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Introduction 
 
A dish antenna with multiple reflectors, like the Cassegrain antenna at OH2AUE1 in Figure 
1, looks like an obvious solution to one of the major problems with dishes, getting RF to the 
feed.  With a conventional prime-focus dish, the feed is at the focal point, out in front of the 
parabolic reflector, so either a lossy feedline is necessary or part of the equipment is placed 
near the feed.  The latter is reasonable for receiving systems, since low-noise amplifiers are 
quite compact, but high-power transmitters tend to be large and heavy.   
 

 
Figure 1 

 
The Cassegrain antenna and similar multiple-reflector dishes allow the feed to be placed at a 
more convenient point, near the vertex (the center of the parabolic reflector) with the feedline 
coming through the center of the dish.  However, further analysis shows that this advantage 
is merely a convenience; the real advantage is that the secondary reflector may be used to 
reshape the illumination of the reflector for better performance.  Reshaping the illumination 
is particularly significant for very deep dishes, since there are NO good feeds for f/D less 
than ~0.3, while there are a number of very efficient feeds for shallow dishes, with f/D > 0.6.  
By proper shaping of the subreflector, we may use a good feed to efficiently illuminate a 
deep dish. 
 
Our tour of multiple-reflector dishes will analyze the common Cassegrain and Gregorian 
configurations in some detail, then review some other types that amateurs are unlikely to 
build, but might someday find as surplus.  We shall see that multiple-reflector dishes work 
very well when the reflectors are large.  For smaller dishes, we must make compromises 
which reduce efficiency; however, we can make some approximations which allow us to 
quantify the losses, so that we can make a reasonable judgment as to whether the results are 
worth the additional complexity. 



 
Geometry 
 

 
 

Reflector antennas utilize curvatures called conic sections2, since they are shapes found by 
slicing a cone, as shown in Figure 2.  In addition to the parabola, the other shapes are the 
circle, the ellipse, and the hyperbola.  We will draw them as plane curves, in two dimensions, 
but useful reflector shapes are three-dimensional, generated by rotating the plane curve 
around an axis of symmetry. 
 
The most useful reflector is the parabola, shown in Figure 3.  The parabola has the valuable 
property that rays of light or RF emanating from the focus are all reflected to parallel paths, 
forming a narrow beam.  All paths from the focus to a plane across the aperture, or a parallel 
plane at any distance, have the same length — take a ruler to Figure 3 and verify it.  Since all 
the rays have the same path length, they are all in phase and the beam is coherent.  This 
behavior is reciprocal — rays from a distant source are reflected to a point at the focus.  The 
axis of symmetry for the parabola is the axial line through the vertex and the focus; if we spin 
the parabolic curve around this axis, we get the familiar parabolic dish. 
 
The multiple-reflector systems were originally developed as optical telescopes3, long before 
radio.  Thus, we will start with a quick overview of telescope designs.  All of them have the 
same important property — ray paths must all have the same length. 
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Figure 3. Parabolic Dish Geometry



 
The Newtonian telescope (Isaac 
Newton, 16684) in Figure 4 is 
just a single parabolic reflector.  
A plane secondary reflector at an 
angle is added to get the 
observer's head (at the focal 
point) out of the optical path, but 
a plane reflector has no optical 
effect other than the change of 
direction.  A dish antenna could 
also use a plane reflector to 
redirect the focus, but only if the 
focal length were long enough to 
move the focus out of the beam.  
The difference is that a typical telescope has a long focal len
reflector diameter (f/8 in optical terminology, or f/D = 8 in a
typical dish antenna has a focal length less than half the refle
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The Gregorian telescope (James Gregory, 16634) in Figure 5
reshape the beam, shortening the telescope, and to move the 

changed by adjusting the curvature of the ellipse.   
5

For an antenna, we may place an efficient feedhorn 
with a narrow beam at the first focus and choose an 
ellipse that reshapes the beam into a broad one to 
illuminate a deep dish. The broad beam appears to 
come from the second focus, so we must make the 
second focus coincident with the focal point of the 
main parabolic reflector.  
igure
gth, perhaps eight times the 
ntenna terminology), while a 
ctor diameter (f/D < 0.5). 

 adds an elliptical subreflector to 
focus to a convenient point 
behind the center of the 
reflector.  An ellipse has two 
foci, with the useful property 
that a ray emanating from one 
focus is reflected to pass through 
the other focus, as shown in 
Figure 5b.  If most of the ellipse 
is removed, then rays from the 
first focus appear to radiate from 
the second, but angle may be 

 
 

Figure 5b 
Figure 



The Cassegrain telescope (attributed to M. Cassegrain, 1672, although he is not known to 
have published anything4) in 
Figure 6 has a hyperbolic 
subreflector rather than 
elliptical, but having the 
same function.  The 
hyperbola consists of two 
mirror-image curves and also 
has two foci, as shown in 
Figure 6b.  The curves are 
between the two foci; for a 
reflector, only one curve is 
needed.  Rays emanating 
from the focus on the convex 
side of the curve are reflected 
by the hyperbola so that they appear to come from 
the other focus, behind the reflector.  The focus 
behind the reflector, on the concave side, is 
referred to as a virtual focus, because the rays 
never reach it.  Since the rays appear to radiate 
from the virtual focus, we must make it c
with the focal point of the main parabolic 
reflector.  The curvature of the hyperbola 
also be adjusted to reshape the beam as require
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Figure 7 

