The MySQL Test Framework

The MySQL Test Framework

Abstract

This manual describes the MySQL test framework.

Document generated on: 2006-10-18 (revision: 3666)
Copyright 2006 MySQL AB

This documentation is NOT distributed under a GPL license. Use of this documentation is subject to the following terms: Y ou may
create a printed copy of this documentation solely for your own personal use. Conversion to other formatsis allowed as long as the
actual content is not altered or edited in any way. Y ou shall not publish or distribute this documentation in any form or on any me-
dia, except if you distribute the documentation in a manner similar to how MySQL disseminatesit (that is, electronically for down-
load on awebsite with the software) or on a CD-ROM or similar medium, provided however that the documentation is dissemin-
ated together with the software on the same medium. Any other use, such as any dissemination of printed copies or use of this doc-
umentation, in whole or in part, in another publication, requires the prior written consent from an authorized representative of
MySQL AB. MySQL AB reserves any and all rights to this documentation not expressly granted above.

Please email <docs@rysql . con> for more information or if you are interested in doing a transation.

Table of Contents

1= = o= v
O | g oo [T 1 o o PP 1
2. MySQL Test Framework COMPONENESocuuiiitiiii e e e e eaas 3
2.1. TheTest Framework and SSLcoiuiiiiii e 5

2.2. How to Report Bugsin the MySQL TeSt SUItEccvuivviiiiiieiieeeee e 6

G U 1o = PSP 7
3.1 RUNNING TESE CBSESieieeiie ettt ettt e e e et e e e aa s 7
3.1.1. Constraints on SIMultaneous TESt RUNSiveiiiiiiiiiiiiecieeeeee e 8
3.2.WritingaTest Case: QUICK SEartocuniiiiiiiiii e 8

B3 WHLING ATESE CBSE ovuiiiiiiiii e e e et e e e e e e aeaas 9
3.3.L SAMPIE TESE CASE .uivviiiiii et et e e aaas 10

3.3.2. Naming Conventions for Database ObJECtScccvvvviveiiiiiiiieiiierieeeann, 11

3.3.3. Cleaning Up from aPrevious TESt RUNooviviiiiiiiiiiieiii e, 11

3.3.4. Generating aTest Case ReSUIt Fileoeievviiiiiiii e, 12

3.3.5. Specifying When Tests are Expected to Failcc.ooiiiiiiiiiiiiiiiiinann, 12

3.3.6. Contralling the Information Produced by aTest Casecccoevvvvenveinennnen. 13

3.3.7. Dealing with Output That VariesPer TEStRUNcccvvvvvvviiiiiiiiiecieeeenn, 14

3.3.8. Specifying Test Case-Specific Server Optionscc.ovvvvvivveiiviiiiierineeennn, 16

3.3.9. Other Test Case-WIHTING TIPS «.vvuueeerrieeieiie et 16

4. MYSQL TESE PrOQraMScvviiiitieiiieete ettt e et e e e e e e e ea e 18
4.1.mysql t est — Program to RUN TSt CaSESuivvvniieiiieiii e 18
42.nysql -test-run. pl —RuNMySQL Test SUItecevvvvvviiniiiiii e, 21
4.3.nmysql -test-run — RUNMYSQL TeSt SUIE ...uuvvvvniviiiieiiiece e, 29
4.4.mysql -stress-test. pl — Server StressTest Programc.cccevvvvvnveennnnnne. 35
5.mysql t est Language REFEIENCEuuiiiiiiiiiiiii e 38
51. mysql t est INPUt CONVENLIONSccuuuniiiiiiiieieiiiie et enens 38
5.2.mysql t €St COMMAENAScuuiiniiiiiieie e e 40
5.3.mysql t st Variables ...coouiieiiii e 50
5.4.nysql t est Flow Control CONSIIUCEScccuuvviiniiiiiieiiie e e 51

L3RI 4 ol =11 1 oo 51

6. Creating and EXecuting UNit TESEScocuuuiiiiiii e 53
g0 PP 54

Preface

MySQL distributions include a set of test cases and programs for running them. These tools constitute
the MySQL test framework that provides a means for verifying that MySQL Server and its client pro-
grams operate according to expectations. The test cases consist mostly of SQL statements, but can also
use test language constructs that control how to run tests and verify their results.

This manual describesthe MySQL test framework. It describes the programs used to run tests and the
language used to write test cases.

Chapter 1. Introduction

MySQL distributions include a set of test cases and programs for running them. These tools constitute
the MySQL test framework that provides a means for verifying that MySQL Server and its client pro-
grams operate according to expectations. The test cases consist mostly of SQL statements, but can also
use test language constructs that control how to run tests and verify their results. As of MySQL 5.1, dis-
tributions also provide facilities for running unit tests and creating new unit tests.

This document describes the components of the MySQL test framework, how the test programs work,
and the language used for writing test cases. It also provides atutorial for developing test cases and ex-
ecuting them.

The application that runs the test suiteisnamed nysql -t est - run. pl . Itslocation isthe mysql -
t est directory, which is present both in source and binary MySQL Server distributions.

Note

There are actually two scripts for running the test suite. mysql - t est - r un isthe original
shell script and mysql -t est - run. pl isthe newer Perl script. From MySQL 5.1 on,
nysql -t est-run. pl isthepreferred script and is, in general, the script name used in
discussion and exampl es throughout this document. If you are using MySQL 5.0 or earlier,
substitute nysql -t est - r un appropriately.

Thenysql -t est -run. pl application starts MySQL servers, restarts them as necessary when a spe-
cific test case needs different start arguments, and presents the test result. For each test case, nysql -
test-run. pl invokesthenysql t est program (also referred to as the “test engine”) to read the test
case file, intepret the test language constructs, and send SQL statements to the server.

Input for each test caseis stored in afile, and the expected result from running the test is stored in anoth-
er file. The expected result can be compared to the actual result produced by running atest to verify
proper processing of theinput by MySQL.

For aMySQL source distribution, mysql -t est - run. pl islocated inthenmysqgl -t est directory,
andnysql t est islocatedinthecl i ent directory. Thenysql -t est andcl i ent directoriesare
located in the root directory of the distribution.

For aMySQL binary distribution, mysql -t est - run. pl islocatedinthenysql -t est directory,
and mysql t est islocated in the same directory where other client programs such asmysql or

nysqgl adm n areinstalled. Thelocations of thenysql -t est andcl i ent directories depend on the
layout used for the distribution format.

Withinthemysql -t est directory, test case input files and result filesare stored inthet andr direct-
ories, respectively. The input and result files have the same basename, which is the test name, but have
extensionsof . t est and. r esul t, respectively. For example, for atest named “decimal,” the input
and result filesaremysql -t est/t/ deci mal . test andnysql -test/r/decinal .result.

Each test fileisreferred to as one test case, but usually consists of a sequence of related tests. An unex-
pected failure of asingle statement in atest case makes the test fail.

There are several ways atest case can fail:
« Thenysql t est test engine checksthe result codes from executing each SQL statement in the test
input. If the failure is unexpected, the test case fails.

* A test casecanfail if an error was expected but did not occur (for example, if a SQL statement suc-
ceeded when it should have failed).

Introduction

» Thetest case can fail by producing incorrect output. As atest runs, it produces output (the results
from SELECT, SHOW and other statements). This output is compared to the expected result found in
themmysql -t est/r directory (inafilewitha. r esul t suffix). If the expected and actual results
differ, the test case fails. The actual test result iswrittento afileinthenysql -t est/ r directory
witha. r ej ect suffix, and the difference betweenthe. resul t and. r ej ect filesis presented
for evaluation.

This method of checking test results puts some restrictions on how test cases can be written. For ex-
ample, the result cannot contain information that varies from run to run, such as the current time.
However, if the information that variesis unimportant for test evaluation, there are ways to instruct the
test engine to replace those fields in the output with fixed values.

Because the test cases consist mostly of SQL statementsin atext file, there is no direct support for test
cases that are written in C, Java, or other languages. Such tests are not within the scope of this test
framework. But the framework does support executing your own scripts and initiating them with your
own data. Also, atest case can execute an external program, so in some respects the test framework can
be extended for uses other than testing SQL statements.

Chapter 2. MySQL Test Framework
Components

The MySQL test framework consists of programs that run tests, and directories and files used by those
programs.

Test Framework Programs

The MySQL test framework uses several programs:

* Thenysqgl -test-run. pl Perl script isthe main application used to run the test suite for
MySQL 5.1 and up. It invokesmysqgl t est torunindividual test cases.

e« Thenysql -t est -run shell script isthe main application used to run the test suite before MySQL
5.1. (nysql -test-run. pl ispreferred asof 5.1.)

* nysqgl test runstest cases. A version named nysql t est _enbedded issimilar but isbuilt with
support for thel i bnysql d embedded server.

* Thenysql -stress-test. pl Perl script performs stress-testing of the MySQL server. (MySQL
5.0 and up only)

e A unit-testing facility is provided so that individual unit test programs can be created for storage en-
ginesand plugins. (MySQL 5.1 and up only)

Except for mysql t est, these programs are located inthe mysqgl - t est directory. nysql t est is
located elsewhere. For a source distribution, nysql t est isinthecl i ent directory. For abinary dis-
tribution, it isin the MySQL bi n directory.

Test Framework Directories and Files

The test suiteislocated inthenysql - t est directory. For asource distribution, mysql - t est is

found under the source tree root. For a binary distribution, the location of nysql - t est depends on the

layout used for the distribution format.

Thenysql -t est directory contains the following components:

e Thenysql -test-run,mysqgl -test-run. pl,andnysqgl -stress-test.pl programs
that are used for running tests.

» Thet directory containstest case input files. A test case file might also have option files associated
with it.

« Afilenameof theformt est _nane. t est isatest casefilefor atest namedt est nane. For
example, subsel ect . t est isthetest casefilefor thetest named subsel ect .

« Afilenameof theformt est _nane- nast er. opt provides options to associate with the
named test case. mysql -t est - run. pl restartsthe server with the options given in the file if
the options are different from those required for the currently running server.

Note that the - mast er . opt fileisused for the “main” server of atest, evenif no replication is
involved.

* Afilenameof theformt est _nane- sl ave. opt provides slave options.

3

MySQL Test Framework Components

* Afilenameof theformt est _nane-i m opt providesInstance Manager options.

* Thedi sabl ed. def file contains information about deferred/disabled tests. When atest isfail-
ing because of abug in the server and you want it to beignored by nysql -t est - run. pl , list
thetest in thisfile.

Theformat of alineinthedi sabl ed. def filelookslike this, where fields are separated by
one or more spaces (Tab characters are not allowed):

test _nane : BUGENnnnn YYYY- MM DD di sabl er conmment

Example:
rpl _row_bl ob_i nnodb : Bug#18980 [http://bugs. nysqgl.conm 18980] 2006-04-10 kent Test fails randon
t est _name isthetest case name. BUG#nnnnn indicates the bug related to the test that causes

it to fail (and thus requiresit to be disabled). di sabl er isthe name of the person that disabled
thetest. conmrent normally provides areason why the test was disabled.

A comment line can be written in the file by beginning the linewith a‘#’ character.
» Ther directory containstest case result files:
« Afilenameof theformt est nane. r esul t isthe expected result for the named test case. A
filer/test _nane.resul t istheoutput that correspondsto the input in the test case file

t/test _nane.test.

« Afilenameof theformt est _nane. r ej ect containsoutput for the named test case if the test
fails.

For atest case that succeeds, the. r esul t file represents both the expected and actual result. For a
test case that fails, the . r esul t file represents the expected result, and the . r €] ect filerepres-
ents the actual result.

Ifa. reject fileiscreated because atest fails, nysql -t est - run. pl removesthefilelater the
next time the test succeeds.

» Thei ncl ude directory contains files that are included by test case filesusing the sour ce com-
mand.

e Thel i b directory containslibrary filesused by nysql -t est - r un. pl , and database initializa-
tion SQL code.

» Thest d_dat a directory contains data files used by some of the tests.
» Thevar directory isused during test runs for various kinds of files: log files, temporary files, trace

files, Unix socket files for the servers started during the tests, and so forth. This directory cannot be
shared by simultaneous test runs.

Unit test-related filesare located inthe uni t t est directory. Additiona files specific to storage en-
gines and plugins may be present under the subdirectories of the st or age or pl ugi n directories.
Test Execution and Evaluation

There are anumber of targetsin the top-level Makef i | e that can be used to run sets of tests. make
t est runsall thetests. Other targets run subsets of the tests, or run tests with specific options for the

http://bugs.mysql.com/18980

MySQL Test Framework Components

test programs. Have alook at the Makef i | e to see what targets are available.

A “test case” isasingle file. The case might contain multiple individual test commands. If any individu-
al command fails, the entire test case is considered to fail. Note that “fail” means “ does not produce the
expected result.” It does not necessarily mean “ executes without error,” because some tests are written
precisaly to verify that an illegal statement doesin fact produce an error. In such an instance, if the state-
ment executes successfully without producing the expected error, that is considered failure of the test.

Test case output (the test result) consists of:

» Input SQL statements and their output. Each statement is written to the result followed by its output.
Columns in output resulting from SQL statements are separated by tab characters.

e Theresult fromnysqgl t est commands such asecho and exec. The commands themselves are
not echoed to the result, only their output.

Thedi sabl e_query | ogandenabl e_query_ | og commands control logging of input SQL
statements. Thedi sabl e_resul t _| og andenabl e_resul t _| og commands control logging of
SQL statement results, and warning or error messages resulting from those statements.

nysqgl t est readsatest case file from its standard input by default. The--test-fil e or- x option
can be given to name atest case file explicitly.

nmysqgl t est writestest case output to the standard output by default. The--result-fil e or- Rop-
tion can be used to indicate the location of the result file. That option, together withthe - - r ecor d op-
tion, determine how nysql t est treatsthetest actual and expected results for atest case:

» If thetest produces no results, mysql t est exits with an error message to that effect.
» Otherwise, if--resul t-fil eisnotgiven, mysql t est sendstest results to the standard output.

e With--result-filebutnot--record,nysqltest readsthe expected results from the giv-
en file and compares them with the actual results. If the results do not match, mysql t est writesa
. rej ect fileinthe same directory as the result file and exits with an error.

 Withboth--result-fileand--record,nysqltest updatesthe given file by writing the
actual test resultsto it.

nmysqgl t est itself knows nothing of thet andr directories under themysqgl -t est directory. The use
of filesin those directoriesis a convention that isused by nysqgl - t est - run. pl , which invokes
nysqgl t est with the appropriate options for each test caseto tell mysql t est whereto read input and
write output.

