

\include (INCLUDE)

All .hand .icfilesarein the\include directory. It's habitual to put comments along with the descriptions,
soif (for example) you want to see comments about operating system file activity, the place to look is
\include\osOfile.h.

\lock (LOCKING)

Fil e Name What Nanme Stands For Size Conment Inside File

| ockOl ock.c Lock / Lock 139, 207 The transaction | ock system

If you've used DB2 or SQL Server, you might think that locks have their own in-memory table, that row
locks might need occasional escalation to table locks, and that there are three lock types: Shared, Up-
date, Exclusive.

All those things are untrue with | nnoDB! Locks are kept in the database pages. A bunch of row locks
can't be rolled together into a single table lock. And most importantly there's only one lock type. | call
thistype "Update” because it has the characteristics of DB2 / SQL Server Update locks, that is, it blocks
other updates but doesn't block reads. Unfortunately, | nnoDB comments refer to them as "x-locks" etc.

To sumit up: if your background is Oracle you won't find too much surprising, but if your background
isDB2 or SQL Server the locking concepts and terminology will probably confuse you at first.

Y ou can find my online article about the differences between Oracle-style and DB2/SQL -Server-style
locks at: http://dbazine.com/gulutzan6.html

Now here is anotice from Heikki Tuuri of InnoDB. It concerns lock categories rather than lockOlock.c,
but | placeit in this section because this is the place that people are most likely to look for it.

Errata notice about | nnoDB row locks:

#define LOCK.S 4 /* shared */
#define LOCK_X 5 /* exclusive */

/* Waiting lock flag */

#define LOCK WAI T 256
/* this wait bit should be so high that it can be ORed to the |ock
node and type; when this bit is set, it nmeans that the | ock has not

234

http://dbazine.com/gulutzan6.html

| nnoDB Source Code Distribution

yet been granted, it is just waiting for its turn in the wait queue */

/* Precise nodes */

#def i ne LOCK_ORDI NARY 0
/* this flag denotes an ordinary next-key lock in contrast to LOCK GAP
or LOCK_REC _NOT_GAP */

#define LOCK_GAP 512
/* this gap bit should be so high that it can be ORed to the other
flags; when this bit is set, it neans that the | ock holds only on the
gap before the record; for instance, an x-lock on the gap does not
give permssion to nodify the record on which the bit is set; |ocks of
this type are created when records are renoved fromthe index chain of
records */

#def i ne LOCK_REC_NOT_GAP 1024
/* this bit neans that the lock is only on the index record and does
NOT bl ock inserts to the gap before the index record; this is used in
the case when we retrieve a record with a unique key, and is al so used
in |locking plain SELECTs (not part of UPDATE or DELETE) when the user
has set the READ COW TTED i sol ati on | evel */

#def i ne LOCK_| NSERT_| NTENTI ON 2048
/* this bit is set when we place a waiting gap type record | ock
request in order to let an insert of an index record to wait until
there are no conflicting | ocks by other transactions on the gap; note
that this flag renains set when the waiting lock is granted, or if the
lock is inherited to a nei ghboring record */

Errata notice about | nnoDB row locks ends.

\log (LOGGING)

Fil e Nane What Nane Stands For Size Conment Inside File

| ogOl og. c Loggi ng / Loggi ng 86, 043 Dat abase | og
| ogOrecv.c Logging / Recovery 91, 352 Recovery

I've already written about the \log program group, so here'salink to my previous article: "How Logs
work with MySQL and InnoDB": ht-
tp://lwww.devarticles.com/c/alMySQL/How-L ogs-Work-On-MySQL -With-InnoDB-Tables

\mach (MACHINE FORMAT)

Fil e Nane What Nane Stands For Size Comment Inside File

machOdat a. ¢ Machi ne/ Dat a 2,335 Uilities for converting

The machOdata.c program has two small routines for reading compressed ulints (unsigned long in-
tegers).