A Schmitt-Cassegrain telescope5 (Figure 7) has a spherical reflector rather than parabolic, 
and compensates for the difference with a "corrector plate" in front of the aperture.  The 
corrector plate is a sheet of plastic whose thickness is varied to compensate for the error in 
path lengths caused by the spherical curve and make the total path length of all rays identical.  
In commercial versions, the hyperbolic subreflector is molded into the corrector plate.  The 
Arecibo radiotelescope has a spherical reflector 1000 feet in diameter, making a long focal 
length impractical.  The focus of a spherical reflector is an axial line rather than a point, so 
special feeds are required; depending on frequency, either a line feed or a specially-shaped 
subreflector. 
 
We will examine these antenna designs in more detail later, as well as some other variations 
not commonly used in telescopes.  All of them rely on the three basic shapes: the parabola, 
the ellipse, and the hyperbola.  A summary of the properties of the conic-section shapes is 
given in Table 1: 
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Diffraction, or why small dishes don't work well 
 
The design of multiple reflector antennas is derived from telescopes6  and other optical 
systems, so we use the quasi-optical design techniques of Geometric Optics7.  For these 
approximations to be valid, three basic assumptions must be satisfied: 
1. Wavelength is much smaller than any physical dimensions, so that we may use the 
approximation of zero wavelength. 
2. Waves travel in straight lines, called rays. 
3. Reflection from flat surfaces follows the Law of Reflection: the angle of incidence = the 
angle of reflection.  See Figure 8. 

 
Figure 8 

 
 
4. Refraction follows Snell's law shown in Figure 9 (a dielectric is required for refraction). 
 

 
Figure 9 

A good pictorial description of refraction is available on the web page8 of Prof. Joseph F. 
Alward of the University of the Pacific. 
 
Many of the small dishes used by hams stretch the limits of these assumptions; performance 
may be compromised, but still usable.  A typical dish might be only ten wavelengths in 
diameter or even smaller.  Any usable feed has an effective electrical size larger than half a 



Figure 10. 10λ Diameter dish with Aperture source



Figure 11a. 5λ Diameter dish with Aperture source

Figure 11b. 2.5λ Diameter dish with Aperture source



wavelength, so the feed is much larger than a point source.  According to Huygen's 
Principle9, each point on a propagating wavefront can be considered as a secondary source 
radiating a spherical wave.  The propagating wavefront could be the aperture of a feedhorn.  
Figure 10 shows a 10λ diameter dish with rays emanating from points across the aperture 
rather than a single point.  The result is that the rays from the parabolic reflector are no 
longer parallel, but rather spread out into a diverging beam.  Note that rays reflecting near the 
center of the parabola diverge more than rays farther from the center; from this, we might 
infer that that smaller dishes would have even broader beams.  Figure 11 shows smaller 
dishes, 2.5λ and 5λ in diameter; as we expect, the beam becomes broader as the antenna gets 
smaller. 
 
J. B. Keller (1985) described10 diffraction as any process whereby electromagnetic wave 
propagation differs from Geometric Optics.  In addition to the diverging beam illustrated in 
Figures 10 and 11, diffraction effects are found when a wave encounters an obstacle or 
discontinuity.  In a dish antenna, the feed and support struts, are obstacles, and the edges of 
reflectors are obvious discontinuities.  Reflections are true from large flat surfaces, but 
curves must have a radius of curvature much larger than a wavelength to be a good reflector; 
otherwise, diffraction occurs. 

 
Keller11 formulated the mathematical descrip
Geometrical Theory of Diffraction. He show
into a cone, as illustrated in Figure 12.  The c
Figure 12
tion of diffraction, which he called the 
ed that a ray encountering an edge is diffracted 
one is commonly referred to as a Keller cone. 



 
Hams seem to refer to all diffraction as “knife-edge” diffraction.  Edge diffraction was the 
first type to be solved; the math is even more difficult for other shapes.  The rays diffracted 
by the edge form a characteristic pattern of light (higher intensity) and dark (lower intensity) 
bands shown in the right side of Figure 13.  The left side of the figure is an explanatory 
sketch – the diffraction at the edge acts as a secondary source (Huygen’s Principle) radiating 
into both the shadowed region at the top, where the intensity decreases with distance, and 
into the unshadowed region, where it forms an interference pattern with the direct light wave.  
The light and dark bands are the interference pattern.  Note that diffraction affects all regions, 
not just the shadow. 
 