2.1. The Test Framework and SSL

Whennysql -t est-run. pl starts, it checks whether nysql d supports SSL connections:

o Ifmysql d supports SSL, nysql -t est-run. pl startsit with the proper - - ssl - xxx options
that enable it to accept SSL connections for those test cases that require secure connections (those
with “sd” in their name). Asnysqgl -t est - run. pl runstest cases, a secure connection to
mysql d isinitiated for those cases that require one. For those test cases that do not require SSL, an
unencrypted connection isinitiated.

* If nysql d does not support SSL, nysql -t est - run. pl skipsthose test cases that require secure

MySQL Test Framework Components

connections.

If mysql -test-run. pl isstarted withthe- - ss| option, it sets up a secure conection for al test
cases. Inthis case, if mysql d doesnot support SSL, nysql -t est -run. pl exitswith an error mes-
sage: Coul dn't find support for SSL

For mysql - t est - r un (the shell version), the- - wi t h- openss| option correspondsto the - - ssl
option for mysql -t est-run. pl.

2.2. How to Report Bugs in the MySQL Test Suite

If test cases from the test suite fail, you should do the following:

» Do not file abug report before you have found out as much as possible about what when wrong. See
the instructions at http://dev.mysgl.com/doc/mysgl/en/bug-reports.

e Make sureto include the output of mysql -t est - r un, aswell ascontentsof all . r ej ect filesin
themysql -t est/r directory.

¢ Check whether an individual test in the test suite also fails when run on its own:

shel | > cd nysql -t est
shel | > . /nysqgl -test-run.pl test_nane

If thisfails, you should configure MySQL with - - wi t h- debug and runnysql -t est - r un with
the - - debug option. If thisalso fails, send the trace file mysql -

test/var/tnp/ master. trace to ftp:/ftp.mysqgl.com/pub/mysql/upload/ so that we can exam-
ineit. Please remember to also include a full description of your system, the version of thenysql d
binary and how you compiled it.

* Runnysql -test-runwiththe- - f or ce option to see whether any other testsfail.

» If you have compiled MySQL yourself, check the MySQL Reference Manua to see whether there
are any platform-specific issues for your system. There might be configuration workarounds to deal
with the problems that you observe. Also, consider using one of the binaries we have compiled for
you at http://dev.mysgl.com/downloads/. All our standard binaries should pass the test suite!

o |IfyougetanerrorsuchasResult [ength msmatchorResult content mismatchit
means that the output of the test was not an exact match for the expected output. This could be abug
in MySQL or it could be that your version of nysql d produces dightly different results under some
circumstances.

Theresultsfileislocated inther directory and hasanamewitha. r esul t extension. A failed test
result is put in afile with the same basename asthe result fileand a. r €] ect extension. If your test
caseisfailing, you should usedi f f to comparethe. resul t and. r ej ect files. If you cannot
see how they are different, examine both with od - ¢ and also check their lengths.

» |If atest fails completely, you should check thelogsfileinthenysql -t est/ var/ | og directory
for hints of what went wrong.

» If you have compiled MySQL with debugging, you can try to debug test failures by running
mysql -t est - r un with either or both of the - - gdb and - - debug options.

If you have not compiled MySQL for debugging you should probably do so by specifying the -
-wi t h- debug option when you invoke conf i gur e.

http://dev.mysql.com/doc/mysql/en/bug-reports
ftp://ftp.mysql.com/pub/mysql/upload/
http://dev.mysql.com/downloads/

Chapter 3. Tutorial

[This chapter is based on the information that was in the Wiki, so some of it probably is outdated.]

Normally, you run the test suite during the devel opment process to ensure that your changes do not
cause existing test cases to break. Y ou can also write new test cases or add teststo existing cases. This
happens when you fix a bug (so that the bug cannot reappear later without being detected) or when you
add new capabilities to the server or other MySQL programs.

This chapter provides a tutorial on running existing test cases for the MySQL test framework and devel-
oping new test cases.

3.1. Running Test Cases

Typically, you run the test suite either from within a source tree (after MySQL has been built), or on a
host where the MySQL server distribution has been installed. To run tests, your current working direct-
ory should bethenysql - t est directory of your source tree or installed distribution. In a source distri-
bution, mysql - t est isunder the root of the source tree. In a binary distribution, the location of

nmysql -t est dependson the distribution layout. The program that runs the test suite, mysql -
test-run. pl,will figure out whether you are in a source tree or an installed directory tree.

To run the test suite, change location into your mysql - t est directory and invoke the mysql -
test-run. pl script:

shel | > cd nysql -t est
shell > ./nysqgl -test-run.p
nysqgl -t est-run. pl accepts options on the command line. For example:

shell > ./nysqgl -test-run.pl --force --loca

By default, nysql -t est - run. pl exitsif atest casefalls. - - f or ce causes execution to continue re-
gardless of test casefailure.

The- - | ocal optiontellsnysql -t est-run. pl notto usean already running server, but to start a
server itself to use for the tests. This option isthe default as of MySQL 4.1, so it is necessary only before
4.1

For afull list of the supported options, see Section 4.2, “nmysql -t est - run. pI| — Run MySQL Test
Suite”.

To run one or more specific test cases, namethem onthenysql - t est - run. pl command line. Test
casefileshave namesliket / t est _nane. t est,wheret est _nane isthe name of the test case, but
each name given on the command line should be the test case name, not the full test case filename. The
following command runs the test case named r pl _abcd, which has atest file of

t/rpl_abcd. test:

shell > ./ nysql -test-run.pl rpl_abcd

To run afamily of test cases for which the names share a common prefix, usethe - - do- t est s option:

shel | > ./ nysqgl -test-run. pl --do-test=prefix

For example, the following command runs the replication tests (test cases that have names beginning
withr pl):

Tutorial

shell > ./ nmysqgl -test-run.pl --do-tests=rpl

nysql -test-run. pl startsthe MySQL server if necessary, sets up the environment for calling the
nmysql t est program, and invokesmysql t est to run the test case. For each test case to be run,
nmysqgl t est handles operations such as reading input from the test case file, starting managers, creat-
ing server connections, and sending SQL statements to servers.

The language used in test case filesisamix of commandsthat themysqgl t est program understands
and SQL statements. Input that nysql t est doesn't understand is assumed to consist of SQL state-
ments to be sent to the database server. This makes the test case language familiar to those that know
how to write SQL and powerful enough to add the control needed to write test cases.

Y ou need not start a MySQL server first before running tests. Instead, thenmysql -t est - run. pl pro-
gram will start the server or servers needed on ports that do not conflict with ports used a production
server, if you happen to have one on the same machine. (The test run uses ports in the range around
9300, so production servers should not use portsin that range.)

3.1.1. Constraints on Simultaneous Test Runs

If you have multiple users that run tests simultaneously on the same machine, you must specify to the
nysqgl -t est-run. pl program which ports to use so that no test run conflicts with others running
concurrently. You add unique port argumentstonysql -t est -run. pl ,suchas- - no- nenager -
-master _port=3911 --slave_port=3927.

Only one person at atime can runthemysql - t est - run. pl programinthesamenysql - t est dir-
ectory on ashared drive. Thenysql -t est/ var directory created and used by nysql -

t est-run. pl cannot be shared between simultaneous test runs. A test run can use the

--var =di r _pat h option to specify an alternate directory not used by other runs.

3.2. Writing a Test Case: Quick Start

The basic principle of test case evaluation is that output resulting from running atest caseis compared to
the expected result. Thisisjust adi f f comparison between the output and an expected-result file that
the test writer provides. This simplistic method of comparison does not by itself provide any way to
handle variation in the output that may occur when atest isrun at different times. However, the test lan-
guage provides commands for postprocessing result output before the comparison occurs. This enables
you to manage certain forms of expected variation.

Use the following procedure to write a new test case. In the examples, t est _nane represents the name
of the test case. It's assumed here that you'll be using a development source tree, so that when you create
anew test case, you can commit the files associated with it to the source repository for othersto use.

1. Changelocation to thetest directory mysql - ver si on/ nysql -t est:

shel | > cd nysql -version/ nysql -t est

mysqgl - ver si on represents the root directory of your source tree, such asnysql - 5. 0 or
nmysql - 5. 1.

2. Createthetest caseinafilet/t est _nane. t est. You can do thiswith any text editor. For de-
tails of the language used for writing nysql t est test cases, see Chapter 5, nysql t est Lan-
guage Reference.

3. Create an empty result file:

shel | > touch r/test_nane.result

Tutorial

4. Runthetest:

shell > ./nysqgl -test-run. pl test_nane

5. Assuming that the test case produces output, it should fail because the output does not match the
result file (which is empty at this point). The failure resultsin creation of areject file named
r/test _nane.reject.Examinethisfile. If the reject file appears to contain the output that
you expect the test case to produce, copy its content to the result file:

shell > cp r/test_nane.reject r/test_nane.result

Another way to create the result fileisby invokingnysql -t est - run. pl withthe--record
option to record the test output in the result file:

shell > ./nysql-test-run.pl --record test_nane

6. Runthetest again. Thistimeit should succeed:

shel | > ./ nysqgl -test-run. pl test_nane

Y ou can also run the newly created test case as part of the entire suite:

shel | > ./ nysql -test-run. pl

Itisalso possibleto invokethemysql t est program directly. If the test case file refers to environment
variables, you will need to define those variables in your environment first. For more information about
thenysql t est program, see Section 4.1, “nysql t est — Program to Run Test Cases’.

3.3. Writing a Test Case

To write atest casefile, use any text editor that uses linefeed (newline) as the end-of-line character. The
filename should be lowercase ASCII with no spaces.

We are adding support for multiple test “ suites.” Until then, all test cases must be located in the
nmysql -t est/t directory. Test case filenames consist of the test name witha. t est suffix. For ex-
ample, atest named f oo should bewritteninthefilemysql -test/t/foo. test.

Note

All our test cases are published on the Internet. Take care that their contents include no con-
fidential information.

Onetest case file can be a collection of individual tests that belong together. If one of the tests fails, the
entire test case fails. Although it may be tempting to write each small test into asinglefile, that will be

too inefficient and makes test runs unbearably slow. So make the test case files not too big, not too
small.

Some definitions:

* One“test file” isone “test case.”

e One“test case” might contain a“test sequence” (that is, a number of individual tests that are grouped

Tutorial

together in the same test file).

e A*command’ isan input test that mysql t est recognizes and executesitself. A “statement” isan
SQL statement or query that mysql t est sendsto the MySQL server to be executed.

Each test case (that is, each test file) must be self contained and independent of other test cases. Do not
create or populate atable in one test case and depend on the table in alater test case. If you have some
common initialization that needs to be done for multiple test cases, create an include file. That is, create
afile containing theinitiaization codeinthemysqg-t est /i ncl ude directory, and then put a

sour ce command in each test case that requires the code. For example, if several test cases need to
have a given table created and filled with data, put the statements to do that in afile named nmysql -
test/include/create_my_table.inc.Then putthefollowing command in each test casefile
that needs the initialization code:

--source include/create_nmy_table.inc

Thefilenamein the sour ce command isrelativeto thenmysql - t est directory.

A comment in atest case can be started with the ‘#’ character or the ‘- - ' characters. However, if the
first word after the ‘- - ' isaword that mysql t est recognizes asacommand, nysql t est will ex-
ecute the comment as a command. For thisreason, it is safest to use the ‘#’ character for comments, so
as not to accidentally executeanysql t est command. For example, - - End of test 43 begins
with the‘- -’ characters, but will result in an error message because end is something that nysql t est
thinks is a command.

Section 5.1, “nysql t est Input Conventions’, discusses the details of input syntax for mysql t est
test cases.

3.3.1. Sample Test Case

Hereisasmall sample test case:

- - di sabl e_war ni ngs

DROP TABLE | F EXI STS t1;
- - enabl e_war ni ngs

SET SQL_WARNI NGS=1;

CREATE TABLE t1 (a INT);
IINSERT INTO t1 VALUES (1);
INSERT INTO t1 VALUES ("hej"):

Thefirst few linestry to clean up from possible earlier runs of the test case by dropping thet 1 table.
Thetest caseusesdi sabl e_war ni ngs to prevent warnings from being written to the output because
itisnot of any interest at this point during the test to know whether thetable t 1 wasthere. After drop-
ping the table, the test case uses enabl e_war ni ngs so that subsequent warnings will be written to
the output. The test case also enables verbose warningsin MySQL using the SET

SQL_WARNI NGS=1; statement.

Next, the test case createsthe tablet 1 and tries some operations. Cresating the table and inserting the
first row are operations that should not generate any warnings. The second insert should generate a
warning because it inserts a non-numeric string into a numeric column. The output that results from run-
ning the test looks like this:

DROP TABLE | F EXI STS t1;

SET SQL_WARNI NGS=1;

CREATE TABLE t1 (a | NT);

INSERT INTO t1 VALUES (1);

I NSERT INTO t1 VALUES ("hej");

WAr ni ngs:

War ni ng 1265 Data truncated for colum 'a' at row 1

10

Tutorial

Note that the result includes not only the output from SQL statements, but the statements themselves.
Statement logging can be disabled with the di sabl e_query_| og test language command. There are
several optionsfor controlling the amount of output from running the tests.

If there was atest failure, it will be reported to the screen. Y ou can see the actual output from the last
unsuccessful run of thetest casein theregject filer / t est _nane. rej ect .

3.3.2. Naming Conventions for Database Objects

It ispossible to run test cases against a production server. (Generally, we will not do that, but our cus-
tomers might.) To reduce the risk that running the test suite alters or destroys important tables, views, or
other objects, you should create them using the following naming conventions:

e Tablenames:t1,t2,t3, ...

e Viewnames.vl,v2,v3,..

For examples of how to name objects, examine the existing test cases. Of course, you can name columns
and other objects inside tables as you wish.

Unless you have a special reason not to, use the default database named t est that is aready created for
youl.

3.3.3. Cleaning Up from a Previous Test Run

For efficiency, thenysql t est test engine does not start with a clean new database for running each
test case, so atest case generally starts with a* cleaning up section.” Assume that atest case will use two
tablesnamedt 1 andt 2. The test case should begin by making sure that any old tables with those
names do not exist:

#
Test of XXXXX
#

- -di sabl e_war ni ngs
drop table if exists t1,t2
- - enabl e_war ni ngs

Thedi sabl e_war ni ngs command instructs the test engine not to log any warnings until an en-

abl e_war ni ngs command occurs or the test caseis ended. (MySQL generates awarning if the table
t 1 ort 2 does not exist.) Surrounding this part of the test case with commands to disable and enable
warnings makes its output the same regardless of whether the tables exist before the test is started. After
ensuring that the tables do not exist, we are free to put in any SQL statements that create and use the
tablest 1 and t 2. The test case should also clean up at the end of the test by dropping any tables that it
creates.