\mem (MEMORY)

Fil e Nane What Nane Stands For Size Comment Inside File
menOnem ¢ Menory / Menory 10,310 The nenory nmanagenent
men0dbg. ¢ Menory / Debug 22,054 ... the debug code
menOpool . ¢ Menory / Pool 16, 511 ... the | owest |evel

Thereisalong comment at the start of the memOpool.c program, which explains what the memory-
consumers are, and how InnoDB tries to satisfy them. The main thing to know isthat there are really
three pools: the buffer pool (see the \buf program group), the log pool (see the \log program group), and
the common pool, which is where everything that's not in the buffer or log pools goes (for example the
parsed SQL statements and the data dictionary cache).

\mtr (MINI-TRANSACTION)

Fil e Nane What Nane Stands For Size Comment Inside File
mronmtr.c M ni -transaction / 12, 620 M ni -transacti on buffer
nt rOl og. c M ni -transaction / Log 8,090 ... log routines

235

http://www.devarticles.com/c/a/MySQL/How-Logs-Work-On-MySQL-With-InnoDB-Tables
http://www.devarticles.com/c/a/MySQL/How-Logs-Work-On-MySQL-With-InnoDB-Tables

| nnoDB Source Code Distribution

The mini-transaction routines are called from most of the other program groups. I'd describe thisas a
low-level utility set.

\os (OPERATING SYSTEM)

File Nane \What Nane Stands For Size Comment Inside File

osOfile.c OGS/ File 104,081 To i/o primtives
osOthread.c OS / Thread 7, 754 To thread control primtives
osOproc. c OS / Process 16, 919 To process control primtives
osOsync. c OS / Synchronization 14,256 To synchroni zation primtives

Thisisagroup of utilitiesthat other modules may call whenever they want to use an operating-system
resource. For example, in osOfile.c there isapublic InnoDB function named os file_create simple(),
which simply calls the Windows-API function CreateFile. Naturally the call iswithin an "#ifdef

__ WIN__ ... #endif" block; the effective routines are somewhat different for other operating systems.

\page (PAGE)
File Name \What Nane Stands For Size Comrent Inside File
pageOpage. c Page / Page 51,731 |Index page routines
pageOcur.c Page / Cursor 38,127 The page cursor

It'sinthe pageOpage. ¢ program that you'll learn as follows: index pages start with a header, entries
in the page are in order, at the end of the page is a sparse "page directory” (what | would have called a
dot table) which makes binary searches easier.

Incidentally, the program comments refer to "a page size of 8 kB" which seems obsolete. Inuni v. i (a
file containing universal constants) the page size is how #defined as 16KB.

\pars (PARSING)

Fil e Name What Nanme Stands For Size Conment Inside File

par sOpars. ¢ Parsi ng/ Par si ng 45,376 SQL parser

parsOgrm c Parsi ng/ G anmar 62,685 A Bison parser
parsQopt.c Parsing/ Optim zer 31,268 Sinple SQ Optim zer
parsOsym c Parsi ng/ Synbol Table 5,239 SQ. parser synbol table
| exyy.c Par si ng/ Lexer 62,071 Lexical scanner

Thejobistoinput a string containing an SQL statement and output an in-memory parse tree. The
EVALUATING (subdirectory \eval) programs will use the tree.

Asis common practice, the Bison and Flex tools were used --- par sOgr m ¢ iswhat the Bison parser
produced from an original file named par sOgr m y (also supplied), and | exyy. c iswhat Flex pro-
duced.

Sincel nnoDBisaDBMS by itself, it's natural to find SQL parsing in it. But in the MySQL/InnoDB
combination, MySQL handles most of the parsing. These files are unimportant.

\que (QUERY GRAPH)

Fil e Nane What Nane Stands For Size Conment Inside File

queOque. c Query Graph / Query 30, 774 Query graph

The program queOgue.c ostensibly is about the execution of stored procedures which contain commit/
rollback statements. | took it that this has little importance for the average MySQL user.

236

| nnoDB Source Code Distribution

\read (READ)

Fil e Nane What Nane Stands For Size Comment Inside File

readOread. c Read / Read 9,935 Cursor read

Ther eadOr ead. c program opens a"read view" of aquery result, using some functionsin the \trx
program group.

