
Practical Magic with SSH

By David F. Skoll

Roaring Penguin Software Inc.

1 February 2001

http://www.roaringpenguin.com
dfs@roaringpenguin.com

Overview of Presentation
Why SSH? Problems with Telnet & Friends
Brief description of SSH protocols
Obtaining and installing OpenSSH
X11 Forwarding and Port Forwarding
SSH Agent
scp, rsync over SSH
Firewall Busting
SSH vs. IPSec and others
Demo
Q&A session

Why SSH?

" Do you care at all about privacy and
security?

" Then don’t use Telnet, rsh, rlogin and
friends at all!

" Telnet: Clear−text passwords, clear−text
session.

" rsh/rlogin: Even worse - hostname−based
trust mechanism is trivial to spoof. (Think
/etc/hosts.equiv and ~/.rhosts)

Example

Linux #1 Linux #2InternetGw #1 Gw #2

If Linux #1 needs a connection to Linux #2, attackers can sniff
packets on the Internet, on LAN #1, on LAN #2 or on either
gateway.

Example, continued

" Therefore, we need a protocol which
assumes eavesdroppers hear everything,
but still cannot impersonate either side.

" The Secure Shell (SSH) protocols offer this
capability.

Brief Digression: Crypto−on−a−
Slide

" Symmetric Encryption: The same (secret)
key is used for encryption and decryption.
Ideally, arbitrary amounts of chosen
plaintext and corresponding ciphertext will
not reveal key. Symmetric encryption fast.

" Public Key Encryption: A public key is used
for encryption and a secret private key for
decryption. Or, the secret key for signing
and public key for validation. Public key
encryption slow.

SSH1 Protocol (more−or−less)

" The server has a public/private key pair.

" The client must know the server’s public key
in advance.

" The server sends its public key to the client
as well as a periodically−generated server
key. Client verifies that public key is known.

" The client generates a random session key,
encrypts it with the host and server key, and
sends it to the server. Everything is now
encrypted with the session key.

SSH2 Protocol (more−or−less)

" One of a number of key−exchange
algorithms is run. At the end, client and
server share a secret key, unknowable by
eavesdroppers.

" Digital signatures verify identity of server to
client.

" Everything following key exchange is
encrypted with the shared secret.

Obtaining and installing SSH

" Best to use OpenSSH. It’s free and
developed by OpenBSD developers who are
security fanatics.

" Go to http://www.openssh.com and follow
the links to "portable OpenSSH". There are
Linux RPM’s available.

" You also need OpenSSL, available from the
OpenSSH download sites.

Screenshot of SSH in Action

" As simple to use as rsh!

" Just use ssh host, enter passphrase and
you have a shell.

Verify the Host Key

" If SSH does not recognize the host key, it will
show the key fingerprint and ask if you want to
continue.

" DO NOT continue unless you are absolutely
sure the key fingerprint is correct.

" If SSH gets a different key than the one in its
known_hosts list, it will print a huge warning
and refuse to continue. Getting the wrong host
key is usually because someone messed up,
but could be due to spoofing.

Setting up the SSH Client

" Generate an SSH key pair: ssh−keygen

" Enter a pass phrase to protect the private key.

" Copy the private key to ~/.ssh/identity, mode
0600.

" Copy the public key to the remote machine in
~/.ssh/authorized_keys.

" You can also use "encrypted password
authentication", but this is not recommended.

Password Authentication

" Just like Telnet or login, except username and
password are encrypted.

" Advantage: Don’t have to generate a key pair.

" Disadvantage: Less secure. Susceptible to
password−guessing attacks.

Public Key Authentication

" Uses public/private key pair for authentication.

" Disadvantage: Have to generate a key pair and
put the public key in ~/.ssh/authorized_keys.

" Advantage: Defeats password−guessing
attacks unless attacker has access to private
key.

" Key pairs can optionally be restricted in
capability. For example, one key could be
limited to running a "tar" command for backup.

" Allows fine−grained access control.

X11 Forwarding

" SSH gives you an encrypted pipe through the
Internet.

" Usually, this pipe is used for interactive shell
sessions.

" However, SSH can also do X11 Forwarding.

" On the server side, the SSH server creates a
"fake" X server (for example, remotehost:10).

" X connections to that server are forwarded
through the encrypted pipe.

X11 Forwarding, cont’d

" When the SSH client sees a forwarded X
connection coming through, it opens a
connection to the real X server and forwards X
traffic.

" Net result: You can remotely run X
applications, and all X traffic is securely
encrypted.

" X forwarding can be disabled by the client or
the server.

Port Forwarding

" SSH can forward arbitrary TCP ports over the
encrypted pipe.

" Two flavours: Forwarding of local (client−side)
ports and forwarding of remote (server−side)
ports.

" Example: ssh −L 8080:remotemach:80

" On the client, TCP port 8080 is forwarded
through the encrypted pipe to port 80 on
remotemach.

Port Forwarding, cont’d

" ssh −L 8080:remotemach:80

" SSH client listens on port 8080 on 127.0.0.1.

" When an incoming connection arrives, client
notifies the server of this fact. Server opens a
connection to remotemach, port 80.

" All further traffic is forwarded over this
encrypted pipe.

" If the ssh server is a gateway, remotemach
need not even have a routable IP address. It
just has to be reachable from the ssh server.