Let's put in some SQL code into thistest case:

create table t1 (
Period smallint(4) unsigned zerofill default '0000" not null
Varor _period smal lint(4) unsigned default '0' not nul

create table t2 (Period smallint)

insert into tl values (9410, 9412);
insert into t2 values (9410), (9411), (9412), (9413);

sel ect period fromt1l
select * fromt1l

11

Tutorial

select t1.* fromt1l
select * fromtl inner join t2 using (Period)

drop table t1, t2

3.3.4. Generating a Test Case Result File

The test code we just wrote contains no checks of the result. The test will report afailure for one of two
reasons:

e Anindividual SQL statement fails with an error

» Theoverall test case result does not match what was expected

Inthefirst case, nysql t est abortswith an error. The second case requires that we have arecord of
the expected result so that it can be compared with the actua result. To generate afile that contains the
test result, run the test with the - - r ecor d option, like this:

shel | > cd nysql -t est
shell > ./nysqgl-test-run.pl --record foo

Running the test as shown creates aresult file named nysql -t est/ r/ f 0o. resul t that hasthis
content:

drop table if exists t1,t2

create table t1 (

Period snallint(4) unsigned zerofill default '0000' not null
Varor _period smallint(4) unsigned default '0' not nul

create table t2 (Period smallint);

insert into tl values (9410, 9412)

insert into t2 values (9410), (9411), (9412), (9413)
sel ect period fromt1l

peri od

9410

select * fromtl,

Peri od Varor_peri od

9410 9412

select t1.* fromt1l

Peri od Varor_peri od

9410 9412

select * fromtl inner join t2 using (Period)
Peri od Varor_period

9410 9412

drop table t1, t2

ok

If welook at thisresult file, it contains the statementsinthef 0o. t est file together with the output
from the SELECT statements. The output for each statement includes arow of column headings fol-
lowed by data rows. Rows have columns separated by Tab characters.

At this point, you should inspect the result file and determine whether its contents are as expected. If so,
let it be part of your test case. If the result is not as expected, you have found a problem, either with the
server or the test. Determine the cause of the problem and fix it. For example, the test might produce
output that varies from run to run. To deal with this, you can postprocess the output before the comparis-
on occurs. See Section 3.3.7, “Dealing with Output That Varies Per Test Run”.

3.3.5. Specifying When Tests are Expected to Fail

A good test suite checks not only that operations succeed as they ought, but also that they fail as they
ought. For example, if astatement isillegal, the server should reject it with an error message. The test

12

Tutorial

suite should verify that the statement fails and that it fails with the proper error message.

The test engine enables you to specify “expected failures.” Let's say that after we createt 1, wetry to
create it again without dropping it first:

- -di sabl e_war ni ngs

drop table if exists t1,t2;

- - enabl e_war ni ngs

create table t1 (
Period smallint(4) unsigned zerofill default '0000" not null,
Var or _period smallint(4) unsigned default '0' not null

create table t2 (Period smallint);

insert into tl1l values (9410, 9412);

insert into t2 values (9410), (9411), (9412), (9413);
sel ect period fromt1l

select * fromtil;

select t1.* fromtl

select * fromtl inner join t2 using (Period);

create table t1 (sonething smallint(4));

Theresult isfailure and an error:
At line 21: query 'create table t1 (sonething smallint(4))"'
failed: 1050: Table 't1l' already exists

To handle this error and indicate that indeed we do expect MySQL error code 1050 to occur, we can put
anerror command beforethesecond cr eat e t abl e statement:

--error 1050

After we make this change and run the test again, the end of the result will look like this:
create table t1 (sonmething smallint(4));
ERROR 42S01: Table 't1' already exists

In this case, the result shows the statement that causes the error, together with the resulting error mes-
sage. Thefact that mysqgl t est does not terminate and that the error message becomes part of the result
indicates that the error was expected.

Note: 1050 isthe numeric MySQL error number, and 42501 is the corresponding SQLSTATE value. If
you like, you can specify SQLSTATE valuesin er r or commands by using an S prefix:

--error S42S01

It is also possible to specify errors by means of the symbolic namefromnysql d_error. h:

--error ER TABLE EXI STS_ERROR

3.3.6. Controlling the Information Produced by a Test Case

By default, themysql t est test engine produces output only from sel ect , show, and other SQL
statements that you expect to produce output (that is, statements that create aresult set). It also produces
output from certain commands such asecho and exec. nysql t est can beinstructed to be more or
less verbose.

Suppose that we want to include in the result the number of rows affected by or returned by SQL state-
ments. To do this, add the following line to the test case file preceding the first table-creation statement:

13

3.3.7.

Tutorial

--enabl e_info

After rerunning the test by invoking mysqgl -t est - run. pl withthe- - r ecor d option to record the
new result, the result file will contain more information:

drop table if exists t1,t2

create table t1 (

Period smallint(4) unsigned zerofill default '0000" not null
Varor _period snallint(4) unsigned default '0" not nul

affected rows: 0

create table t2 (Period smallint);

af fected rows: 0O

insert into tl values (9410, 9412);

af fected rows: 1

insert into t2 values (9410), (9411), (9412), (9413)
affected rows: 4

info: Records: 4 Duplicates: 0 Warnings: 0
sel ect period fromtl

peri od

9410

af fected rows: 1

select * fromtl

Peri od Varor_period

9410 9412

affected rows: 1

select t1.* fromt1l

Peri od Varor_peri od

9410 9412

af fected rows: 1

select * fromtl inner join t2 using (Period)
Peri od Varor_period

9410 9412

affected rows: 1

drop table t1, t2

af fected rows: 0O

ok

To turn off the affected-rows reporting, add this command to the test casefile:

--disable_info

In general, options can be enabled and disabled for different parts of the test file. Suppose that we arein-
terested in the internals of the database as well. We could enable the display of query metadata using
enabl e_net adat a. With this option enabled, the test output is a bit verbose. However, as mentioned
earlier, the option can be enabled and disabled selectively so that it is enabled only for those parts of the
test case where it interests you to know more.

If you perform an operation for which you have no interest in seeing the statements logged to the resullt,
you can disable statement logging. For example, you might be initializing a table where you don't really
expect afailure, and you are not interested in seeing the initialization statements in the test result. You
canusethedi sabl e_query_| og command to temporarily disable recording of input SQL state-
ments, and enable recording again with enabl e_query_| 0g. You can disable the recording of the
output from executing commands using di sabl e_resul t _| og and enable recording again with
enabl e_result_| og.

Dealing with Output That Varies Per Test Run

It is best to write each test case so that the result it produces does not vary for each test run, or according
to factors such as the time of day, differencesin how program binaries are compiled, the operating sys-
tem, and so forth. For example, if the result contains the current date and time, the test engine has no
way to verify that the result is correct.

However, sometimes atest result is inherently variable according to external factors, or perhaps thereis
apart of aresult that you simply do not care about. nysql t est provides commands that enable you to

14

Tutorial

postprocess test output into a more standard format so that output variation across test runs will not trig-
ger aresult mismatch.

One such command isr epl ace_col um, which specifies that you want to replace whatever isin a
given column with a string. This makes the output for that column the same for each test run.

To see how this command works, add the following row after the first insert in the test case:

insert into tl values (date_format(now(), '%'), 9999);

Then record the test result and run the test again:

shel | > ./nmysqgl -test-run.pl --record foo
shel | > ./ nysqgl -test-run. pl foo

Most likely, afailure will occur and mysql - t est - run. pl will display the difference between the
expected result and what we actually got, like this;

Bel ow are the diffs between actual and expected results
*** r/foo.result Thu Jan 20 18:38: 37 2005
--- r/foo.reject Thu Jan 20 18: 39: 00 2005
* k %k 16,32 * k k%
sel ect period fromt1l
peri od
9410
| 0034
affected rows: 2
select * fromtil;
Peri od Varor_peri od
9410 9412
1 0034 9999
af fected rows: 2
select t1.* fromtl
Peri od Varor_period
9410 9412
1 0034 9999
affected rows: 2
select * fromtl inner join t2 using (Period);
Peri od Varor_peri od
--- 16,32 ----
sel ect period fromt1l
peri od
9410
1 0038
affected rows: 2
select * fromtl
Peri od Varor_peri od
9410 9412
1 0038 9999
affected rows: 2
select t1.* fromt1l
Peri od Varor_peri od
9410 9412
1 0038 9999
af fected rows: 2
select * fromtl inner join t2 using (Period)
Peri od Varor_period

If we are not really interested in the first column, one way to eliminate this mismatch is by using the
repl ace_col umm command. The duration of the effect of this command is the next SQL statement,
so we need one before each sel ect statement:

--repl ace_col um 1 SECONDS
sel ect period fromtl
--repl ace_col utm 1 SECONDS
select * fromtl
--replace_col um 1 SECONDS
select t1.* fromtl

15

Tutorial

Inther epl ace_col umm commands, SECONDS could be any string. Its only purpose is to map vari-
able output onto a constant value. If we record the test result again, we will succeed each time we run
the test after that. The result file will look like this:

drop table if exists t1,t2;

create table t1 (

Period snallint(4) unsigned zerofill default '0000' not null,
Varor _period snallint(4) unsigned default '0" not null

)

affected rows: 0

create table t2 (Period smallint);

af fected rows: 0

insert into tl values (9410, 9412);

af fected rows: 1

insert into tl values (date_format(now(), '9%'), 9999);
affected rows: 1

insert into t2 values (9410), (9411), (9412), (9413);
affected rows: 4

info: Records: 4 Duplicates: 0 Warnings: 0
sel ect period fromt1;

peri od

SECONDS

SECONDS

affected rows: 2

select * fromti;

Peri od Varor_peri od

SECONDS 9412

SECONDS 9999

af fected rows: 2

select t1.* fromtil;

Peri od Varor_period

SECONDS 9412

SECONDS 9999

af fected rows: 2

select * fromtl inner join t2 using (Period);
Peri od Varor_peri od

9410 9412

affected rows: 1

drop table t1, t2;

a}‘(fected rows: 0O

(o]

3.3.8. Specifying Test Case-Specific Server Options

Many server options can be set from within test cases by using statements such as these:

set sql _warni ngs=1;
set sql _npde=no_aut o_val ue_on_zero;

But sometimes you need to restart the server to use options in the form of extra command-line options.

Y ou can specify these optionsin afilenamed nysql -t est/t/test nane- nast er. opt.Whena
filenamedt/t est _name- mast er. opt exists, mysql -t est-run. pl examinesit for extra op-
tions that the server needs to be run with when executing thet est _nane test case. If no server has yet
been started or the current server is running with different options, nysqgl - t est - run. pl restartsthe
server with the new options.

Filesinthenysql -t est/ t directory with namesendingin- sl ave. opt and-i m opt aresimilar,
but they are used for slave servers and the Instance Manager, respectively.

3.3.9. Other Test Case-Writing Tips

» If you are writing areplication test case, the first line of the test file should be sour ce i ncl ude/
mast er - sl ave. i nc; . To switch between master and slave, useconnect i on mast er; and
connection sl ave; . If you need to do something on an aternative connection, you can do
connection masterl; forthemaster,and connecti on sl avel; for thesave.

16

Tutorial

» If you need to do something in aloop, you can use something like this:

let $1=1000;
whil e ($1)

execute your statenments here
dec $1;
}

» To deep between statements, use the sl eep command. It supports fractions of a second. For ex-
ample, sl eep 1. 3; sleeps1.3 seconds. Try nottousesl eep orr eal _sl eep commands more
than necessary. The more of them there are, the slower the test suite becomes.

» Torun the slave with additional options for your test case, put them in the command-line format in
mysqgl -test/t/test _nane-sl ave. opt . For the master, put themin
mysql -test/t/test nane-nmaster. opt.

17

Chapter 4. MySQL Test Programs

This chapter describes the test programs that run test cases. For information about the language used for
writing test cases, see Chapter 5, nysql t est Language Reference.

The test suite uses the following programs:
e Thenysql -test-run. pl Perl scriptisthe main application used to run the test suite for
MySQL 5.1 and up. It invokesmysql t est to runindividual test cases.

 Thenysql -t est - run shell script isthe main application used to run the test suite before MySQL
5.1. (nysql -test-run. pl ispreferred asof 5.1.)

* nysql test runstest cases. A version named nysql t est _enbedded issimilar but is built with
support for thel i bnysql d embedded server.

e Thenysql -stress-test. pl Perl script performs stress-testing of the MySQL server. (MySQL
5.0 and up only)

4.1. nysqgl t est — Program to Run Test Cases

Thenysql t est program runs atest case against aMySQL server and optionally compares the output
with aresult file. This program reads input written in a specia test language. Typically, you invoke
nmysql t est vianysql -t est-run. pl rather than invoking it directly.

Features of mysql t est :

» Cansend SQL statementsto MySQL serversfor execution

» Can execute external shell commands

» Cantest whether the result from a SQL statement or shell command is as expected

» Can connect to one or more standalone nysql d servers and switch between connections

» Can connect to an embedded server (I i brrysqgl d), if MySQL is compiled with support for
I'i bnysqgl d. (Inthis case, the executableisnamed mysql t est _enbedded rather than

mysql t est.)

By default, nysql t est readsthetest case on the standard input. To run mysql t est thisway, you
normally invokeit like this:

shel | > nysqgl test [options] [db_nane] < test file

You can adso name the test casefilewitha--test-fil e=fi | e_name option.

nysqgl t est supports the following options:

e --help,-?

Display ahelp message and exit.

18

MySQL Test Programs

--basedir=dir_nane,-b dir_name

The base directory for tests.

--big-test,-B

Definethenysql t est variable $BI G_TEST as 1.

--conpress,-C

Compress all information sent between the client and the server if both support compression.
--cursor-protocol

Use cursors for prepared statements (implies - - ps- pr ot ocol). This option was added in MySQL
5.0.19.

- -dat abase=db_nane,-D db_nane
The default database to use.
- -debug[=debug_opti ons], - #] debug_opt i ons]

Write adebugging log if MySQL is built with debugging support. The default debug_opt i ons
vaueis' d:t:S:i: O /tnmp/ nysqltest.trace'.

--host =host _nan®,-h host _nane

Connect to the MySQL server on the given host.

--include=file _name,-i file_nane

Include the contents of the given file before processing the contents of the test file. Theincluded file
should have the same format as other mysql t est test files. This option has the same effect as put-
tinga--source file_name command asthefirst line of the test file. This option was added in
MySQL 5.1.7.