\rem (RECORD MANAGER)

Fil e Name What Nanme Stands For Size Conment Inside File

renOrec. c Record Manager 38,573 Record Manager

renmDcnp. ¢ Record Manager / 26, 617 Conpari son services for records
Conpar i son

There's an extensive comment near the start of remOrec.c title "Physical Record" and it's recommended
reading. At some point you'll ask what are all those bits that surround the data in the rows on a page, and
thisiswhere you'll find the answer.

\row (ROW)
Fil e Name What Nanme Stands For Size Conment Inside File
r owOr ow. ¢ Row / Row 18, 375 General row routines
rowouins.c Row / Undo I nsert 6, 799 Fresh insert undo
rowdunod. ¢ Row / Undo Modify 19, 712 Undo nodi fy of a row
rowoundo. ¢ Row / Undo 10, 512 Row undo
rowovers.c Row / Version 14, 385 Row ver si ons
rowonysqgl .c Row / MySQL 112, 462 Interface [to MySQL]
rowdi ns. ¢ Row / | nsert 42, 829 Insert into a table
rowosel . c Row / Sel ect 111,719 Sel ect
r owoupd. ¢ Row / Updat e 51, 824 Update of a row
rowopur ge. c Row / Purge 15, 609 Pur ge obsol ete records

Rows can be selected, inserted, updated/deleted, or purged (a maintenance activity). These actions cause
following actions, for example after insert there can be an index-update test, but it seems to me that
sometimes the following action has no MySQL equivalent (yet) and so isinoperative.

Speaking of MySQL, notice that one of the larger programs in the \row program group is the "interface
between Innobase row operations and MySQL" (rowOmysgl.c) --- information interchange happens at
thislevel because rowsin InnoDB and in MySQL are analogous, something which can't be said for
pages and other levels.

\srv (Server)
Fi | e Nane What Nane Stands For Size Comment |nside File
srvOsrv.c Server /| Server 75, 633 Server mai n program
srvOque. c Server |/ Query 2,463 Server query execution
srvOstart.c Server / Start 50, 154 Starts the server

Thisiswhere the server reads the initial configuration files, splits up the threads, and gets going. There
isalong comment deep in the program (you might missit at first glance) titled "IMPLEMENTATION
OF THE SERVER MAIN PROGRAM" in which you'll find explanations about thread priority, and
about what the responsibiities are for various thread types.

I nnoDB has many threads, for example "user threads" (which wait for client requests and reply to
them), "parallel communication threads" (which take part of a user thread's job if a query process can be
split), "utility threads" (background priority), and a"master thread" (high priority, usually asleep).

\sync (SYNCHRONIZATION)

237

| nnoDB Source Code Distribution

Fil e Name What Nanme Stands For Size Conment Inside File

syncOsync. ¢ Synchroni zation / 37,940 Mutex, the basic sync primtive
syncOarr.c ... [/ array 26,455 WAit array used in primtives
syncOrw. ¢ ... | read-wite 22,846 read-wite lock for thread sync

A mutex (Mutual Exclusion) is an object which only one thread/process can hold at atime. Any modern
operating system API has some functions for mutexes; however, as the comments in the syncOsync.c
code indicate, it can be faster to write one's own low-level mechanism. In fact the old assembly-lan-
guage XCHG trick isin syncOsync.c's hel per file, \includé\syncOsync.ic. Thisis the only program that
contains any assembly code.

Thei/o and thread-control primitives are called extensively. The word "synchronization" in this context
refers to the mutex-create and mutex-wait functionality.

\thr (Thread Local Storage)

Fil e Name What Nanme Stands For Size Conment Inside File

thrOl oc. c Thread / Local 5,334 The thread | ocal storage

I nnoDB doesn't use the Windows-API thread-local-storage functions, perhaps because they're not port-
able enough.

\trx (Transaction)

File Nane \Wat Nane Stands For Size Conment |nside File
trxOtrx.c Transaction / 50, 480 The transacti on
trxOpurge.c Transaction / Purge 29, 133 ... Purge old versions
trxOrec.c Transaction / Record 37,346 ... Undo |l og record
trxOroll.c / Rollback 31, 448 ... Rol I back

trx0sys.c Transaction / System 27,018 ... System

trxOrseg.c / Rollback segnent 6, 445 ... Rollback segnent
trxOundo.c Transaction / Undo 51,519 ... Undo I og

| nnoDB's transaction management is supposedly "in the style of Oracle" and that's close to true but can
mislead you.

e First: | nnoDB uses rollback segments like Oracle8i does — but Oracle9i uses a different name.