Figure 13 

 
 
Rays passing through a narrow slit are diffracted to both sides, forming an interference 
pattern between waves diffracted from the two sides, shown in Figure 14.  The distance 
between peaks and nulls is proportional to the slot width w in wavelengths7; expressed as an 
angle, θ = λ/w. 
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The diffraction pattern from a hole, Figure 15, occurs so frequently in optics that it has a 
name, the Airy diffraction pattern7.  The spacing of light and dark rings is proportional to the 
diameter D in wavelengths; expressed as an angle, θ = 1.22λ/D. 
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Telescopes suffer from all these diffraction effects.  The image in Figure 17 shows Airy rings 
around star and diffraction from the mirror struts as radial lines around the star. 
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Antenna Design 
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Cassegrain Antenna Design Procedure 
 
Why do we need a complicated design procedure?  Design of a prime focus dish antenna is 
relatively straightforward: first, choose a feed which fully illuminates the parabolic reflector 
but no more, as shown in Figure 3.  Then position the phase center of the feed at the focal 
point of the parabola.  The Cassegrain antenna adds a hyperbolic subreflector to this 
arrangement, acting as a mirror to reflect the feed position back toward the main reflector.  
The difficulty is finding the right hyperbolic subreflector to match the main reflector to the 
feed, since the hyperbola is not a single curve, but a whole family of curves with different 
focal lengths and curvatures. The amount of curvature is called eccentricity.  From this 
family, we must find the unique hyperbola which matches the parabola and feed so that the 
path lengths shown in Figure 3 all remain equal. 
 
The optimum design of a complete Cassegrain antenna system is rather complicated, but some 
published descriptions use mathematics which makes it seem even more complicated.  If one 
is designing an antenna system from scratch on a clean sheet of paper, the combination of two 
reflectors plus a feedhorn has sufficient degrees of freedom to permit many good solutions.  
Most amateur antennas have a more definite starting point: the availability of a good dish or a 
good subreflector.  The problem is then simplified to the optimum design of the other 
components.  Another important question is whether the Cassegrain system is any better than 
a conventional prime-focus antenna using the same dish.  
 
Some of the published descriptions are quite clear and direct, except that they seem to pluck 
some key dimensions out of thin air.  For instance, an otherwise excellent recent paper by 
G7MRF13 arrived at a subreflector diameter of exactly 100 mm without explanation.  Other 
than this revelation, his paper was well done, and is recommended reading. 
 
I have found two descriptions, one by Jensen14 and one by Milligan15, which are reasonably 
clear and complete; I will attempt to synthesize them into a straightforward design procedure 
for the first case, starting with a known dish and calculating an appropriate subreflector 
geometry.  Since there are several tradeoffs involved, I will use a spreadsheet format — useful 
for quick calculations.   First, however, we will walk through the design procedure to 
understand what the spreadsheet is calculating and see where the tradeoffs are made.  Later, 
we will look at some real examples.  The dimensions and angles are shown in the Cassegrain 
geometry of Figure 18. 
 
Jensen's emphasis is on high performance — the additional complexity of a Cassegrain should 
provide some benefit.  To minimize loss from diffraction and spillover, he suggests that the 
subreflector be electrically large, greater than 10 wavelengths in diameter, or about 1 foot at 
10 GHz.  The subreflector diameter should be less than 20% of the dish diameter to minimize 
blockage by the subreflector, so the dish should be larger than 50 wavelengths diameter.  
Jensen includes curves to help in comparing the various losses to make tradeoffs.  The curves 
clearly show antenna efficiency decreasing rapidly for subreflectors smaller than ten 
wavelengths and for diameter ratios greater than 0.1. 
 
 



 
Variables in Figure 18: 
 
Dp = Parabolic dish diameter 
fp = Parabolic dish focal length 
dsub = Subreflector diameter 
fhyp = focal length of hyperbola – between foci 
a = parameter of hyperbola – see sketch in Table 1 

c = fhyp /2 = parameter of hyperbola 
φo = angle subtended by parabola 
ψ  = angle subtended by subreflector 
φb = angle blocked by subreflector 
α = angle blocked by feedhorn 



However, lower efficiency is sometimes tolerable.  For very deep dishes where available 
feeds can only provide poor efficiency, a Cassegrain system with a good feedhorn might 
achieve better overall efficiency.  At the higher microwave frequencies, feedline loss can be 
high enough to significantly reduce overall efficiency, so the more accessible feed location of 
the Cassegrain system might be a good alternative.  If we can quantify these losses, then we 
can make intelligent comparisons and tradeoffs. 
 
 

 
1. Optimum edge taper 
 

 
Milligan includes approximations for the losses in smaller dishes, based on the work of 
Kildal16.  Diffraction is a major contributor to losses in small dishes.  Kildal found that the 
illumination edge taper in a Cassegrain feed should be somewhat greater than the nominal 10-
dB edge taper for a prime-focus dish, to reduce diffraction loss.  Since diffraction occurs near 
the edge of a reflector, reducing the edge illumination should reduce the diffracted energy, 
while the illumination loss increases slightly.  No closed-form equation is given, only a plot 
like Figure 19, which shows the optimum illumination taper vs. dish diameter.  While other 
sources17 suggest up to 15 dB edge taper, the curve in Figure 19 gives the optimum taper as 
about 14 dB for small dishes, decreasing to about 11 dB for very large dishes.  We will realize 
this optimum edge taper by adjusting the feedhorn position. 
 