--max- connect-retri es=num

The maximum number of connection attempts when connecting to server. This option was added in
MySQL 5.0.23.

--no-defaults

Do not read default options from any option files.

- - passwor d[=passwor d] , - p[passwor d]

The password to use when connecting to the server. If you use the short option form (- p), you can-
not have a space between the option and the password. If you omit the passwor d value following
the - - passwor d or - p option on the command line, you are prompted for one.
--port=port_num-P port_num

The TCP/IP port number to use for the connection.

- - ps- protocol

Use the prepared-statement protocol for communication.

19

MySQL Test Programs

--qui et
Suppress al normal output. Thisisasynonymfor - - si | ent .
--record,-r

Record the output that results from running the test file into the file named by the -
-resul t-fil e option,if that optionisgiven.

--result-file=file_nane,-R file_nane

This option specifies the file for test case expected results. - - resul t - f i | e, together with -
-record, determineshow nysql t est treatsthe test actual and expected results for atest case:

» If thetest produces no results, nysql t est exitswith an error message to that effect.

e Otherwisg, if --resul t-fil eisnotgiven, mysql t est sendstest results to the standard
output.

e With--result-filebutnot--record,nysqltest readsthe expected results from the
given file and compares them with the actual results. If the results do not match, nysql t est
writesa. r ej ect fileinthe same directory as the result file and exits with an error.

e Withboth--result-fileand--record,nysqltest updatesthegiven file by writing
the actual test resultsto it.

--server-arg=val ue, - A val ue

Pass the argument as an argument to the embedded server. For example, -
-server-arg=--tnpdir=/tnpor--server-arg=--core.Upto 64 arguments can be
given.

--server-file=file_nane,-F file_nane

Read arguments for the embedded server from the given file. The file should contain one argument
per line.

--silent,-s

Suppress all normal output.

--ski p-safenal | oc

Do not use memory allocation checking.
--sleep=num-T num

Causedl sl eep commandsin the test case file to sleep numseconds. This option does not affect
real _sl eep commands.

Asof MySQL 5.0.23, an option value of 0 can be used, which effectively disabless| eep com-
mands in the test case.

--socket =path,-S path
The socket file to use when connecting to | ocal host (which isthe default host).
--sp- protocol

Execute DML statements within a stored procedure. For every DML statement, nysql t est creates

20

MySQL Test Programs

and invokes a stored procedure that executes the statement rather than executing the statement dir-
ectly. This option was added in MySQL 5.0.19.

e --test-file=file_nane,-x file_nane

Read test input from thisfile. The default is to read from the standard inpuit.

e --tiner-file=file_nane,-mfile_nane

The file where the timing in microseconds is written.

e --tnpdir=dir_nane,-t dir_nane

The temporary directory where socket files are put.

e --user=user_nane,-u user_nane

The MySQL username to use when connecting to the server.

e --verbose,-v

Verbose mode. Print out more information what the program does.

e --version,-V

Display version information and exit.

e --viewprotocol

Every SELECT statement is wrapped inside aview. This option was added in MySQL 5.0.19.

4.2.nmysqgl -test-run. pl — Run MySQL Test Suite

Thenysql -t est -run. pl Perl script isthe main application used to run the test suite for MySQL
5.1 and up. Itinvokesmysql t est to runindividua test cases. (Prior to MySQL 5.1, nysql -
t est - r un can be used instead.)

Invokenysqgl -t est-run. pl inthenysql -t est directory likethis:

shel | > nysql -test-run.pl [options] [test_nane] ...

Eacht est _nane argument names atest case. The test case file that corresponds to the test nameis

t/test_nane.test.

Foreacht est _name argument, mysql -t est - run. pl runsthe named test case. With no
t est _name arguments, mysql -t est-run. pl runsal .t est filesinthet subdirectory.

To run afamily of test cases for which the names share a common prefix, usethe - - do- t est s=pr e-
fi x option. For example, - - do-t est s=r pl runsthe replication tests (test cases that have names be-

ginning withr pl).

nysqgl -t est-run. pl defines several environment variables. Some of them are listed in the follow-

ing table.
Variable M eaning
MYSQ._TEST Pathnameto mysql t est binary

MYSQLTEST_VARDI R

Pathname to the var directory that is used for logs, temporary files, and

21

MySQL Test Programs

so forth
MASTER MYPORT 77
MASTER MYSQOCK m”?

Tests sometimes rely on certain environment variables being defined. For example, certain tests assume
that MYSQL_TEST isdefined so that mysql t est caninvokeitself withexec $MYSQL_TEST.

nysqgl -t est-run. pl supportsthe optionsin the following list. An argument of - - tellsnmysql -

t est-run. pl notto process any following arguments as options. (A description of differences
between the options supported by nysql -t est - run. pl andnysql -t est - r un appears following
thelist.)

e --help,-h
Display a help message and exit.
*+ --bench

Run the benchmark suite.
e --benchdir=path
The directory where the benchmark suiteislocated. The default pathis. . /. ./ nmysqgl - bench.
e --big-test
Passthe- - bi g-t est optiontonysql t est.
*+ --check-testcases
Check test cases for side effects.
e --client-ddd
Start mysql t est intheddd debugger.
e --client-debugger
Start mysql t est in the named debugger.
e --client-gdb
Start mysql t est inthegdb debugger.
s --comment=str
Write st r to the output.
s --conpress
Compress all information sent between the client and the server if both support compression.
e --cursor-protocol
Passthe- - cur sor - prot ocol optiontonysqgl t est (implies- - ps- pr ot ocol).

* --ddd

22

MySQL Test Programs

Start mysql d inthe ddd debugger.
--debug

Dump trace output for al clients and servers.
- -debugger

Start mysql d the named debugger.
--do-test=prefix

Run all test cases having a name that begins with the given pr ef i x value. This option provides a
convenient way to run afamily of similarly named tests.

- - enbedded- server

Useaversion of nysqgl t est built with the embedded server.
--extern

Use an aready running server.

Note: If atest casehasan. opt file that requires the server to be restarted with specific options, the
filewill not be used. The test case likely will fail as aresult.

--fast
Do not clean up from earlier test runs.
--force

Normally, nysql -t est - run. pl exitsif atest casefails. - - f or ce causes execution to continue
regardless of test case failure.

--gcov
Run tests with the gcov test coverage tool.

--gdb

Start mysql d inthe gdb debugger.

--gpr of

Run tests with the gpr of profiling tool.

--imnysql d1- port

TCP/IP port number to use for the first mysql d, controlled by Instance Manager.
--imnysql d2- port

TCP/IP port number to use for the second nysql d, controlled by Instance Manager.
--import

TCP/IP port number to use for nysql d, controlled by Instance Manager.

23

MySQL Test Programs

- -1 0g- war ni ngs

Passthe- - | og- war ni ngs optiontonysql d.

--manual - debug

Use a server that has already been started by the user in a debugger.
--manual - gdb

Use a server that has already been started by the user in the gdb debugger.
- -mast er - bi nary=pat h

Specify the path of the mysql d binary to use for master servers.

--mast er_port=port_num

Specify the TCP/IP port number for the first master server to use. Observe that the option name has
an underscore and not a dash.

--mysqgl d=str

Extra optionsto passto mysql d.

--ndb- connect string=str

Pass- - ndb- connect st ri ng=st r to the master MySQL server. This option also prevents
mysql -t est-run. pl from starting acluster. It is assumed that there is already a cluster running
to which the server can connect with the given connectstring.

--ndb- connect string-sl ave=str

Pass- - ndb- connect stri ng=str todave MySQL servers. This option also preventsnysq|l -
test-run. pl fromstarting acluster. It isassumed that thereis already a cluster running to which
the server can connect with the given connectstring.

--ndb-extra-test

Unknown.

--ndbcl ust er-port=port_num--ndbcl uster_port=port_num

Specify the TCP/IP port number that NDB Cluster should use.

--ndbcl ust er-port-slave=port_num

Specify the TCP/IP port number that the slave NDB Cluster should use.

--netware

Run mysql d with options needed on NetWare.

--noti ner

Causenysql t est not to generate atiming file.

- - ps- protocol

Passthe- - ps- pr ot ocol optiontonysql t est.

24

MySQL Test Programs

--record

Passthe- - recor d optiontonmysql t est . Thisoption requires a specific test case to be named on
the command line.

--reorder

Reorder tests to minimize the number of server restarts needed.
--script-debug

Enable debug output for nysql -t est -run. pl itsef.
--skip-im

Do not start I nstance Manager; skip Instance Manager test cases.
- - ski p- mast er - bi nl og

Do not enable master server binary logging.

- - ski p- ndbcl ust er, - - ski p- ndb

Do not start NDB Cluster; skip Cluster test cases.

- - ski p- ndbcl ust er - sl ave, - - ski p- ndb- sl ave
Do not start an NDB Cluster slave.

- -ski p-rpl

Skip replication test cases.

- - ski p- sl ave-bi nl og

Do not enable master server binary logging.

- - ski p- ssl

Do not start mysql d with support for SSL connections.
--ski p-test =regex

Specify aregular expression to be applied to test case names. Cases with names that match the ex-
pression are skipped. tests to skip.

--skip-*

- - ski p- * options not otherwise recognized by mysql -t est - r un. pl are passed to the master
server.

--sl ave-bi nary=path
Specify the path of the nysql d binary to use for slave servers.
--slave_port=port_num

Specify the TCP/IP port number for the first master server to use. Observe that the option name has
an underscore and not a dash.

25

MySQL Test Programs

--sl eep=N

Pass- - sl eep=Ntonysqgl t est.

--smal | - bench

Run the benchmarkswiththe- - snmal | -t est s and- - snal | -t abl es options.
--socket =fil e_nane

For connectionsto | ocal host , the Unix socket file to use, or, on Windows, the name of the
named pipeto use.

--sp-protocol

Passthe- - sp- pr ot ocol optiontonysql t est.

--ssl

If nysql -test-run. pl isstarted withthe- - ssl option, it sets up a secure conection for all
test cases. Inthiscase, if mysql d does not support SSL, nysql -t est - run. pl exitswith an er-
ror message: Coul dn't find support for SSL

--start-and-exit

Initialize and start servers with the startup settings for the specified test case or cases, if any, and
then exit.

--start-dirty

Start servers (without initialization) for the specified test case or cases, if any, and then exit. Y ou can
then manually run the test cases.

--start-fronrtest name

mysql -t est-run. pl sortsthelist of names of the test cases to be run, and then begins with
t est _nane.

--strace-client

Create st r ace output for mysql t est .

--stress

Run the stress test. The other - - st r ess- xxx options apply in this case.
--stress-init-file=file_nane

file_namne isthelocation of the file that containsthe list of tests. The default fileis
stress_init.txt inthetest suite directory.

--stress-| oop- count =N

In sequential stress-test mode, the number of loops to execute before exiting.

--stress- node=node

This option indicates the test order in stress-test mode. The node value is either r andomto select

testsin random order or seq to run tests in each thread in the order specified in the test list file. The
default modeisr andom

26

MySQL Test Programs

--stress-suite=suite_name

The name of the test suite to use for stresstesting. The default suite nameismai n (the regular test
suitelocated inthemysql - t est directory).

--stress-test-count=N

For stress testing, the number of tests to execute before exiting.
--stress-test-durati on=N

For stress testing, the duration of stresstesting in seconds.
--stress-test-file=file_nane

Thefilethat containsthelist of teststo usein stress testing. The tests should be named without the
.t est extension. The default fileisst ress_t ests. t xt inthetest suite directory.

--stress-threads=N
The number of threadsto usein stresstesting. The default is 5.
--suite=suite _nane

Run the named test suite. The default nameismai n (the regular test suite located in the nysql -
t est directory).

--sui te-tinmeout=mni nutes

Specify the maximum test suite runtime.

--testcase-tinmeout

Specify the maximum test case runtime.

--timer

Causenysql t est to generate atiming file. The default fileisnamed . / var /| og/ ti mer.
--tnpdir=path

The directory where temporary file are stored. The default locationis. / var/ t np.
--unified-diff,--udiff

Use unified diff format when presenting differences between expected and actual test case results.
--use-ol d-dat a

Do not install the test databases. (Use existing ones.)

--user-test=val

Unused.

--user =user_nane

The MySQL username to use when connecting to the server.

--valgrind

27

MySQL Test Programs

Runnysql t est andnysql d withval gri nd.
--val grind-all

Like- - val gri nd, but passesthe- - ver bose and - - show r eachabl e optionstoval -
grind.

--val grind-nysql t est
Runnysql t est withval gri nd.
--val grind-nysqltest-all

Like--val gri nd-mysql t est, but passesthe- - ver bose and - - show- r eachabl e op-
tionstoval gri nd.

--val grind-options=str

Extraoptionsto passtoval gri nd.

--val gri nd- pat h=pat h

Specify the pathnameto theval gri nd executable.
--vardir=path

Specify the path where files generated during the test run are stored. The default locationis. / var .
--Vvi ew pr ot ocol

Passthe- - vi ew pr ot ocol optiontonysqltest.
--wai t-timeout=N

Unused?

- -war ni ngs

Thisoption isasynonym for - - | og- war ni ngs.
--wi t h-ndbcl uster

Use NDB Cluster and enable test cases that requireiit.
--wi th-ndbcl uster-all

Use NDB Cluster in all tests.

--wi t h-ndbcl uster-only

Run only test cases that have ndb in their name.
--wi t h-ndbcl uster-sl ave

Unknown.

--w t h-openssl

Thisoptionisasynonym for - - ssi .

28

MySQL Test Programs

Note

nysqgl -t est - r un supports the following options not supported by nmysql -
test-run.pl:--local,--Iocal -nmaster,--ndb-verbose,-

-ndb_ngm extra-opts,--ndb_ngnd- extra-opts,--ndbd-extra-opts,-
-ol d-master,--purify,--use-ol d-data,--val grind-mysqgltest-all.

Conversaly, nysql -t est - run. pl supports the following options not supported by
nmysql -test-run:--benchdir,--check-testcases,--client-ddd,-
-client-debugger,--cursor-protocol,--debugger, -

-imnysql d1-port,--imnysqgl d2-port,--i mport,--nmanual - debug, -
-netware,--notiner,--reorder,--script-debug,--skip-im-

-ski p-ssl,--sp-protocol ,--start-dirty,--suite,--suite-tinmeout,
--testcase-tineout,--udiff,--unified-diff, --valgrind-path,-
-vardir,--view protocol .