Forwarding Remote Ports

" ssh −R 8080:localmach:80

" SSH server listens on port 8080 on 127.0.0.1.

" When an incoming connection on port 8080
arrives, server notifies the client of this fact.
Client opens a connection to localmach, port
80.

" All further traffic is forwarded over this
encrypted pipe.

Port Forwarding Caveats

" Only root can port−forward privileged local
ports.

" Forwarded ports only listen to 127.0.0.1 by
default. This is a security feature (which can be
overridden.)

" Only root on the remote end can forward from
privileged remote ports. Anyone can forward to
privileged ports.

Nice Use of Port Forwarding

" Secure access to IMAP or POP3 servers,
especially for Windoze clients.

" Using a free Windoze SSH client, set up port−
forwarding from local ports 25 and 143 to
corresponding ports on mail server.

" On mail server, the only port open (for remote
access) is SSH.

" Port−forwarding takes care of restricting access
to IMAP, encryption and MTA relaying
configuration.

Diagram

" Set up Windoze mail client to use 127.0.0.1 as
incoming/outgoing mail server. :−)

" Wait−a−minute! Only root can forward
privileged ports...

" On Windoze, everyone is root...

Windoze Client
Mail Server

Mail client connects
to localhost:143

Encrypted session
goes over wire SSH Server decrypts,

connects to IMAP server

SSH Agent

" If you use a passphrase for your private key
(recommended!), it’s annoying to have to type it
in each time.

" Ssh−agent lets you enter your passphrase
once per session (e.g., at the start of an X
session) and then decrypts and remembers
your key. Use ssh−add to control the list of
keys remembered by ssh−agent.

" When you run ssh, it contacts the ssh agent
(over a named pipe) for the private key.

SSH Agent, continued

" SSH Agent is very convenient. You can use
ssh almost like a transparent rsh. Once keys
are set up, you never have to type passphrases
or login passwords.

" However, anyone who can get root on the
machine running SSH Agent can get your
private key.

" So do not use SSH Agent unless you control
the machine and trust that no−one else has
root.

SSH Agent Forwarding

" SSH Agent can even be forwarded over the
SSH pipe.

" This means that SSH sessions on remote hosts
can query the SSH Agent on your local host.

" This is (IMO) even more dangerous than the
normal use of SSH Agent. Don’t do it unless
you trust all the machines along the way.

SCP

" SCP works just like RCP, but uses SSH for
transport:

scp localfile remotemach:/remote/file

scp remotemach:/remote/file localfile

scp file user@remote:/path

RSYNC over SSH

" RSYNC (http://rsync.samba.org) is a tool for
efficient mirroring.

" It tries to copy as little as possible to make the
remote side match the local side. It can often
achieve "compression" ratios of 100−to−1.

" The latest rsync works reliably using the latest
OpenSSH as its transport.

Firewall Busting

" Don’t try this at work.

" Many companies use a masquerading firewall
(NAT) with unroutable IP addresses to limit
access to internal networks.

Linux Box Internet
NAT Box

Private LAN

Home Machine

Firewall Busting, 2

" This kind of setup is inconvenient. There’s no
easy way to log on to your work Linux machine
from home.

" Ahh, but... if you have a permanent or semi−
permanent (or even non−permanent, if you are
tricky) Internet connection at home, you can
bust through the NAT box and log on to the
Linux work machine.

Firewall Busting − Prep Work

" Install an SSH server on both your home and
work machines. Have the servers start
automatically at bootup.

" Write a script which runs on the work machine
which periodically ssh’s in to your home
machine. It should simply run a "sleep 3600"
command. Generate a key pair with no
passphrase for the script to use.

" On your home machine, add the key to the
authorized_keys list with a forced "sleep 3600"
command.

Firewall Busting − The Magic

" Have the work machine include this argument
to its ssh command: −R 8822:localhost:22

" Now the magic happens: Work machine calls
up home machine. If authorized, executes
sleep 3600 and port−forwards 8822 on home
machine to port 22 on work machine.

" On home machine, ssh to localhost on port
8822. You’ll be greeted with a login prompt
from your work machine. You’ve busted
through the NAT box.

Firewall Busting − Refinements

" NAT box limits you to certain ports? Run your
home ssh server on port 80 (or 21 or
whatever).

" Periodic connections are suspicious? Have
work machine look for GPG−signed e−mail
telling it to phone home. A fetchmail process
can periodically check e−mail on your
corporate server and kick in the ssh when it
finds an appropriate signed e−mail.

" Moral: NAT doesn’t solve everything. Covert
channels are very hard to close.

SSH vs. IPSec

" SSH works at the application layer; IPSec
works at the network layer. IPSec supported
by big−name router companies.

" SSH simple to set up; IPSec more complicated.

" SSH can only forward TCP ports and doesn’t
work well with certain protocols (FTP); IPSec is
a true VPN with transparent IP encryption.

" SSH protocol is simple; IPSec is complicated.
In general, simplicity is preferred where security
is at stake.

SSH vs. CIPE

" CIPE (Crypto IP Encapsulation) is a non−
standard but very simple way of encrypting IP
packets.

" Encapsulates IP in UDP.

" Much simpler than IPSec, but much less
flexible. Intended for use between two routers.

" GPL’d Linux drivers; Windoze implementation
under development.

Demo

" Sorry; no network. Just ssh to 127.0.0.1...

Q&A