» Second: | nnoDB uses multi-versioning like Oracle does— but | see nothing that looks like an Or-
acle ITL being stored in the | nnoDB data pages.

e Third: | nnoDB and Oracle both have short (back-to-statement-start) versioning for the READ
COWM TTED isolation level and long (back-to-transaction-start) versioning for higher levels — but
I nnoDB and Oracle have different "default” isolation levels.

» Finaly: | nnoDB's documentation says it has to lock "the gaps before index keys' to prevent
phantoms — but any Oracle user will tell you that phantoms are impossible anyway at the SERI AL -
| ZABLE isolation level, so key-locks are unnecessary.

The main idea, though, isthat | nnoDB has multi-versioning. So does Oracle. Thisis very different from
the way that DB2 and SQL Server do things.

\usr (USER)
Fi | e Nane VWhat Nane Stands For Size Comment Inside File
usr0Osess.c User / Session 1, 740 Sessi ons

238

| nnoDB Source Code Distribution

One user can have multiple sessions (the session being al the things that happen between a connect and
disconnect). Thisiswhere | nnoDB used to track session IDs, and server/client messaging. It's another
of those items which isusualy MySQL's job, though. So now usrOsess.c merely closes.

\ut (UTILITIES)

File Name \What Nane Stands For Size Comrent Inside File

utQut. c Utilities / Uilities 9,728 Various utilities

ut Obyte. c Uilities / Debug 793 Byte utilities

ut Ornd. c Uilities / Random 1, 474 Random nunbers and hashi ng
ut Onem ¢ Uilities / Menory 10, 358 Menmory primtives

ut 0dbg. c Uilities / Debug 2,579 Debug utilities

The two functionsin utObyte.c are just for lower/upper case conversion and comparison. The single
function in utOrnd.c is for finding a prime slightly greater than the given argument, which is useful for
hash functions, but unrelated to randomness. The functions in utOmem.c are wrappers for "malloc" and
"free" calls— for the real "memory" module see section \mem (MEMORY). Finally, the functionsin
utOut.c are amiscellany that didn't fit better elsewhere: get_high_bytes, clock, time, difftime,
get_year_month_day, and "sprintf" for various diagnostic purposes.

In short: the\ut group istrivial.
Thisisthe end of the section-by-section account of | nnoDB subdirectories.
Some Notes About Structures

InnoDB's job, as a storage engine for MySQL, isto provide: commit-rollback, crash recovery, row-level
locking, and consistent non-blocking reads. How? With locks, a paged-file structure with buffer pooling,
and undo/redo logs,

The locks are kept in bit mapsin main memory. Thus InnoDB differs from Oracle in one respect: in-
stead of storing lock information on the page as Oracle does with Interested Transaction Lists, InnoDB
keepsit in a separate and more volatile structure. But both Oracle and InnoDB try to achieve a similar
goal: "writers don't block readers'. So atypical InnoDB row-read involves: (@) if the reading is for writ-
ing, then check if the row islocked and if so wait; (b) if according to the information in the row header
the row has been changed by some newer ransaction, then get the older version from the log. We call the
(b) part "versioning" because it means that a reader can get the older version of arow and thus will have
atemporally consistent view of al rows.

The InnoDB workspace consists of : tablespace and log files. A tablespace consists of: segments, as
many as necessary. A segment is usualy afile, but might be araw disk partition. A segment consists of:
extents. An extent consists of: 64 pages. A page's length is always 16K B, for both data and index. A
page consists of : a page header, and some rows. The page and row formats are the subjects of later
chapters.

InnoDB keeps two logs, the redo log and the undo log.

Theredo log isfor re-doing data changes that had not been written to disk when a crash occurred. There
isoneredo log for the entire workspace, it contains multiple files (the number depends on in-

nodb_log files in_group), itiscircular (that is, after writing to the last file InnoDB starts again on the
first file). Thefile header includes the last successful checkpoint. A redo log record's contents are: Page
Number (4 bytes = page number within tablespace), Offset of change within page (2 bytes), Log Record
Type (insert, update, delete, "fill space with blanks", etc.), and the changes on that page (only redo val-
ues, not old values).