4.3. nmysqgl -test-run — Run MySQL Test Suite

Thenysql -t est - r un shell script isthe main application used to run the test suite before MySQL
5.1. Itinvokesnmysqgl t est torunindividual test cases. (nysql -t est - run. pl ispreferred as of
5.1)

nysql -t est - run isashell script, so it does not run on Windows. The replacement script (mysql -
test -run. pl)iswrittenin Perl and therefore has better cross-platform portability.

Invokenysql -t est-runinthenysql -t est directory likethis:

shel | > nysqgl -test-run [options] [test_name] ...

Eacht est _nane argument names atest case. The test case file that corresponds to the test nameis
t/test_nane.test.

For eacht est _nane argument, mysql - t est - r un runs the named test case. Withnot est _nane
arguments, nysql -t est-runrunsal . t est filesinthet subdirectory.

To run afamily of test cases for which the names share a common prefix, usethe - - do- t est s=pr e-
f i x option. For example, - - do-t est s=r pl runsthe replication tests (test cases that have names be-
ginning withr pl).

nmysqgl -t est - r un defines several environment variables. Some of them are listed in the following ta-

ble.

Variable M eaning

MYSQ._TEST Pathnameto mysql t est binary

MYSQLTEST _VARDI R Pathname to the var directory that is used for logs, temporary files, and
so forth

MASTER MYPORT Master server TCP/IP port number

MASTER MYSOCK Master server Unix socket file

Tests sometimes rely on certain environment variables being defined. For example, certain tests assume
that MYSQL_TEST isdefined so that nysql t est caninvokeitself withexec $MYSQL_TEST.

nysqgl -t est - r un supports the options in the following list. An argument of - - tellsmysql -
t est - r un not to process any following arguments as options. (A description of differences between

29

MySQL Test Programs

the options supported by mysql -t est - run and mysqgl -t est - run. pl appearsin Section 4.2,
“nysql -test-run. pl —RunMySQL Test Suite”.)

--bench

Run the benchmark suite.

--big-test

Passthe - - bi g- t est optiontomysql t est .
--client-gdb

Start mysql t est inthe gdb debugger.
--comment =str

Writest r to the output.

--conpress

Compress all information sent between the client and the server if both support compression.
--ddd

Start mysql d inthe ddd debugger.

--debug

Dump trace output for all clients and servers.
--do-test=prefix

Run all test cases having a name that begins with the given pr ef i x value. This option provides a
convenient way to run afamily of similarly named tests.

- - enbedded- ser ver

Useaversion of nysql t est built with the embedded server.
--extern

Use an already running server.

Note: If atest casehasan. opt filethat requires the server to be restarted with specific options, the
filewill not be used. The test case likely will fail asaresult.

--fast
Do not clean up from earlier test runs.
--force

Normally, nysql - t est - r un exitsif atest casefails. - - f or ce causes execution to continue re-
gardless of test case failure.

--gcov

Run tests with the gcov test coverage tool.

30

MySQL Test Programs

--gdb

Start nysql d inthe gdb debugger.

- - gpr of

Run tests with the gpr of profiling tool.
--local

Do not use an already running server. mysql - run-t est startsaserver andtellsnysqgl t est to
useit. Thisisthe default as of MySQL 4.1.

--local - mast er

Unknown. (Assume the master server is aready running?)

--1 og-war ni ngs

Passthe- - | og- war ni ngs optiontonysql d.

--manual - gdb

Use aserver that has already been started by the user in the gdb debugger.
--mast er - bi nary=pat h

Specify the path of the mysql d binary to use for master servers.

--mast er_port=port_num

Specify the TCP/IP port number for the first master server to use. Observe that the option name has
an underscore and not a dash.

--mysqgl d=str

Extra optionsto passto mysql d.

--ndb- connect string=str

Pass- - ndb- connect st ri ng=st r to the master MySQL server. This option also prevents
mysql -t est - r un from starting a cluster. It is assumed that there is aready a cluster running to
which the server can connect with the given connectstring.

--ndb- connect string-sl ave=str

Pass- - ndb- connect stri ng=str tosdave MySQL servers. This option also preventsnysq|l -
t est - r un from starting a cluster. It is assumed that there is already a cluster running to which the
server can connect with the given connectstring.

--ndb-extra-test

Unknown.

--ndb- ver bose

Unknown.

--ndb_ngm extra- opts=str

31

MySQL Test Programs

Extra options to passto ndb__ngm Observe that the option name contains an underscore.
--ndb_ngnd- extra-opts=str

Extra options to passto ndb__ngnd. Observe that the option name contains an underscore.
--ndbcl ust er-port=port_num--ndbcl uster_port=port_num

Specify the TCP/IP port number that NDB Cluster should use.

--ndbcl ust er-port-slave=port_num

Specify the TCP/IP port number that the slave NDB Cluster should use.

--ndbd- extra-opts=str

Extra options to passto ndbd.

--ol d-master

Whennysql -t est - r un isrun against an old (4.0) server, this option prevents certain arguments
from being passed to the server.

- - ps- protocol

Passthe- - ps- pr ot ocol optiontonysql t est.
--purify

Use the Purify memory-leak detector.

--record

Passthe- - recor d optiontonmysql t est . Thisoption requires a specific test case to be named on
the command line.

- - ski p- mast er - bi nl og

Do not enable master server binary logging.

- - ski p- ndbcl ust er, - - ski p- ndb

Do not start NDB Cluster; skip Cluster test cases.
- - ski p- ndbcl ust er - sl ave, - - ski p- ndb- sl ave
Do not start an NDB Cluster slave.

- - ski p-rpl

Skip replication test cases.

- - ski p-sl ave-binl og

Do not enable master server binary logging.
--ski p-t est =regex

Specify aregular expression to be applied to test case names. Cases with names that match the ex-

32

MySQL Test Programs

pression are skipped. tests to skip.
--skip-*

- - ski p- * options not otherwise recognized by nysql -t est - r un are passed to the master serv-
er.

--sl ave-bi nary=path
Specify the path of the mysql d binary to use for slave servers.
--slave_port=port_num

Specify the TCP/IP port number for the first master server to use. Observe that the option name has
an underscore and not a dash.

--sl eep=N

Pass- - sl eep=Ntonysql t est.

--smal | - bench

Run the benchmarkswiththe- - snal | -t est s and- - snal | -t abl es options.
--socket=fil e _nane

For connectionsto | ocal host , the Unix socket file to use, or, on Windows, the name of the
named pipeto use.

--start-and-exit

Initialize and start servers with the startup settings for the specified test case or cases, if any, and
then exit.

--start-fromrt est _nane

mysql -t est - r un sortsthelist of names of the test cases to be run, and then begins with
t est _nane.

--strace-client

Create st r ace output for nysql t est .

--stress

Run the stress test. The other - - st r ess- xxx options apply in this case.
--stress-init-file=file_name

file_name isthelocation of thefile that contains the list of tests. The default fileis
stress_init.txt inthetest suite directory.

--stress-| oop-count =N
In sequentia stress-test mode, the number of loops to execute before exiting.
--stress-node=nonde

This option indicates the test order in stress-test mode. The node value is either r andomto select

33

MySQL Test Programs

testsin random order or seq to run tests in each thread in the order specified in the test list file. The
default modeisr andom

--stress-suite=suite_nane

The name of the test suite to use for stress testing. The default suite nameismai n (the regular test
suitelocated inthemysqgl -t est directory).

--stress-test-count=N

For stress testing, the number of tests to execute before exiting.
--stress-test-duration=N

For stress testing, the duration of stresstesting in seconds.
--stress-test-file=file_nanme

Thefilethat containsthe list of teststo usein stress testing. The tests should be named without the
.t est extension. Thedefault fileisstress_t ests. t xt inthetest suite directory.

--stress-threads=N

The number of threads to use in stress testing. The default is 5.

--timer

Causenmysql t est to generate atiming file. The default fileisnamed . / var/ | og/ ti ner.
--tnpdir=path

The directory where temporary file are stored. The default locationis. / var/ t np.
--use-ol d-data

Do not install the test databases. (Use existing ones.)

--user-test=val

Unused.

- -user =user _nane

The MySQL username to use when connecting to the server.

--val grind

Runnysql t est andnysqgl d withval gri nd.

--val grind-all

Like- - val gri nd, but passesthe- - ver bose and - - show- r eachabl e optionsto val -
grind.

--val grind-nysql t est
Runnysql t est withval gri nd.

--val grind-nysqltest-all

MySQL Test Programs

Like--val gri nd-mysql t est, but passesthe- - ver bose and - - show- r eachabl e op-
tionstoval gri nd.

e --valgrind-options=str

Extraoptionsto passtoval gri nd.

e --wait-timeout=N
Unused?
e --warnings

Thisoption isasynonym for - - | og- war ni ngs.
* --w th-ndbcl uster

Use NDB Cluster and enable test cases that requireit.
e --w th-ndbcluster-all

Use NDB Cluster in all tests.
e --wth-ndbcluster-only

Run only test cases that have ndb in their name.

e --with-ndbcluster-slave
Unknown.
e --with-openssl

If nysql -t est - run isstarted with the - - ss| option, it sets up a secure conection for all test
cases. Inthis case, if mysql d doesnot support SSL, mysql -t est - r un exitswith an error mes-
sage: Coul dn't find support for SSL

4.4. nysql -stress-test. pl — Server Stress Test
Program
Themnmysql - stress-test. pl Perl script performs stress-testing of the MySQL server. (MySQL 5.0
and up only)

nmysql - stress-test. pl requiresaversion of Perl that has been built with threads support.

Invokenysqgl - stress-test. pl likethis:

shel | > nysqgl -stress-test.pl [options]
nmysql - stress-test. pl supportsthe following options:

e --help
Display a help message and exit.

35

MySQL Test Programs

--abort-on-error
Unknown.
--check-tests-file

Periodically check the file that lists the tests to be run. If it has been modified, reread thefile. This
can be useful if you update the list of teststo be run during a stress test.

--cl eanup

Force cleanup of the working directory.
--log-error-details

Log error details in the global error log file.
--1 oop-count =N

In sequential test mode, the number of loops to execute before exiting.
--mysqgl test=path

The pathnameto thenmysql t est program.
--server - dat abase=db_nane

The database to use for the tests.
--server - host =host _nane

The hostname of the local host to use for making a TCP/IP connection to the local server. By defaullt,
the connectionismadeto| ocal host using a Unix socket file.

--server-logs-dir=path

Thisoption isrequired. pat h isthe directory where al client session logs will be stored. Usually
thisisthe shared directory that is associated with the server used for testing.

--server - passwor d=passwor d

The password to use when connecting to the server.
--server-port=port_num

The TCP/IP port number to use for connecting to the server. The default is 3306.
--server-socket=fil e_nane

For connectionsto | ocal host , the Unix socket file to use, or, on Windows, the name of the
named pipeto use. The default if / t mp/ mysql . sock.

--server-user=user_nane
The MySQL username to use when connecting to the server. The default isr oot .
--sl eep-ti me=N

The delay in seconds between test executions.

36

MySQL Test Programs

--stress-basedir=path

Thisoption isrequired. pat h isthe working directory for the test run. It is used as the temporary
location for result tracking during testing.

--stress-datadir=path

The directory of datafilesto be used during testing. The default location isthe dat a directory under
thelocation given by the - - st r ess- sui t e- basedi r option.

--stress-init-file[=path]

file_nane isthelocation of thefile that contains the list of tests. If missing, the default fileis
stress_init.txt inthetest suite directory.

--stress-node=nonde

This option indicates the test order in stress-test mode. The node valueis either r andomto select
testsin random order or seq to run tests in each thread in the order specified in the test list file. The
default modeisr andom

--stress-suite-basedir=path

Thisoption isrequired. pat h isthe directory that hasthet andr subdirectories containing the test
case and result files. This directory is also the default location of thest r ess-t est . t xt filethat

containsthe list of tests. (A different location can be specified withthe- - stress-tests-fil e
option.)

--stress-tests-file[=file_nane]

Usethisoptionto run the stresstests. f i | e _nane isthelocation of the file that contains the list of
tests. If f i | e_nane isomitted, the default fileisst r ess-t est . t xt inthe stress suite direct-
ory. (See--stress-suite-basedir.)

--suite=suite_nane

Run the named test suite. The default nameismai n (the regular test suite located in the nysql -
t est directory).

--test-count=N

The number of tests to execute before exiting.
--test-duration=N

The duration of stresstesting in seconds.
--test-suffix=str

Unknown.

--threads=N

The number of threads. The default is 1.
--verbose

Verbose mode. Print more information about what the program does.

37

Chapter 5. nysqgl t est Language Reference

This chapter describes the test language implemented by nysql t est . The language alows input to
contain amix of comments, commands executed by nysqgl t est itself, and SQL statements that
nysgl t est sendsto aMySQL server for execution.

Terminology notes:

e A‘“command’ isan input test that nysql t est recognizesand executesitself. A “statement” isan
SQL statement or query that nysql t est sendsto the MySQL server to be executed.

e Whennysql t est starts, it opens a connection named def aul t to the MySQL server, using any
connection parameters specified by the command options. (For alocal server, the default username
isr oot . For an external server, the default usernameist est or the user specified with the -

- user option.) You can usetheconnect command to open other connections, theconnect i on
command to switch between connections, and thedi sconnect command to close connections.
However, the capability for switching connections means that the connection named def aul t need
not be the connection in use at a given time. To avoid ambiguity, this document avoids the term
“default connection.” It uses the term “current connection” to mean “the connection currently in
use,” which might be different from “the connection named def aul t .”

5.1. nysql t est Input Conventions

nysql t est readsinput lines and processes them as follows:

* “End of line” means a newline (linefeed) character. A carriage return/linefeed (CRLF) pair also isal-
lowable as as aline terminator (the carriage return is ignored). Carriage return by itself isnot al-
lowed as aline terminator.

* Alinethat beginswith ‘#’ asthe first non-whitespace content is treated as a comment that extends to
the end of the line and isignored. Example:

this is a comment

* Alinethat beginswith ‘- -’ asthe first non-whitespace content also is treated as a comment that ex-
tends to the end of the line. However, unlike ‘#’ comments, if the first word of the comment isaval-
idnmysqgl t est command, mysql t est executesthe line from that word to the end of thelineasa
command.

nysql t est interpretsthe following lines as comments because the first word isnot anmysql t est
command:

- this is a comment
- clean up from previous test runs

nysql t est interpretsthe following lines as commands and executes them because the first word is
anysqgl t est command:

- -di sconnect connl
- error 1050

The'- -’ syntax is useful for writing commands that contain embedded instances of the command
delimiter:

38

mysql t est Language Reference

- echo wite this text; it goes to the result file

» Other input is taken as normal command input. The command extends to the next occurrence of the
command delimiter, which is semicolon (‘; ') by default. The delimiter can be changed with the de-
['imter command.