2. Optimum subreflector size 
 
Kildal then derived a formula for the optimum subreflector size to minimize the combination 
of blockage and diffraction losses: 
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assuming the optimum dish taper from Figure 19.  This formula is plotted in Figure 20, 
allowing us to find the optimum d/D, the ratio of subreflector diameter to dish diameter, for 
any size dish and edge taper. 
 

 



3. Approximate subreflector efficiency 
 
Finally, Kildal calculates the approximate efficiency for the combination of blockage and 
diffraction losses: 
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again assuming the optimum dish taper and subreflector size.  An additional assumption is 
that the feed illumination angle subtended by the subreflector is fairly small, ψ < 30º.  The 
approximate efficiency is plotted in Figure 21. 

The above efficiency is just for the Cassegrain subreflector.  The subreflector reduces the 
antenna efficiency, so the total antenna efficiency may be estimated by multiplying this 
efficiency by the normal estimated dish efficiency – perhaps from a PHASEPAT18 plot for 
the feedhorn.  However, the system efficiency may still be better than with a primary feed, 
particularly with very deep dishes, where no good feeds are available.  With a Cassegrain 
system, we may be able to use an excellent feedhorn, so that the feedhorn improvement is 
better than the Cassegrain efficiency loss.  If we can also reduce feedline loss by making the 
feed location more convenient, so much the better. 
 



If these numbers are acceptable, then we can proceed with the design of the Cassegrain 
antenna, with the geometry shown in Figure 18. 
 
4. Feedhorn 
 
The next step is to choose a feedhorn.  Then we can calculate the hyperbola dimensions for 
the subreflector necessary to reshape the feedhorn pattern to properly illuminate the dish, as 
well as the desired hyperbola focal length, the distance between the two foci of the hyperbola.  
Looking at Figure 18, one focus of the hyperbola is at the focal point of the dish; we will refer 
to this as the virtual focus. No RF ever reaches it, but the RF from the feed reflected by the 
subreflector appears to originate from the virtual focus.  The feedhorn phase center is at the 
other focus of the hyperbola.  The feedhorn illuminates the subreflector, which subtends the 
angleψ.  A feedhorn with a wide beam would be closer to the subreflector than a feedhorn 
with a narrow beam — later, we will calculate the hyperbola curvature for the desired focal 
length. 
 
In the W1GHZ Microwave Antenna Book — Online18, various feedhorns are characterized by 
calculating the dish efficiency vs. f/D ratio.  The f/D for maximum efficiency is the dish best 
illuminated by that feed.  Since prime-focus dishes usually have maximum efficiency with 
about 10dB edge taper, we will assume that the best f/D for a feed is also where it provides 
illumination with about 10 dB edge taper. 
 
The subtended half-angle to illuminate a given f/D is  
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To adjust this for the edge taper we chose above, we use Kelleher's universal horn equation: 

10
dBin taper   ⋅=′ ψψ  to correct the illumination angle for our desired edge taper. 

 
However, this does not account for the natural edge taper from Space Attenuation, which is 
significant in deep dishes, where the focus is much further from the rim than from the vertex.  
For an f/D = 0.25, the rim is twice as far away as the vertex, so the Space Attenuation (S.A.) 
is 6 dB by the inverse-square law.  For other f/D,  
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Now we can calculate the adjusted illumination angle to get the desired edge taper from our 
feedhorn: 
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5. Hyperbola focal length 
 
Next, we must position the feed so the angle subtended by the subreflector is ψ ′ , while also 
placing the feed at one focus of the hyperbola and the dish prime focus at the other; see 
Figure 18.  Thus, the hyperbola focal length, the distance between the two foci is  
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6. Feed blockage 
 
We must also be concerned with feedhorn blockage, shown as angle α in Figure 18.  Rays 
near the center of the beam that reflect from the subreflector at angles less than φb are 
eventually blocked by the subreflector.  If bφα > , then the angle shadowed by the feedhorn 
is larger than the angle shadowed by the subreflector, so the feed will cause additional 
blockage loss.   
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To eliminate feedhorn blockage, the feedhorn must be moved farther away from the 
subreflector.  There are two ways to move the feedhorn without upsetting the geometry.  One 
choice is a feedhorn with a narrower beam, reducing angle ψ (recalculate fhyp); however, 
narrower beams require larger horn apertures, so this may not work.  The other choice is a 
larger subreflector, which increases the focal distance without changing angle ψ.  This will 
increase blockage loss only, so the efficiency will decrease slightly and should be 
recalculated.  The minimum subreflector diameter to avoid feedhorn blockage is: 
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If we know the phase center (PC) for the feedhorn, we may correct19 for it in the last two 
equations by replacing fhyp with (fhyp + PC), where a PC inside the horn is negative. 