Theundo log is primarily for removing data changes that had been written to disk when a crash oc-
curred, but should not have been written, because they were for uncommitted transactions. Sometimes
InnoDB calls the undo log the "rollback segment”. The undo log is inside the tablespace. The "insert"
section of the undo log is needed only for transaction rollback and can be discarded at COMMIT time.

239

| nnoDB Source Code Distribution

The "update/delete” section of the undo log is also useful for consistent reads, and can be discarded
when InnoDB has ended all transactions that might need the undo log records to reconstruct earlier ver-
sions of rows. An undo log record's contents are: Primary Key Value (not a page number or physical ad-
dress), Old Transaction ID (of the transaction that updated the row), and the changes (only old values).

COMMIT will write the contents of the log buffer to disk, and put undo log recordsin a history list.
ROLLBACK will delete undo log records that are no longer needed. PURGE (an internal operation that
occurs outside user control) will no-longer-necessary undo log records and, for data records that have
been marked for deletion and are no longer necessary for consistent read, will remove the records.
CHECKPOINT causes -- well, see the article "How Logs Work On MySQL With InnoDB Tables".

Y ou might be able to find a dide show, "ACID Transactionsin MySQL With InnoDB", viathis page:
http://dev.mysgl.com/tech-resources/presentations/. If the links are broken, notify MySQL.

A Note About File Naming

There appears to be a naming convention. The first letters of the file name are the same as the subdirect-
ory name, then thereisa'0" separator, then thereis an individual name. For the main program in a sub-
directory, the individual name may be a repeat of the subdirectory name. For example, thereis afile
named halha.c (the first two letters hamean "it'sin in subdirectory ..\ha", the next letter 0 means "0 sep-
arator", the next two letters mean "thisis the main ha program™). This naming convention is not strict,
though: for example the file lexyy.c isin the \pars subdirectory.

A Note About Copyrights

Most of the files begin with a copyright notice or a creation date, for example "Created 10/25/1995
Heikki Tuuri". | don't know a great deal about the history of | nnoDB, but found it interesting that most
creation dates were between 1994 and 1998.

References
» Ryan Bannon, Alvin Chin, Faryaaz Kassam and Andrew Roszko. "InnoDB Concrete Architecture"
http://www.swen.uwaterl 0o.ca/~mrbannon/cs798/assignment_02/innodb. pdf

A student paper. It's an interesting attempt to figure out | nnoDB's architecture using tools, but |
didn't end up using it for the specific purposes of this article.

* Peter Gulutzan. "How Logs Work With MySQL And InnoDB" ht-
tp://www.devarticles.com/c/alMySQL/How-L ogs-Work-On-MySQL -With-InnoDB-Tables

e Helkki Tuuri. "InnoDB Enginein MySQL-Max-3.23.54 / MySQL-4.0.9: The Up-to-Date Reference
Manual of InnoDB" http://www.innodb.com/ibman.html

Thisisthe natural starting point for all InnoDB information. Mr Tuuri aso appears frequently on
MySQL forums.

240

http://www.devarticles.com/c/a/MySQL/How-Logs-Work-On-MySQL-With-InnoDB-Tables
http://www.devarticles.com/c/a/MySQL/How-Logs-Work-On-MySQL-With-InnoDB-Tables
http://www.innodb.com/ibman.html

Index

E

error messages, 197
defining, 197
table handler, 200

F

filesort optimization, 57

@)
optimizing
filesort, 57

T

table handler
error messages, 200

241

	MySQL Internals Manual
	Table of Contents
	Preface
	Chapter 1. A Guided Tour Of The MySQL Source Code
	1.1. BitKeeper
	1.2. The Major Directories
	1.2.1. Major Directories: BUILD
	1.2.1.1. gdb (GNU debugger)
	1.2.1.2. Running a Test with the Debugger

	1.2.2. Major Directories: client
	1.2.3. Major Directories: Docs
	1.2.4. Major Directories: myisam
	1.2.5. Major Directories: mysys
	1.2.6. Major Directories: sql
	1.2.7. Major Directories: vio