If mysql t est recognizesthefirst word of the delimiter-terminated command, nmysql t est ex-
ecutes the command itself. Otherwise, mysql t est assumes that the command isan SQL statement
and sendsit to the MySQL server to be executed.

Because the command extends to the delimiter, a given input line can contain multiple commands,
and a given command can span multiple lines. The ability to write multiple-line statements is useful
for making long statements more readable, such asacr eat e t abl e statement for atable that has
many columns.

After nysql t est readsacommand up to adelimiter and executesiit, input reading restarts following
the delimiter and any remaining input on the line that contains the delimiter is treated as though it begins
on anew line. Consider the following two input lines:

echo issue a select statenment; select 1; echo done
i ssuing the select statenent;

That input contains two commands and one SQL statement:

echo i ssue a sel ect statenent
select 1
echo done issuing the sel ect statenent

Similarly, ‘# commentsor ‘- - * comments can begin on acommand line following a delimiter:

select 'hello'; # select a string val ue
select 'hello'; -- echo that was a sel ect statenent

On amultiple-line command, ‘#’ or ‘- - * at the beginning of the second or following linesis not special.
Thus, the second and third lines of the following variable-assignment command are not taken as com-
ments. Instead, the variable $a is set to avalue that contains two linefeed characters:

let $a = This is a variable
assignnent that sets a variable
-- to amltiple-line value

Notethat ‘- - ' comments and normal commands have complementary properties with regard to how
nysqgl t est readsthem:

e A‘--’ commentisterminated by a newline, regardless of how many delimitersit contains.

* A norma command (without ‘- - ") is terminated by the delimiter (semicolon), no matter how many
newlinesit contains.

mysqgl t est commands can be written either as comments (with aleading ‘- - ') or as normal com-
mand input (no leading ‘- -). Use the command delimiter only in the latter case. Thus, these two lines
are equivalent:

--sleep 2
sl eep 2

39

mysql t est Language Reference

The equivalenceistrue even for thedel i mi t er command. For example, to set the delimiterto*/ /",
either of these commands work:

--delimter //
delimter //;
To set the delimiter back to *;’, use either of these commands:
--delimter ;

delimter ;//

Theinput language has certain ambiguities. For example, if you write the following line, intending it as
acomment that indicates where test 43 ends, it will not work:

-- End of test 43

The “comment” is not treated as such because end isavalid nysql t est command. Thus, although it
is possible to write a non-command comment that beginswith ‘- -, it is better to use ‘#’ instead. Writ-
ing comments with ‘#’ also has less potential to cause problemsin the future. For example,

nysql t est interpretstheline- - swit ch t o connl asacomment currently, but if mysql t est is
extended in the futureto add aswi t ch command, that line will be treated as a command instead. If you
use ‘#’ for all comments, this problem will not occur.

Another ambiguity occurs because a non-comment line can contain either anmysql t est command or
an SQL statement. This has a couple of implications:

« Nonysqgl t est command should be the same as any keyword that can begin an SQL statement.

» Should extensions to SQL be implemented in the future, it's possible that a new SQL keyword could

beimpossiblefor nysql t est to recognize as such if that keyword is aready used as a
mysql t est command.

5.2. nysqgl t est Commands

nmysgl t est supports the commands described in this section. Command names are not case sensitive.

Some examples of command use are given, but you can find many more by searching the test case files
inthenysql -test/t directory.

e character _set charset nane

Set the default character set to char set _nane. Initialy, the character setisl at i n1.

character_set utf8;
--character_set sjis

 connect (nanme, host_nane, user_nane, password, db_name [, port_num
[,socket [,options]]])

Open a connection to the server and make the connection the current connection. (Syntax oddities:
There must be whitespace between connect and the opening parenthesis, and no whitepace after
the opening parenthesis.)

40

mysql t est Language Reference

The argumentsto connect are:

< nane isthe name for the connection (for use withtheconnect i on, di sconnect , and
di rty_cl ose commands). This name must not already be in use by an open connection.

¢ host _nane indicates the host where the server isrunning.
e user_nane and passwor d are the username and password of the MySQL account to use.

e db_nane isthe default database to use. As a special case, * NO- ONE* means that no default
database should be selected. Y ou can also leave db__nane blank to select no database.

e port_numif given, isthe TCP/IP port number to use for the connection. This parameter can be
given by using avariable.

e socket ,if given, isthe socket file to use for connectionsto | ocal host . This parameter can
be given by using avariable.

e options can beoneor more of thewords SSL and COVPRESS, separated by spaces. These
specify the use of SSL and the compressed client/server protocol, respectively.

To omit an argument, just leave it blank. For an omitted argument, nysql t est usesan empty
string for the first five arguments and the opt i ons argument. For omitted port or socket options,
mysql t est usesthe default port or socket.

connect (connl, | ocal host,root,,);
connect (conn2, | ocal host, root, nypass, test);
connect (connil, 127.0.0. 1, root, ,test, SMASTER _MYPORT) ;

The last example assumes that the SMASTER _MYPORT variable has already been set (perhaps as an
environment variable).

If a connection attempt failsinitially, nysql t est retriesfive timesif the abort-on-error setting is
enabled.

connecti on connecti on_nane

Select connect i on_nane asthe current connection. To select the connection that mysql t est
openswhen it starts, use the namedef aul t .

connecti on master;
connection conn2;
connection default;

dec $var_nane

Decrement anumeric variable. If the variable does not have a numeric value, the result is undefined.
dec $count;
dec $2;

delimter str

Set the command delimiter to st r, which may consist of 1 to 15 characters. The default delimiter is
the semicolon character (‘; ').

delimter //;
--delimter stop

41

mysql t est Language Reference

dirty_cl ose connection_nane

Close the named connection. Thisislikedi sconnect exceptthatitcallsvi o_del et e() before
it closes the connection. If the connection is the current connection, you should use theconnec-
t i on command to switch to a different connection before executing further SQL statements.

di sabl e_abort _on_error,enabl e_abort_on_error

Disable or enable abort-on-error behavior. This setting is enabled by default. With this setting en-
abled, nysql t est abortsthe test when a statement sent to the server resultsin an unexpected error,
and does not generatethe.. r ej ect file. For discussion of reasons why it can be useful to disable
this behavior, see Section 5.5, “Error Handling”.

--di sabl e_abort_on_error

--enabl e_abort _on_error

di sabl e_i nfo,enabl e_info

Disable or enable additional information about SQL statement results. This setting is disabled by de-
fault. With this setting enabled, nysql t est displays the affected-rows count and the output from
thenysql _i nfo() CAPI function. The “affected-rows” valueis “rows selected” for statements
such as SELECT and “rows modified” for statements that change data.

--disable_info
--enable_info

di sabl e_net adat a, enabl e_net adat a

Disable or enable query metadata display. This setting is disabled by default. With this setting en-
abled, nysql t est adds query metadata to the result. Thisinformation consists of the values cor-
responding to the members of the MYSQL_FI ELD C API data structure, for each column of the res-
ult.

--di sabl e_net adat a
- -enabl e_net adat a

di sabl e_par si ng, enabl e_par si ng

Disable or enable query parsing. This setting is enabled by default. When disabled, mysql t est ig-
nores everything until enabl e_par si ng.

- -di sabl e_par si ng
- - enabl e_par si ng

di sabl e_ps_protocol ,enabl e_ps_protocol

Disable or enable prepared-statement protocol. This setting is disabled by default unless the -
- ps- prot ocol optionisgiven.

--di sabl e_ps_protoco
--enabl e_ps_protoco

di sabl e_ps_war ni ngs, enabl e_ps_war ni ngs

Disable or enable prepared-statement warnings. This setting is enabled by default.

- -di sabl e_ps_war ni ngs
- - enabl e_ps_war ni ngs

42

mysql t est Language Reference

di sabl e_query_| og,enabl e_query_| og

Disable or enable query logging. This setting is enabled by default. With this setting enabled,
mysql t est echoesinput SQL statements to the test result.

One reason to disable query logging is to reduce the amount of test output produces, which also
makes comparison of actual and expected results more efficient.

--di sabl e_query_I og

--enabl e_query_I og

di sabl e_reconnect, enabl e_reconnect

Disable or enable automatic reconnect for dropped connections. (The default depends the client lib-
rary version.) This command applies to connections made afterward.

- -di sabl e_r econnect
- - enabl e_r econnect

di sable_result | og,enable_result _|og

Disable or enable the result log. This setting is enabled by default. With this setting enabled,
nysql t est displays query results (and results from commands such asecho and exec).

--disable_result_| og
--enabl e_result _| og

di sabl e_rpl _parse,enabl e rpl _parse

Disable or enable parsing of statements to determine whether they go to the master or slave.
(MySQL 4.0 and up only.) The default is whatever the default is for the C API library.

--di sabl e_rpl _parse

--enabl e_rpl _parse

di sabl e_war ni ngs, enabl e_war ni ngs

Disable or enable warnings. This setting is enabled by default. With this setting enabled,
nysql t est uses SHOW WARNI NGS to display any warnings produced by SQL statements.

- - di sabl e_war ni ngs
- - enabl e_war ni ngs

di sconnect connection_nane

Close the named connection. If the connection is the current connection, you should use the con-
nect i on command to switch to a different connection before executing further SQL statements.

di sconnect conn2

di sconnect sl ave

echo text

Echo the text to the test result. References to variables within the text are replaced with the corres-
ponding values.

--echo "Anot her sqgl _node test"
echo "should return only 1 row'

43

mysql t est Language Reference

end

Endani f orwhi | e block. If thereis no such block open, nysqgl t est exitswith an error. See
Section 5.4, “nmysql t est Flow Control Constructs’, for information on flow-control constructs.

nysql t est considers} and end the same: Both end the current block.
end_tinmer

Stop the timer. By default, the timer does not stop until just before mysql t est exits.
error error_code [, error_code]

Specify one or more comma-separated error values that the next command is expected to return.
Eacherror_code valueisaMySQL-specific error number or a SQLSTATE value. (These are the
kinds of values returned by themysqgl _errno() andmmysql _sqgl state() CAPI functions, re-
spectively.)

If you specify a SQLSTATE value, it should begin with an Sto enablenmysql t est to distinguish it
from aMySQL error number. For example, the error number 1050 and the SQLSTATE value
42S01 are equivalent, so the following commands specify the same expected error:

--error 1050
--error S42S01
Isisalso possible to use the symbolic error name fromnysql d_error. h:

--error ER TABLE EXI STS ERRCR

If a statement fails with an error that has not been specified as expected by means of aer r or com-
mand, mysgl t est aborts and reports theh error message returned by the MySQL server.

If a statement fails with an error that has been specified as expected by means of aer r or com-
mand, mysqgl t est does not abort. Instead, it continues and writes a message to the result output.

e Ifanerror command isgiven with asingle error value and the statement fails with that error,
nmysql t est reportsthe error message returned by the MySQL server.

Input:
--error S42S02
drop table t;

mysql t est reports:

ERROR 42S02: Unknown table 't'

e Ifanerror command isgiven with multiple error values and the statement fails with that error,
nmysqgl t est reports ageneric message. (Thisistrue evenif the error values are all the same, a
fact that can be used if you want a message that does not contain varying information such asta-
ble names.)

Input:

--error S41S01, S42S02
drop table t;

nysql t est reports:

mysql t est Language Reference

Got one of the listed errors

An error value of 0 or SO0000 means “no error,” so using either for an er r or command isthe
same as saying explicitly, “no error is expected, the statement must succeed.”.

To indicate that you expect success or a given error or errors, specify 0 or SO0000 first in the error
list. If you put the no-error value later in thelist, the test will abort if the statement is successful.
That is, these two commands have different effects:

--error 0, 1051
--error 1051,0

Youcanuseer ror to specify shell status values for testing the value of shell commands executed
viathe exec command. This does not apply to syst em for which the command status is ignored.

eval statenent

Evaluate the statement by replacing references to variables within the text with the corresponding
values. Then send the resulting statement to the server to be executed. Use ‘\ $’ to specify aliteral
‘$’ character.

The advantage of usingeval st at enent versusjust st at enent isthat eval providesvari-
able expansion.

eval use $DB;
eval change master to master_port=$SLAVE MYPORT;
eval prepare stmtl from"$ny_stnt";

eval result
Unknown.
exec command [arg]

Execute the shell command using the popen() library call. References to variables within the com-
mand are replaced with the corresponding values. Use ‘\ $’ to specify aliteral ‘$’ character.

On Cygwin, the command is executed from cnd. exe, so commands such as r mcannot be executed
with exec. Usesyst eminstead.

--exec $MYSQL_DUWP --xml --skip-create test
--exec rm $MYSQLTEST_VARDI R/t np/t1
exec $MYSQ._SHOWtest -v -v;

exit

Terminate the test case. Thisis considered a“normal termination.” That is, using exi t does not res-
ult in evaluation of the test case as having failed.

hori zontal results

Set the default query result display format to horizontal. Initially, the default is to display results ho-
rizontally.

--horizontal results

if (expr)

45

mysql t est Language Reference

Beginani f block, which continues until an end line. mysql t est executes the block if the ex-
pression istrue. Thereisno provision for el se withi f . See Section 5.4, “nysql t est Flow Con-
trol Constructs’, for further information about i f statements.

| et $count er=0
i f ($counter)

echo Counter is greater than 0, (counter=0);
f (!$counter)

echo Counter is not 0, (counter=0);

e e

i nc $var _nane

Increment a numeric variable. If the variable does not have a numeric value, the result is undefined.
inc $i
inc $3;

| et $var_nane = val ue

Assign avalue to a variable. The variable name cannot contain whitespace or the ‘=" character.
mysql t est abortswith an error if the value is erroneous.

Asof MySQL 5.0.26/5.1.12, references to variables within val ue are replaced with their corres-
ponding values.

If thel et command is specified asanorma command (that is, not beginning with *- - ’), val ue
includes everything up to the command delimiter, and thus can span multiple lines.

--let $1 = 0
| et $count = 10

The result from executing a query can be assigned to a variable by enclosing the query within back-
tick (** ") characters:

let $g = “select version()";

pi ng

Ping the server. This executesthemysql _pi ng() C API function. The function result is dis-
carded. The effect isthat if the connection has dropped and reconnect is enabled, pinging the server
causes a reconnect.

query [statenent]

Send the statement to the server to be executed. The quer y command can be used to force

nysql t est to send a statement to the server even if it begins with a keyword that isa

mysql t est command.

query_hori zontal statenent

Execute the statement and display its result horizontally.

query_horizontal select pi();

query_vertical statenent

46

mysql t est Language Reference

Execute the statement and display itsresult vertically.

query_vertical select pi();

real _sl eep num

Sleep numseconds. numcan have afractional part. Unlikethe sl eep command, r eal _sl eep is
not affected by the - - sl eep command-line option.