Once we have settled on a feedhorn and angle ψ, the effective f/d for the feed is: 
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7. Subreflector Geometry 
 
The subreflector must reshape the illumination from the effective feed f/d to Fp/Dp for the 
dish, a magnification factor M: 
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(Some references add a virtual dish or equivalent dish with a focal length M times as long – if 
you prefer, the equivalent dish is the reflection of the main dish by the hyperbolic 
subreflector.) 
 
This requires a hyperbola with an eccentricity e: 
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Finally, the hyperbola parameters (see sketch in Table 1) are calculated: 
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The distance from the apex of the subreflector to the virtual focus (the focus of the main 
parabola) behind the subreflector is c-a. 
 
The distance from the apex of the subreflector to the phase center of the feedhorn is c+a. 
 
A final check is to make sure the subreflector is in the far field of the feedhorn: 
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2
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>+ , the Rayleigh distance; according to Wood20, having the subreflector in the 

near field of the feed will cause significant phase error.  The error decreases as the spacing 
approaches the Rayleigh distance, so we can fudge a bit here.  Distances as small as half the 
Rayleigh distance are probably usable without major loss. 



 
8. Spreadsheet 
 
The spreadsheet cassegrain_design.xls18 does all these calculations.  Start by entering a 
dish diameter and F/D, plus feedhorn parameters.  The spreadsheet will suggest feed taper and 
minimum subreflector sizes will be suggested.  You may enter these values or choose others, 
adjusting them and the feedhorn parameters until an acceptable compromise is reached. 
 
Remember that these calculations involve a number of approximations; error increases as we 
stretch the approximations, particularly with very small dishes.  However, it is unlikely that 
losses will be less than estimated. 
 
I have also written a Perl script, Cass_design.pl18, which calculates and draws a sketch to 
scale of each Cassegrain antenna, like the examples in Figures 22 and 24. 
 
9. Subreflector profile 
 
From the parameters of the subreflector geometry above, we may plot the subreflector profile 
using the equation for the hyperbola: 
 

22 ax  
a
b y −⋅=  and solving for a number of x, y pairs.  The G7MRF paper13 includes a 

spreadsheet which will calculate a table of values and plot the curve.  Just plug in the 
parameters a, b, and c.  The Perl script, Cass_design.pl, will also plot a table of values. 
 
EXAMPLES:   
 
A while back an 8-foot dish with a bright blue radome appeared next to my driveway — my 
wife hates the color, so I had to hide it in the woods.  The dish was previously used at 14 
GHz, so it should work well at 10 GHz.  The original feed was a small horn which would not 
provide good efficiency at 10 GHz, fed through a waveguide “buttonhook.”  Because of the 
radome, a rear feed would be preferable.  The dish has a focal length of 34.5 inches, so the f/D 
is 0.36.  I also have a good corrugated feedhorn for an f/D of 0.75; the performance plot is 
shown in Figure 22. 
 
The spreadsheet for this dish and feed combination is Figure 23.  The suggested edge taper is 
12.36 dB, which I saw no reason to change.  This results in a minimum subreflector diameter 
of 6.94λ, but a larger diameter is needed to avoid feedhorn blockage, at least 8.47λ.  The 
resulting estimated subreflector efficiency is 82.7%, or less than 1 dB loss due to the 
subreflector.  It would take some effort to keep feedline losses to a feed at the focus below 
1dB, so this is a promising result. 
 
However, the subreflector is in the near field of the feedhorn, significantly closer than the 
Rayleigh distance.  In order for the feedhorn to be far enough away, we must increase the 
subreflector diameter to 14.3λ, a substantial increase in blockage.  This will reduce the 



Corrugated horn for offset dish f/D=0.75 at 10.368 GHz

Figure 22
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Figure 23

CASSEGRAIN ANTENNA DESIGN CALCULATOR
W1GHZ 2004

ENTER INPUT PARAMETERS HERE: (Bold blue numbers)
Frequency 10.368 GHz

pi = 3.141593

Units: mm Inches Wavelengths

Dish diameter 2438 96.0 84.3
Dish f/D 0.36
Feedhorn equivalent f/D 0.75
Feedhorn diameter 59 2.323 2.03904
Feedhorn Phase Center (negative = inside horn) -0.11

Wavelength 28.935 1.139 1
Dish Focal Length 875.2 34.5 30.2
Dish Illumination halfangle 69.7 degrees 1.217 radians

Feedhorn illumination halfangle 36.9 degrees 0.644 radians

Redge (prime focus to rim) 1299.7 51.2 44.9

Space attenuation for main dish 3.43 dB
Space attenuation for virtual dish 0.92 dB

Decision point:
Suggested illumination taper = 12.36 dB

Enter desired illumination taper : 12.36 dB

With desired taper:
Feedhorn illumination halfangle 36.5 degrees 0.638 radians

Feedhorn equivalent f/D 0.76

Minimum subreflector diameter 200.7 7.903 6.94
Subreflector focal length 172.5 6.792 5.96
Subreflector f/D 0.86

d_sub/D_main 0.08
Maximum subreflector efficiency ( Diffraction loss = blockage loss) 88.1%