	1.3. The Flow
	1.4. The Open-source Directories
	1.5. The Internal and External Storage Engine Directories
	1.6. The "OS Specific" Directories
	1.7. Odds and Ends
	1.8. A Chunk of Code in /sql/sql_update.cc
	1.9. The Skeleton Of The Server Code
	1.10. Recap

	Chapter 2. Coding Guidelines
	2.1. C/C++ Coding Guidelines
	2.2. configure Support for Plugins
	2.2.1. configure Command-Line Plugin Options
	2.2.2. Autotools Plugin Macros

	Chapter 3. The Optimizer
	3.1. Code and Concepts
	3.1.1. Definitions
	3.1.2. The Optimizer Code

	3.2. Primary Optimizations
	3.2.1. Optimizing Constant Relations
	3.2.1.1. Constant Propagation
	3.2.1.2. Eliminating “Dead” Code
	3.2.1.3. Folding of Constants
	3.2.1.4. Constants and Constant Tables

	3.2.2. Optimizing Joins
	3.2.2.1. Determining the Join Type
	3.2.2.2. Joins and Access Methods
	3.2.2.3. The range Join Type
	3.2.2.4. The index Join Type
	3.2.2.5. The Index Merge Join Type
	3.2.2.5.1. Overview
	3.2.2.5.2. Index Merge Optimizer
	3.2.2.5.3. The range Optimizer
	3.2.2.5.4. Row Retrieval Algorithm

	3.2.3. Transpositions
	3.2.3.1. AND Relations
	3.2.3.2. OR Relations
	3.2.3.3. UNION Queries
	3.2.3.4. NOT (<>) Relations

	3.2.4. ORDER BY Clauses
	3.2.5. GROUP BY and Related Conditions

	3.3. Other Optimizations
	3.3.1. NULLs Filtering for ref and eq_ref Access
	3.3.1.1. Early NULLs Filtering
	3.3.1.2. Late NULLs Filtering

	3.3.2. Partitioning-Related Optimizations
	3.3.2.1. Partition pruning
	3.3.2.1.1. Partition Pruning Overview
	3.3.2.1.2. Partitioning Intervals
	3.3.2.1.2.1. Single-Point Intervals
	3.3.2.1.2.2. Interval Walking
	3.3.2.1.2.3. Interval mapping

	3.3.2.1.3. Subpartitioning Intervals
	3.3.2.1.4. From WHERE Clauses to Intervals
	3.3.2.1.5. Partition Pruning in the Source Code

	3.3.2.2. Partition selection

	Chapter 4. Important Algorithms and Structures
	4.1. The Item Class
	4.2. How MySQL Does Sorting (filesort)
	4.3. Bulk Insert
	4.4. How MySQL Does Caching
	4.5. How MySQL Uses the Join Buffer Cache
	4.6. How MySQL Handles FLUSH TABLES
	4.7. Full-text Search
	4.8. FLOAT and DOUBLE data types and their representation.
	4.9. Threads
	4.10. Character/Collation Sets
	4.11. Error flags and functions
	4.12. Functions in the mysys Library
	4.13. Bitmaps

	Chapter 5. How MySQL Performs Different Selects
	5.1. Steps of Select Execution
	5.2. select_result Class
	5.3. SIMPLE or PRIMARY SELECT
	5.4. Structure Of Complex Select
	5.5. Non-Subquery UNION Execution
	5.6. Derived Table Execution
	5.7. Subqueries
	5.8. Single Select Engine
	5.9. Union Engine
	5.10. Special Engines
	5.11. Explain Execution

	Chapter 6. How MySQL Transforms Subqueries
	6.1. Item_in_subselect::select_transformer
	6.1.1. Scalar IN Subquery
	6.1.2. Row IN Subquery