--real _sleep 10

real _sl eep 5;

Try nottousesl eep orr eal _sl eep commands more than necessary. The more of them there
are, the slower the test suite becomes.

reap
Receive the result of the statement most recently sent with the send command.
repl ace_col um col _num val ue [col _num val ue]

Replace strings in the output from the next statement. Thevaluein col _numis replaced by the cor-
responding val ue. There can be more than onecol _numnival ue pair. Column numbers start with
1.

A replacement value can be double-quoted. (Use‘\ "’ to specify a double quote within a replace-
ment string.) Variables can be used in areplacement value if it is not double-quoted.

If mixedr epl ace_xxx commands are given, only the final one applies.

Note: Althoughr epl ace_regex andrepl ace_resul t affect the output from exec, r e-
pl ace_col unn does not because exec output is not necessarily columnar.

--replace_colum 9 #
2

replace_colum 1 b 2 d;

repl ace_regex /pattern/replacenent/[i]

In the output from the next statement, find strings that match pat t er n (aregular expression) and
replace them with r epl acenent . Each instance of a string in the line that matches the patternis
replaced. Matching is case sensitive by default. Specify the optional i modifier to cause matching to
be case insensitive.

The syntax for allowable patternsis the same as for the REGEXP SQL operator. In addition, the pat-
tern can contain parentheses to mark substrings matched by parts of the pattern. These substrings can
be referenced in the replacement string: An instance of \ N in the replacement string causes insertion
of the N-th substring matched by the pattern. For example, the following command matches
strawberry andreplacesit withr aspberry and strawberry:

--repl ace_regex /(strawberry)/raspberry and \1/
Multiplepat t er n/r epl acenent pairs may be given. The following command replaces instances
of Awith C (thefirst pattern replaces A with B, the second replaces B with C):

--replace_regex /A/B /B T

If agiven pattern is not found, no error occurs and the input is unchanged.

47

mysql t est Language Reference

Ther epl ace_r egex command was added in MySQL 5.1.6.
replace_result fromval to_val [fromval to_val]

Replace stringsin the result. Each occurrence of f r om val isreplaced by the corresponding

t o_val . Therecan bemorethanfrom val /t o_val pair. Arguments can be quoted with single
guotes or double quotes. Variable references within the arguments are expanded before replacement
occurs. Values are matched literally. To use patterns, usether epl ace_r egex command.

--replace_result 1024 MAX_KEY_LENGTH 3072 MAX_KEY_LENGTH
repl ace_result $MASTER MYPORT MASTER PORT;

require file_nane

This command specifies afile to be used for comparison against the results of the next query. If the
contents of the file do not match or there is some other error, the test aborts with a“thistest is not
supported” error message.

--require r/slave-stopped. result
--require r/have_nbscow | eap_tinezone.require

result file_nane

This command specifies afile to be used for comparison when the test case completes. |f the content
does not match or there is some other error, writetheresulttor / fi | e_name. r ej ect.

If the- - r ecor d command-line option is given, ther esul t command changes the file by writing
the ew test result to it.

rpl _probe
Unknown.
save_naster_pos

For amaster replication server, save the current binary log filename and position. These values can
be used for subsequent sync_wi t h_nast er orsync_sl ave_wi th_nast er commands.

send [statenent]

Send a statement to the server but do not wait for the result. The result must be received with the
r eap command.

If st at ement isomitted, the send command applies to the next statement executed. This means
that send can be used on aline by itself before a statement. Thus, this command:

send sel ect 1;

I's equivalent to these commands:

send;
sel ect 1;

sl eep num

Sleep numseconds. numcan have afractiona part. If the - - s| eep command-line option was giv-
en, the option value overrides the value given in the s| eep command. For example, if mysql t est

48

mysql t est Language Reference

isstarted with - - sl eep=10, thecommand sl eep 15 deeps 10 seconds, not 15.
--real _sleep 10
real _sl eep 5;

Try nottousesl eep orr eal sl eep commands more than necessary. The more of them there
are, the slower the test suite becomes.

source file_nane
Read test input from the named file.

If you find that several test case files contain a common section of commands (for example, state-
ments that create a standard set of tables), you can put those commands in another file and those test
cases that need thefile canincludeit by meansof asource fil e nane command. Thisenables
you to write the code just once rather than in multiple test cases.

Normally, the filenamein the sour ce command isrelativeto thenysql - t est directory because
mysql t est usualy isinvoked in that directory.

A sourced file can use sour ce to read other files, but take care to avoid aloop. The maximum nest-
ing level is 16.

--source include/ have_csv.inc
sour ce incl ude/varchar.inc;

start _tiner

Restart the timer, overriding any timer start that occurred earlier. By default, the timer starts when
mysql t est begins execution.

sync_slave with_rmaster [connection_nane]

Executing this command is equivalent to executing the following commands:

save_nmmaster _pos;
connection connecti on_narme;
sync_w th_master O;

If connect i on_nane isnot specified, the connection named sl ave isused.
The effect is to save the replication coordinates (binary log filename and position) for the server on
the current connection (which is assumed to be a master replication server), and then switch to a

slave server and wait until it catches up with the saved coordinates. Note that this command impli-
citly changes the current connection.

sync_with_master offset

For aslave replication server, wait until it has caught up with the master. The position to synchron-
ize to isthe position saved by the most recent save _nmast er _pos command plusof f set .

To usethiscommand, save_mnast er _pos must have been executed at some point earlier in the
test caseto cause mysql t est to save the master's replication coordinates.

system command [ar g]

Execute the shell command using thesyst en() library call. References to variables within the
command are replaced with the corresponding values. Use ‘\ $’ to specify aliteral ‘$’ character.

49

mysql t est Language Reference

On Cygwin, the command is executed from cd. exe, so commands such as r mcannot be executed
withexec. Usesyst eminstead.

--systemecho '[nysqgltest1]' > $MYSQLTEST VARDI R/t np/t np. cnf
--system echo 'port=1234' >> $MYSQLTEST VARDI R/t nmp/ t np. cnf
system rm $SMYSQLTEST_VARDI R/ master-data/test/t1. Ml ;

e vertical _results

Set the default query result display format to vertical. Initially, the default is to display results hori-
zontally.

--vertical _results

e wait_for_slave_ to_stop

Poll the current connection, which is assumed to be a connection to a slave replication server, by ex-
ecuting SHOW STATUS LI KE ' Sl ave_runni ng' statements until the result is OFF.

« while (expr)

Begin awhi | e loop block, which continues until an end line. mysql t est executesthe block re-
peatedly as long as the expression is true. See flow-control constructs. Section 5.4, “nysql t est
Flow Control Constructs’, for further information about whi | e statements.

Make sure that the loop includes some exit condition that eventually occurs. This can be done by
writing expr so that it becomes false at some point.

l et $i=5;
while ($i)

echo $i;
dec $i;

5.3. nysql t est Variables

Y ou can define variables and refer to their values. Y ou can also refer to environment variables, and there
isabuilt-in variable that contains the result of the most recent SQL statement.

To defineavariable, usethel et command. Examples:

let $a = 14;
let $b = this is a string;
--let $a = 14
--let $b = this is a string

The variable name cannot contain whitespace or the ‘=" character.

If avariable has a numeric value, you can increment or decrement the value:

inc $a;
dec $a;
--inc $a
--dec %a

i nc and dec are commonly used inwhi | e loops to modify the value of a counter variable that con-
trols loop execution.

50

mysql t est Language Reference

The result from executing a query can be assigned to a variable by enclosing the query within backtick
(‘") characters:

let $q = “select version()"

Referencesto variables can occur intheecho, eval , exec, and syst emcommands. Variable refer-
ences are replaced by their values. As of MySQL 5.0.26/5.1.12, the value assigned to avariablein a
| et command also can refer to variables.

Y ou can refer to environment variables. For example, this command displays the value of the $PATH
variable from the environment:

--echo $PATH

$nysql _errno isabuilt-in variable that contains the numeric error returned by the most recent SQL
statement sent to the server, or 0 if the command executed successfully. $nysql _er r no hasavalue of
—1if no statement has yet been sent.

nmysql t est first checksnysql t est variables and then environment variables. mysql t est variable
names are not case sensitive. Environment variable names are case sensitive.

5.4. nysql t est Flow Control Constructs

Thesyntax for i f andwhi | e blockslooks likethis:
if (expr)
{

command i st

?hile (expr)

command |i st

An expression result istrue if non-zero, falseif zero. If the expression beginswith ! , the sense of the
test isreversed.

Thereisno provision for el se withi f.

For awhi | e loop, make sure that the loop includes some exit condition that eventually occurs. This can
be done by writing expr so that it becomes false at some point.

The allowable syntax for expr is$var _nane, ! $var _nane, astring or integer, or ~ query .

The opening { must be separated from the preceding) by whitespace (such as a space or aline break).

5.5. Error Handling

If an expected error is specified and that error occurs, nysql t est continues reading input. If the com-
mand is successful or a different error occurs, mysql t est aborts.

If no expected error is specified, mysql t est aborts unless the command is successful. (It isimplicit
that you expect $nysql _errno tobe0.)

By default, nysql t est abortsfor certain conditions:

51

mysql t est Language Reference

» A statement that fails when it should have succeeded. The following statement should succeed if ta-
blet exists,

select * fromt;

e A statement that fails with an error different from that specified:

--error 1
sel ect * from no_such_tabl e;

e A statement that succeeds when an error was expected:

--error 1)
select 'a string';

Y ou can disable the abort for errors of thefirst type by usingthedi sabl e_abort _on_err or com-
mand. In this case, when errors occur for statements that should succeed, nysql t est continues pro-
cessing intput.

di sabl e_abort _on_error doesnot causenysqgl t est toignoreerrorsfor the other two types,
where you explicitly state which error you expect. This behavior isintentional. The rationale isthat if
you usetheer r or command to specify an expected error, it is assumed that the test is sufficiently well
characterized that only the specified error is accceptable.

If you do not usetheer r or command, it is assumed that you might not know which error to expect or
that it might be difficult to characterize al possible errors that could occur. In this case, di s-

abl e_abort _on_error isuseful for causingnysql t est to continue processing input. This can
be helpful in the following circumstances:

» During test case development, it is useful to process all input even if errors occur so that you can see
all errors at once, such as those that occur due to typographical or syntax errors. Otherwise, you can
see and fix only one scripting problem at atime.

e Within afilethat isincluded with asour ce command by several different test cases, errors might
vary depending on the processing environment that is set up prior to the sour ce command.

» Teststhat follow a given statement that can fail are independent of that statement and do not depend
on itsresult.

52

Chapter 6. Creating and Executing Unit Tests

Asof MySQL 5.1, storage engines and plugins can have unit tests to test their components. The top-
level Makef i | e targett est - uni t runall unit tests: It scans the storage engine and plugin director-
ies, the engines and plugins' directories, recursively, and executes all executable files with a name that
endswith-t .

The unit-testing facility is based on the MyTAP API. Each unit test must be written asa C or C++ pro-
gram that obeys the MyTAP protocol and that is compiled to produce an executable with a name that
ends with - t . For example, you can create a source file named nyt est - t . ¢ the compilesto produce
an executable myt est - t . The executable will be found and run when you execute make t est or
make test-unit inthedistribution top-level directory.

Example unit tests can befound intheuni t t t est / exanpl es directory of aMySQL source distri-
bution. The code for the MyTAP protocol islocated intheuni t t est / myt ap directory.

Each unit test file should be stored in a storage engine or plugin directory (st or age/ engi ne_nane
or pl ugi n/ pl ugi n_nane), or one of its subdirectories. A reasonable convention isto create a

uni tt est subdirectory under the storage engine or plugin directory and create unit test filesin uni t -
test.

53

Index
A

abort-on-error option
mysgl-stress-test.pl, 36

B

basedir option
mysgltest, 19

bench option
mysql-test-run, 30
mysql-test-run.pl, 22

benchdir option
mysql-test-run.pl, 22

big option
mysgl-test-run, 30
mysql-test-run.pl, 22

big-test option
mysqltest, 19

C

check-testcases option
mysql-test-run.pl, 22
check-tests-file option
mysql-stress-test.pl, 36
cleanup option
mysql-stress-test.pl, 36
client-ddd option
mysql-test-run.pl, 22
client-debugger option
mysgl-test-run.pl, 22
client-gdb option
mysql-test-run, 30
mysql-test-run.pl, 22
comment option
mysql-test-run, 30
mysgl-test-run.pl, 22
compress option
mysql-test-run, 30
mysql-test-run.pl, 22
mysgltest, 19
cursor-protocol option
mysgl-test-run.pl, 22
mysqltest, 19