Feedhorn blockage halfangle 9.9 degrees 0.172 radians

Without feedhorn blockage -- increase subreflector diameter to eliminate feedhorn blockage:
Minimum subreflector diameter 245.1 9.650 8.47

Subreflector focal length 210.7 8.294 7.28
d_sub/D_main 0.10

Subreflector efficiency  (Diffraction plus blockage losses) 82.7%
Feedhorn blockage halfangle 8.1 degrees 0.141 radians

Decision point:
Enter desired subreflector diameter : 14.3 in wavelengths

or go back and change feedhorn

With desired subreflector diameter:
Subreflector focal length 355.6 14.001 12.29

d_sub/D_main 0.17

Subreflector efficiency  (only blockage loss increases) 80.4%

Cassegrain loss = -0.947 dB

For overall efficiency, find efficiency on feedhorn PHASEPAT curve for f /D= 0.76
and multiply by 0.804



CASSEGRAIN SUBREFLECTOR GEOMETRY:

Feedhorn blockage halfangle 4.7 degrees 0.083 radians

Subreflector magnification M 2.11
Hyperbola eccentricity 2.80
Hyperbola a 63.4 2.497 2.19
Hyperbola b 166.1 6.540 5.74
Hyperbola c 177.8 7.001 6.15

SUBREFLECTOR POSITION:
Apex to Dish focal point 114.4 4.503 3.95
Apex to Feed Phase Center 241.2 9.498 8.34

Feedhorn Rayleigh distance = 8.32

Background calculations:

Optimum illumination taper for Cassegrain, from Kildal
from curve fitting 12.35920715

Optimum subreflector size, from Kildal (Diffraction loss = blockage loss)
E (voltage taper) 0.058076442
term 1 0.006332574
term 2 0.866861585
term 3 0.000689275
dsub over Dish diameter 0.082335006

Maximum Cassegrain efficiency for optimum d/D, from Kildal
ds_ratio 0.082335006
Cb 1.874808695
term 4 9.058688097
maximum efficiency 0.88095245

max_eff 0.88095245



Figure 24. Cassegrain example: 8-foot dish at 10 GHz

Dish diameter = 84.3λ
Dish f/D = 0.36
Subreflector diameter = 14.3λ
Feed f/D = 0.75
Edge taper = 12.36 dB



subreflector efficiency to an estimated 80%, or just under 1 dB loss.  When we multiply the 
subreflector efficiency by the calculated feedhorn efficiency, 75% at the effective f/D of 0.76, 
the net efficiency is about 60%.  For the prime focus configuration to do any better than this, 
we would need a very good feedhorn with less than 1 dB feedline loss for the additional 
length. 
 
A sketch of this example in Figure 24 illustrates the geometry, with the feed quite close to the 
subreflector.  However, actually making this antenna requires a final tradeoff: my lathe has a 
maximum capacity of 9 inches, or 7.9λ at 10 GHz.  The 14.3λ subreflector is over 16 inches 
in diameter, too large to turn on my lathe.   With a smaller subreflector, I would have a small 
amount of feedhorn blockage plus some loss from having the subreflector in the near field of 
the feed.  My guess is that the end result wouldn’t be a lot worse. 
 
 
 
How about a really deep dish?  Edmunds Scientific21 sells parabolic reflectors for solar 
heating with an f/D = 0.25.  These have a polished surface which appears to be nearly optical 
quality, so they might be good for higher bands, but I haven’t measured one.  Assuming that 
the surface is good enough for 47 GHz, how well would an 18-inch version work as a 
Cassegrain antenna?  
   
A good feed which is easy to make is the W2IMU dual-mode horn, which best illuminates an 
f/D around 0.6.   The spreadsheet in Figure 25 shows that this combination requires an 
illumination taper of 12.46 dB and a minimum subreflector diameter of 5.96λ.  However, to 
keep the subreflector out of the near field of the feedhorn requires a larger subreflector, 7.7λ 
in diameter.  The calculated subreflector efficiency is still high, 86%, or less than 0.7 dB loss.  
At 47 GHz, that’s hard to beat.  When we multiply the subreflector efficiency by the 
calculated feedhorn efficiency, 69% at the effective f/D of 0.7, the net efficiency is about 
59%.  The geometry is sketched in Figure 26.  
 
The larger 7.7λ subreflector is still only 49mm in diameter, quite manageable on a small 
lathe.  This combination looks worth a try. 