	6.2. Item_allany_subselect
	6.3. Item_singlerow_subselect

	Chapter 7. MySQL Client/Server Protocol
	7.1. Licensing Notice
	7.2. Organization
	7.3. Elements
	7.4. The Packet Header
	7.5. Packet Types
	7.6. Handshake Initialization Packet
	7.7. Client Authentication Packet
	7.8. Password functions
	7.9. Command Packet
	7.10. Types Of Result Packets
	7.11. OK Packet
	7.12. Error Packet
	7.13. Result Set Header Packet
	7.14. Field Packet
	7.15. EOF Packet
	7.16. Row Data Packet
	7.17. Row Data Packet: Binary (Tentative Description)
	7.18. Prepared Statement Initialization Packet (Tentative Description)
	7.19. OK for Prepared Statement Initialization Packet (Tentative Description)
	7.20. Parameter Packet (Tentative Description)
	7.21. Long Data Packet (Tentative Description)
	7.22. Execute Packet (Tentative Description)
	7.23. Compression

	Chapter 8. Prepared Statements and Stored Routines
	8.1. Statement Re-execution Requirements
	8.2. Preparation of a Prepared Statement
	8.3. Execution of a Prepared Statement
	8.4. Execution of a Stored Procedure Statement

	Chapter 9. Replication
	9.1. Main Code Files
	9.2. The Binary Log
	9.3. Replication Threads
	9.3.1. The Slave I/O Thread
	9.3.2. The Slave SQL Thread
	9.3.3. Why 2 Threads?
	9.3.4. The Binlog Dump Thread

	9.4. How Replication Deals With...
	9.4.1. auto_increment Columns, LAST_INSERT_ID()
	9.4.2. User Variables (Since 4.1)
	9.4.3. System Variables
	9.4.4. Some Functions
	9.4.5. Non-repeatable UDF Functions
	9.4.6. Prepared Statements
	9.4.7. Temporary Tables
	9.4.8. LOAD DATA [LOCAL] INFILE (Since 4.0)

	9.5. How a Slave Asks Its Master to Send Its Binary Log
	9.6. Network Packets in Detail
	9.7. Replication Event Format in Detail
	9.7.1. The Common Header
	9.7.2. The “Post-headers” (Event-specific Headers)

	9.8. Plans

	Chapter 10. MyISAM Storage Engine
	10.1. MyISAM Record Structure
	10.1.1. Introduction
	10.1.2. Physical Attributes of Columns
	10.1.3. Where to Look For More Information

	10.2. The .MYI file
	10.2.1. MyISAM Files

	10.3. MyISAM Compressed Data File Layout
	10.3.1. Huffman compression
	10.3.2. The myisampack Program
	10.3.3. Record and Blob Length Encoding
	10.3.4. Code Tree Representation
	10.3.5. Usage of the Index File
	10.3.6. myisampack Tricks
	10.3.7. Detailed Specification of the Decoding:

	Chapter 11. InnoDB Storage Engine
	11.1. InnoDB Record Structure
	11.1.1. High-Altitude Picture
	11.1.1.1. FIELD START OFFSETS
	11.1.1.2. EXTRA BYTES
	11.1.1.3. FIELD CONTENTS

	11.1.2. Where to Look For More Information

	11.2. InnoDB Page Structure
	11.2.1. High-Altitude View
	11.2.1.1. Fil Header
	11.2.1.2. Page Header
	11.2.1.3. The Infimum and Supremum Records
	11.2.1.4. User Records
	11.2.1.5. Free Space
	11.2.1.6. Page Directory
	11.2.1.7. Fil Trailer

	11.2.2. Example
	11.2.3. Where to Look For More Information

	Chapter 12. Writing a Custom Storage Engine
	12.1. Introduction
	12.2. Overview
	12.3. Creating Storage Engine Source Files
	12.4. Creating the handlerton
	12.5. Handling Handler Instantiation
	12.6. Defining Filename Extensions
	12.7. Creating Tables
	12.8. Opening a Table
	12.9. Implementing Basic Table Scanning
	12.9.1. Implementing the store_lock() Method
	12.9.2. Implementing the external_lock() Method
	12.9.3. Implementing the rnd_init() Method
	12.9.4. Implementing the info() Method
	12.9.5. Implementing the extra() Method
	12.9.6. Implementing the rnd_next() Method

	12.10. Closing a Table
	12.11. Adding Support for INSERT to a Storage Engine
	12.12. Adding Support for UPDATE to a Storage Engine
	12.13. Adding Support for DELETE to a Storage Engine
	12.14. Supporting Non-Sequential Reads
	12.14.1. Implementing the position() Method
	12.14.2. Implementing the rnd_pos() Method