D

database option
mysqltest, 19

ddd option
mysql-test-run, 30
mysql-test-run.pl, 22

debug option
mysql-test-run, 30
mysql-test-run.pl, 23
mysqltest, 19

debugger option
mysql-test-run.pl, 23

do-test option
mysql-test-run, 30
mysql-test-run.pl, 23

E

embedded-server option
mysql-test-run, 30
mysql-test-run.pl, 23

extern option
mysql-test-run, 30
mysql-test-run.pl, 23

F

fast option
mysql-test-run, 30
mysgl-test-run.pl, 23

force option
mysql-test-run, 30
mysql-test-run.pl, 23

G

gcov option
mysql-test-run, 30
mysql-test-run.pl, 23

gdb option
mysql-test-run, 31
mysql-test-run.pl, 23

gprof option
mysql-test-run, 31
mysql-test-run.pl, 23

H

help option
mysgl-stress-test.pl, 35
mysql-test-run.pl, 22
mysqltest, 18

host option
mysgltest, 19

I

im-mysqgld1-port option
mysql-test-run.pl, 23

im-mysgld2-port option
mysql-test-run.pl, 23

im-port option
mysql-test-run.pl, 23

include option
mysqltest, 19

L

local option
mysql-test-run, 31

local-master option
mysql-test-run, 31

Index

log-error-details option
mysql-stress-test.pl, 36

log-warnings option
mysgl-test-run, 31
mysql-test-run.pl, 24

loop-count option
mysql-stress-test.pl, 36

M
manual-debug option
mysql-test-run.pl, 24
manual-gdb option
mysgl-test-run, 31
mysql-test-run.pl, 24
master-binary option
mysql-test-run, 31
mysql-test-run.pl, 24
master_port option
mysgl-test-run, 31
mysql-test-run.pl, 24
max-connect-retries option
mysqltest, 19
mysql-stress-test.pl
abort-on-error option, 36
check-tests-file option, 36
cleanup option, 36
help option, 35
log-error-details option, 36
loop-count option, 36
mysgltest option, 36
server-database option, 36
server-host option, 36
server-logs-dir option, 36
server-password option, 36
server-port option, 36
server-socket option, 36
server-user option, 36
deep-time option, 36
stress-basedir option, 37
stress-datadir option, 37
stress-init-file option, 37
stress-mode option, 37
stress-suite-basedir option, 37
stress-tests-file option, 37
suite option, 37
test-count option, 37
test-duration option, 37
test-suffix option, 37
threads option, 37
verbose option, 37
mysgl-test-run
bench option, 30
big option, 30
client-gdb option, 30
comment option, 30
compress option, 30
ddd option, 30
debug option, 30

do-test option, 30
embedded-server option, 30
extern option, 30

fast option, 30

force option, 30

gcov option, 30

gdb option, 31

gprof option, 31

local option, 31

local-master option, 31
log-warnings option, 31
manual-gdb option, 31
master-binary option, 31
master_port option, 31
mysgld option, 31
ndb-connectstring option, 31
ndb-connectstring-slave option, 31
ndb-extra-test option, 31
ndb-verbose option, 31
ndbcluster-port option, 32
ndbcluster-port-slave option, 32
ndbcluster_port option, 32
ndbd-extra-opts option, 32
ndb_mgm-extra-opts option, 31
ndb_mgmd-extra-opts option, 32
old-master option, 32
ps-protocol option, 32

purify option, 32

record option, 32
skip-master-binlog option, 32
skip-ndb option, 32
skip-ndb-slave option, 32
skip-ndbcluster option, 32
skip-ndbcluster-slave option, 32
skip-rpl option, 32
skip-slave-binlog option, 32
skip-test option, 32
dave-binary option, 33

dave port option, 33

deep option, 33

small-bench option, 33
socket option, 33
start-and-exit option, 33
start-from option, 33
strace-client option, 33

stress option, 33
stress-init-file option, 33
stress-loop-count option, 33
stress-mode option, 33
stress-suite option, 34
stress-test-count option, 34
stress-test-duration option, 34
stress-test-file option, 34
stress-threads option, 34
timer option, 34

tmpdir option, 34
use-old-data option, 34

user option, 34

55

Index

user-test option, 34

valgrind option, 34

valgrind-all option, 34
valgrind-mysgltest option, 34
valgrind-mysgltest-all option, 34
valgrind-options option, 35
wait-timeout option, 35
warnhings option, 35
with-ndbcluster option, 35
with-ndbcluster-all option, 35
with-ndbcluster-only option, 35
with-ndbcluster-slave option, 35
with-openss option, 35

mysql-test-run.pl

bench option, 22

benchdir option, 22

big option, 22
check-testcases option, 22
client-ddd option, 22
client-debugger option, 22
client-gdb option, 22
comment option, 22
compress option, 22
cursor-protocol option, 22
ddd option, 22

debug option, 23

debugger option, 23

do-test option, 23
embedded-server option, 23
extern option, 23

fast option, 23

force option, 23

gcov option, 23

gdb option, 23

gprof option, 23

help option, 22
im-mysgld1-port option, 23
im-mysqld2-port option, 23
im-port option, 23
log-warnings option, 24
manual-debug option, 24
manual-gdb option, 24
master-binary option, 24
master_port option, 24
mysgld option, 24
ndb-connectstring option, 24

ndb-connectstring-slave option, 24

ndb-extra-test option, 24
ndbcluster-port option, 24
ndbcluster-port-slave option, 24
ndbcluster_port option, 24
netware option, 24
notimer option, 24
ps-protocol option, 24
record option, 25

reorder option, 25
script-debug option, 25
sKip-im option, 25

skip-master-binlog option, 25
skip-ndb option, 25
skip-ndb-slave option, 25
skip-ndbcluster option, 25
skip-ndbcluster-slave option, 25
skip-rpl option, 25
skip-dlave-hinlog option, 25
skip-ssl option, 25

skip-test option, 25
slave-binary option, 25

dave port option, 25

sleep option, 26

small-bench option, 26
socket option, 26

sp-protocol option, 26

sdl option, 26

start-and-exit option, 26
start-dirty option, 26
start-from option, 26
strace-client option, 26

stress option, 26
stress-init-file option, 26
stress-loop-count option, 26
stress-mode option, 26
stress-suite option, 27
stress-test-count option, 27
stress-test-duration option, 27
stress-test-file option, 27
stress-threads option, 27
suite option, 27

suite-timeout option, 27
testcase-timeout option, 27
timer option, 27

tmpdir option, 27

unified-diff option, 27
use-old-data option, 27

user option, 27

user-test option, 27

valgrind option, 27
valgrind-all option, 28
valgrind-mysgltest option, 28
valgrind-mysgltest-all option, 28
valgrind-options option, 28
valgrind-path option, 28
vardir option, 28
view-protocol option, 28
walit-timeout option, 28
warnings option, 28
with-ndbcluster option, 28
with-ndbcluster-all option, 28
with-ndbcluster-only option, 28
with-ndbcluster-slave option, 28
with-opensd option, 28

mysqgld option

mysql-test-run, 31
mysql-test-run.pl, 24

mysgltest

basedir option, 19

56

Index

big-test option, 19
compress option, 19
cursor-protocol option, 19
database option, 19

debug option, 19

help option, 18

host option, 19

include option, 19

max-connect-retries option, 19

no-defaults option, 19
password option, 19
port option, 19
ps-protocol option, 19
quiet option, 20
record option, 20
result-file option, 20
server-arg option, 20
server-file option, 20
silent option, 20, 20
skip-safemalloc option, 20
deep option, 20
socket option, 20
sp-protocol option, 20
test-file option, 21
timer-file option, 21
tmpdir option, 21
user option, 21
verbose option, 21
version option, 21
view-protocol option, 21
mysqltest option
mysql-stress-test.pl, 36

N

ndb-connectstring option
mysgl-test-run, 31
mysgl-test-run.pl, 24
ndb-connectstring-slave option
mysql-test-run, 31
mysql-test-run.pl, 24
ndb-extra-test option
mysgl-test-run, 31
mysgl-test-run.pl, 24
ndb-verbose option
mysql-test-run, 31
ndbcluster-port option
mysql-test-run, 32
mysgl-test-run.pl, 24
ndbcluster-port-slave option
mysql-test-run, 32
mysgl-test-run.pl, 24
ndbcluster_port option
mysql-test-run, 32
mysgl-test-run.pl, 24
ndbd-extra-opts option
mysql-test-run, 32
ndb_mgm-extra-opts option
mysql-test-run, 31

ndb_mgmd-extra-opts option
mysql-test-run, 32
netware option
mysgl-test-run.pl, 24
no-defaults option
mysqltest, 19
notimer option
mysql-test-run.pl, 24

O

old-master option
mysql-test-run, 32

P

password option
mysgltest, 19

port option
mysqltest, 19

ps-protocol option
mysql-test-run, 32
mysgl-test-run.pl, 24
mysgltest, 19

purify option
mysql-test-run, 32

Q

quiet option
mysqltest, 20

R

record option
mysql-test-run, 32
mysql-test-run.pl, 25
mysgltest, 20

reorder option
mysql-test-run.pl, 25

result-file option
mysqltest, 20

S

script-debug option
mysql-test-run.pl, 25
server-arg option
mysqltest, 20
server-database option
mysql-stress-test.pl, 36
server-file option
mysgltest, 20
server-host option
mysql-stress-test.pl, 36
server-logs-dir option
mysql-stress-test.pl, 36
server-password option
mysql-stress-test.pl, 36
server-port option
mysql-stress-test.pl, 36

57

Index

server-socket option
mysql-stress-test.pl, 36
server-user option
mysql-stress-test.pl, 36
silent option
mysqltest, 20, 20
skip-im option
mysql-test-run.pl, 25
Skip-master-binlog option
mysgl-test-run, 32
mysql-test-run.pl, 25
skip-ndb option
mysql-test-run, 32
mysql-test-run.pl, 25
skip-ndb-slave option
mysgl-test-run, 32
mysql-test-run.pl, 25
skip-ndbcluster option
mysql-test-run, 32
mysql-test-run.pl, 25

skip-ndbcluster-slave option

mysgl-test-run, 32
mysql-test-run.pl, 25
skip-rpl option
mysql-test-run, 32
mysql-test-run.pl, 25
skip-safemalloc option
mysgltest, 20
skip-slave-binlog option
mysql-test-run, 32
mysql-test-run.pl, 25
skip-sdl option
mysgl-test-run.pl, 25
SKip-test option
mysql-test-run, 32
mysql-test-run.pl, 25
slave-binary option
mysql-test-run, 33
mysgl-test-run.pl, 25
slave_port option
mysql-test-run, 33
mysql-test-run.pl, 25
sleep option
mysql-test-run, 33
mysgl-test-run.pl, 26
mysgltest, 20
dleep-time option
mysql-stress-test.pl, 36
small-bench option
mysql-test-run, 33
mysgl-test-run.pl, 26
socket option
mysql-test-run, 33
mysql-test-run.pl, 26
mysqltest, 20
sp-protocol option
mysgl-test-run.pl, 26
mysgltest, 20

sdl option
mysql-test-run.pl, 26
start-and-exit option
mysqgl-test-run, 33
mysql-test-run.pl, 26
start-dirty option
mysql-test-run.pl, 26
start-from option
mysql-test-run, 33
mysgl-test-run.pl, 26
strace-client option
mysql-test-run, 33
mysql-test-run.pl, 26
stress option
mysql-test-run, 33
mysgl-test-run.pl, 26
stress-basedir option
mysql-stress-test.pl, 37
stress-datadir option
mysql-stress-test.pl, 37
stress-init-file option
mysql-stress-test.pl, 37
mysql-test-run, 33
mysql-test-run.pl, 26
stress-loop-count option
mysql-test-run, 33
mysgl-test-run.pl, 26
stress-maode option
mysql-stress-test.pl, 37
mysql-test-run, 33
mysql-test-run.pl, 26
stress-suite option
mysgl-test-run, 34
mysgl-test-run.pl, 27
stress-suite-basedir option
mysql-stress-test.pl, 37
stress-test-count option
mysql-test-run, 34
mysgl-test-run.pl, 27
stress-test-duration option
mysql-test-run, 34
mysql-test-run.pl, 27
stress-test-file option
mysql-test-run, 34
mysgl-test-run.pl, 27
stress-tests-file option
mysql-stress-test.pl, 37
stress-threads option
mysql-test-run, 34
mysql-test-run.pl, 27
suite option
mysql-stress-test.pl, 37
mysql-test-run.pl, 27
suite-timeout option
mysql-test-run.pl, 27

T

test cases, 1

58

Index

test framework, 3
test-count option
mysgl-stress-test.pl, 37
test-duration option
mysql-stress-test.pl, 37
test-file option
mysqltest, 21
test-suffix option
mysgl-stress-test.pl, 37
testcase-timeout option
mysql-test-run.pl, 27
threads option
mysql-stress-test.pl, 37
timer option
mysgl-test-run, 34
mysgl-test-run.pl, 27
timer-file option
mysqltest, 21
tmpdir option
mysql-test-run, 34
mysql-test-run.pl, 27
mysgltest, 21

U

unified-diff option
mysql-test-run.pl, 27

unit tests, 1, 3, 53

use-old-data option
mysql-test-run, 34
mysql-test-run.pl, 27

user option
mysql-test-run, 34
mysql-test-run.pl, 27
mysqltest, 21

user-test option
mysgl-test-run, 34
mysql-test-run.pl, 27

\Y
valgrind option
mysql-test-run, 34
mysql-test-run.pl, 27
valgrind-all option
mysql-test-run, 34
mysql-test-run.pl, 28
valgrind-mysgltest option
mysql-test-run, 34
mysgl-test-run.pl, 28
valgrind-mysgltest-all option
mysql-test-run, 34
mysql-test-run.pl, 28
valgrind-options option
mysql-test-run, 35
mysql-test-run.pl, 28
valgrind-path option
mysql-test-run.pl, 28
vardir option
mysql-test-run.pl, 28

verbose option
mysql-stress-test.pl, 37
mysgltest, 21

version option
mysqgltest, 21

view-protocol option
mysql-test-run.pl, 28
mysqltest, 21

W

wait-timeout option
mysql-test-run, 35
mysql-test-run.pl, 28

warnings option
mysql-test-run, 35
mysql-test-run.pl, 28

with-ndbcluster option
mysql-test-run, 35
mysql-test-run.pl, 28

with-ndbcluster-all option
mysql-test-run, 35
mysql-test-run.pl, 28

with-ndbcluster-only option
mysql-test-run, 35
mysql-test-run.pl, 28

with-ndbcluster-slave option

mysql-test-run, 35
mysql-test-run.pl, 28
with-openss option
mysql-test-run, 35
mysql-test-run.pl, 28

59

	The MySQL Test Framework
	Table of Contents
	Preface
	Chapter 1. Introduction
	Chapter 2. MySQL Test Framework Components
	2.1. The Test Framework and SSL
	2.2. How to Report Bugs in the MySQL Test Suite

	Chapter 3. Tutorial
	3.1. Running Test Cases
	3.1.1. Constraints on Simultaneous Test Runs

	3.2. Writing a Test Case: Quick Start
	3.3. Writing a Test Case
	3.3.1. Sample Test Case
	3.3.2. Naming Conventions for Database Objects
	3.3.3. Cleaning Up from a Previous Test Run
	3.3.4. Generating a Test Case Result File
	3.3.5. Specifying When Tests are Expected to Fail
	3.3.6. Controlling the Information Produced by a Test Case
	3.3.7. Dealing with Output That Varies Per Test Run
	3.3.8. Specifying Test Case-Specific Server Options
	3.3.9. Other Test Case-Writing Tips

	Chapter 4. MySQL Test Programs
	4.1. mysqltest — Program to Run Test Cases
	4.2. mysql-test-run.pl — Run MySQL Test Suite
	4.3. mysql-test-run — Run MySQL Test Suite
	4.4. mysql-stress-test.pl — Server Stress Test Program

	Chapter 5. mysqltest Language Reference
	5.1. mysqltest Input Conventions
	5.2. mysqltest Commands
	5.3. mysqltest Variables
	5.4. mysqltest Flow Control Constructs
	5.5. Error Handling

	Chapter 6. Creating and Executing Unit Tests
	Index