Figure 25

CASSEGRAIN ANTENNA DESIGN CALCULATOR
W1GHZ 2004

ENTER INPUT PARAMETERS HERE: (Bold blue numbers)
Frequency 47.100 GHz

pi = 3.141593

Units: mm Inches Wavelengths

Dish diameter 457 18.0 71.7
Dish f/D 0.25
Feedhorn equivalent f/D 0.6
Feedhorn diameter 8.4 0.331 1.3188 Warning: feedhorn diameter too small for f/D
Feedhorn Phase Center (negative = inside horn) 0

Wavelength 6.369 0.251 1
Dish Focal Length 114.3 4.5 17.9
Dish Illumination halfangle 90.0 degrees 1.571 radians

Feedhorn illumination halfangle 45.2 degrees 0.790 radians

Redge (prime focus to rim) 228.5 9.0 35.9

Space attenuation for main dish 6.02 dB
Space attenuation for virtual dish 1.39 dB

Decision point:
Suggested illumination taper = 12.46 dB

Enter desired illumination taper : 12.46 dB

With desired taper:
Feedhorn illumination halfangle 39.1 degrees 0.683 radians

Feedhorn equivalent f/D 0.70

Minimum subreflector diameter 38.0 1.494 5.96
Subreflector focal length 23.3 0.918 3.66
Subreflector f/D 0.61

d_sub/D_main 0.08
Maximum subreflector efficiency ( Diffraction loss = blockage loss) 87.8%

Feedhorn blockage halfangle 10.2 degrees 0.178 radians

Estimated Minimum feedhorn blockage angle 10.9 degrees 0.190 radians

Without feedhorn blockage -- increase subreflector diameter to eliminate feedhorn blockage:
Minimum subreflector diameter 39.5 1.556 6.20 Using estimated minimum feedhorn

Subreflector focal length 24.3 0.956 3.81
d_sub/D_main 0.09

Subreflector efficiency  (Diffraction plus blockage losses) 86.9%
Feedhorn blockage halfangle 9.8 degrees 0.171 radians

Decision point:
Enter desired subreflector diameter : 7.7 in wavelengths

or go back and change feedhorn

With desired subreflector diameter:
Subreflector focal length 30.1 1.187 4.73

d_sub/D_main 0.11

Subreflector efficiency  (only blockage loss increases) 86.2%

Cassegrain loss = -0.644 dB

For overall efficiency, find efficiency on feedhorn PHASEPAT curve for f /D= 0.70
and multiply by 0.862



CASSEGRAIN SUBREFLECTOR GEOMETRY:

Feedhorn blockage halfangle 7.9 degrees 0.138 radians

Subreflector magnification M 2.81
Hyperbola eccentricity 2.10
Hyperbola a 7.2 0.282 1.13
Hyperbola b 13.3 0.522 2.08
Hyperbola c 15.1 0.593 2.37

SUBREFLECTOR POSITION:
Apex to Dish focal point 7.9 0.311 1.24
Apex to Feed Phase Center 22.2 0.876 3.49

Feedhorn Rayleigh distance = 3.48

Background calculations:

Optimum illumination taper for Cassegrain, from Kildal
from curve fitting 12.45952384

Optimum subreflector size, from Kildal (Diffraction loss = blockage loss)
E (voltage taper) 0.056754461
term 1 0.006332574
term 2 0.788341679
term 3 0.000791014
dsub over Dish diameter 0.083041614

Maximum Cassegrain efficiency for optimum d/D, from Kildal
ds_ratio 0.083041614
Cb 1.883132863
term 4 9.096130123
maximum efficiency 0.87848238

max_eff 0.87848238



Figure 26. Cassegrain example: 18" Edmunds dish at 47 GHz

Dish diameter = 71.7λ
Dish f/D = 0.25
Subreflector diameter = 7.7λ
Feed f/D = 0.6
Edge taper = 12.46 dB



 
Reverse-engineering a Cassegrain subreflector 

 
At the 2003 Eastern 
VHF/UHF Conference, 
several small 
subreflectors were 
auctioned.  I won the bid 
for one, shown in Figure 
27 — now what is it 
good for?   
 
 
The first step is to 
measure the profile.  
Using a dial indicator 
and a digital caliper, as 
shown in Figure 28, I 
measured a number of 
points along the surface, 
with an estimated 

accuracy of  0.005 inch (inexpensive 
instruments in the USA read in 
inches), or about 0.1 mm.  Then I 
used MATLAB22 to fit the points to 
the hyperbolic equation above.  The 
curve-fitting was pretty good: the 
total mean-square error for 30 points 
was about 0.009 inch, so the average 
error is less than 1 mil.  With that 
kind of accuracy, this subreflector 
may be good to over 100 GHz.  The 
best-fit parameters after correcting 
for the dial indicator tip diameter 
were: 
 
a =  2.159 inch 
b = 1.984 inch 



 
From these two parameters, we can calculate everything else: 
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Since the subreflector is 2.56 inches or 65 mm in diameter, we know that 
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And we know the magnification factor, M, of the subreflector: 
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without any correction for illumination taper.  It would probably work quite well for any f/D 
between 0.3 and 0.4.  
 