	12.15. Supporting Indexing
	12.15.1. Indexing Overview
	12.15.2. Getting Index Information During CREATE TABLE Operations
	12.15.3. Creating Index Keys
	12.15.4. Parsing Key Information
	12.15.5. Providing Index Information to the Optimizer
	12.15.5.1. Implementing the info() Method
	12.15.5.2. Implementing the records_in_range Method

	12.15.6. Preparing for Index Use with index_init()
	12.15.7. Cleaning up with index_end()
	12.15.8. Implementing the index_read() Method
	12.15.9. Implementing the index_read_idx() Method
	12.15.10. Implementing the index_next() Method
	12.15.11. Implementing the index_prev() Method
	12.15.12. Implementing the index_first() Method
	12.15.13. Implementing the index_last() Method

	12.16. Supporting Transactions
	12.16.1. Transaction Overview
	12.16.2. Starting a Transaction
	12.16.2.1. Starting a Transaction from a start_stmt() Call
	12.16.2.2. Starting a Transaction from a external_lock() Method

	12.16.3. Implementing ROLLBACK
	12.16.4. Implementing COMMIT
	12.16.5. Adding Support for Savepoints
	12.16.5.1. Specifying the Savepoint Offset
	12.16.5.2. Implementing the savepoint_set Method
	12.16.5.3. Implementing the savepoint_rollback() Method
	12.16.5.4. Implementing the savepoint_release() Method

	12.17. API Reference
	12.17.1. bas_ext
	12.17.2. close
	12.17.3. create
	12.17.4. delete_row
	12.17.5. delete_table
	12.17.6. external_lock
	12.17.7. extra
	12.17.8. index_end
	12.17.9. index_first
	12.17.10. index_init
	12.17.11. index_last
	12.17.12. index_next
	12.17.13. index_prev
	12.17.14. index_read_idx
	12.17.15. index_read
	12.17.16. info
	12.17.17. open
	12.17.18. position
	12.17.19. records_in_range
	12.17.20. rnd_init
	12.17.21. rnd_next
	12.17.22. rnd_pos
	12.17.23. start_stmt
	12.17.24. store_lock
	12.17.25. update_row
	12.17.26. write_row

	Chapter 13. Error Messages
	13.1. Adding New Error Messages to MySQL
	13.2. Adding Storage Engine Error Messages

	Appendix A. MySQL Source Code Distribution
	A.1. Directory Listing
	A.1.1. The bdb Directory
	A.1.2. The BitKeeper Directory
	A.1.3. The BUILD Directory
	A.1.4. The client Directory
	A.1.5. The config Directory
	A.1.6. The cmd-line-utils Directory
	A.1.7. The dbug Directory
	A.1.8. The Docs Directory
	A.1.9. The extra Directory
	A.1.10. The heap Directory
	A.1.11. The include Directory
	A.1.12. The innobase Directory
	A.1.13. The libmysql Directory
	A.1.14. The libmysql_r Directory
	A.1.15. The libmysqld Directory
	A.1.16. The man Directory
	A.1.17. The myisam Directory
	A.1.18. The myisammrg Directory
	A.1.19. The mysql-test Directory
	A.1.20. The mysys Directory
	A.1.21. The ndb Directory
	A.1.22. The netware Directory
	A.1.23. The NEW-RPMS Directory
	A.1.24. The os2 Directory
	A.1.25. The pstack Directory
	A.1.26. The regex Directory
	A.1.27. The SCCS Directory
	A.1.28. The scripts Directory
	A.1.29. The server-tools Directory
	A.1.30. The sql Directory
	A.1.31. The sql-bench Directory
	A.1.32. The sql-common Directory
	A.1.33. The SSL Directory
	A.1.34. The strings Directory
	A.1.35. The support-files Directory
	A.1.36. The tests Directory
	A.1.37. The tools Directory
	A.1.38. The VC++Files Directory
	A.1.39. The vio Directory
	A.1.40. The zlib Directory

	Appendix B. InnoDB Source Code Distribution
	Index