The subreflector diameter is 10λ at 47 GHz, so it should work well feeding a dish of 0.5 meter 
or larger diameter.  Note that a rather large feedhorn is required to since  

2.3  dsub

hyp =
f

; thus, the illumination half-angle is only 12º.  Plugging these numbers into 

the spreadsheet yields about 84% subreflector efficiency for a 500mm dish.  The subreflector 
is in the near field of the feedhorn, so there may be a small additional loss due to phase error. 
 



Gregorian Antenna Design 
 
The design procedure for a Gregorian antenna with an elliptic subreflector, sketched in Figure 
29, is similar to the Cassegrain procedure above.  Milligan15 points out that the resulting 
subreflector will be slightly larger.  We will not go through the entire procedure again, since 
all the first six steps are the same.  Starting with step 7, the difference is the elliptical 
subreflector parameters: 
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=  , the Magnification factor, is the same as the Cassegrain. 

The eccentricity 
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=  is less than one, while it is greater than one for a hyperbola. 

 
The focal length of the ellipse is 
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Then the parameters of the ellipse (see sketch in Table 1) are: 
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The distance from the apex of the subreflector to the virtual focus (the focus of the main 
parabola) behind the subreflector is a-c. 
 
The distance from the apex of the subreflector to the phase center of the feedhorn is c+a. 
 
A larger subreflector increases blockage.  However, our small dish examples with the 
Cassegrain configuration needed a larger subreflector so it was not in the near field of the 
feed.  Since the Gregorian subreflector is beyond the prime focus, it is naturally farther from 
the feed.  So it is hard to say which is better for small dishes without working out actual 
numbers.  If I were thinking of turning a subreflector on a lathe, the hyperbola seems a bit 
easier. 
 
There are two points worth noting about the Gregorian antenna.  The first is that the top half 
of the subreflector illuminates the bottom half of the dish, and vice-versa.  The other is that all 
the rays cross come to a point at the prime focus – this would mean that all the power is 
concentrated in a very small space, so the power density approaches infinity, and various laws 



Figure 29. Gregorian antenna



of physics would be violated.  Pierce23 shows that the waves crowd into a diameter of about 
0.6λ and spread out again.  It is probably not a coincidence that this is also the minimum 
diameter for waveguide propagation. 
 
 
Summary: Cassegrain and Gregorian Antennas 
 
Before we move on to more esoteric multiple-reflector antennas, we should consider the 
advantages and disadvantages of the Cassegrain and Gregorian antennas.  Then any advantage 
provided by other types will be more apparent. 
 
Advantages include: 
 

• Feed pattern reshaping, allowing use of efficient feedhorns 
• Convenient feed location with shorter feedline 
• Better illumination of very deep dishes 
• At high elevations, little spillover toward ground – all sidelobes point at cold sky  

(K1JT pointed out at EME2004 that this is the most important feature for radio 
astronomers) 

• Large depth of focus 
• A more compact structure 

 
Disadvantages include: 
 

• Greater blockage, particularly with small dishes 
• Higher sidelobes (blockage increases sidelobes) 
• Larger feedhorns 
• Not good with broadband feeds 
• Tighter tolerance requirements 

 
The tighter tolerance requirement is needed to keep all path lengths equal.  The tolerance 
required for the reflector surface of a prime focus dish is a small fraction of a wavelength, 
typically 1/10λ or 1/16λ; references vary.  Jensen14 shows a curve with one dB loss for an 
RMS tolerance of 1/25λ, or just over 1 mm at 10 GHz.  Note that RMS tolerance is averaging 
whole surface; larger errors over small parts of a dish are not fatal.   
 
The important point is that for the Cassegrain and Gregorian configurations, the same 
tolerance is required for the sum of the parabolic reflector surface, the subreflector surface, 
and the subreflector positioning.  Each ray path must have the same length ± tolerance. 
 
The feed position tolerance, or depth of focus, is less critical.  The magnification factor M that 
reshapes the illumination angle makes the feed position less critical by the same ratio.  Thus, 
if we were to adjust a Cassegrain feed while measuring sun noise, we would keep the 
feedhorn fixed in one location, since the feed position is not critical, and vary the more critical 
subreflector position.  



Offset Cassegrain and Gregorian Antennas 
 
Just as an offset-fed parabola has the advantage of reduced feed blockage, Cassegrain and 
Gregorian antennas can use an offset configuration to reduce or eliminate subreflector and 
feed blockage.   
 
Most of the offset parabolas we see, like the DSS dishes, include the vertex of the full 
parabola.  A sketch in Figure 31 of half of a Cassegrain antenna, from the vertex up, shows 
that these dishes would still suffer subreflector blockage in an offset Cassegrain configuration.  
The useful portion of the parabola for this configuration is further out, toward the rim, so the 
antenna is best designed from scratch as a complete system.  Granet24 provides a detailed 
design procedure if you are so inclined. 

 
The offset Cassegrain has one advantage that makes it popular for certain applications: the 
ability to reduce cross-polarization.  Reflection from a curved reflector induces cross-
polarization at certain angles.  In the offset Cassegrain, cross-polarization from the 
subreflector tends to cancel cross-polarization induced by the main reflector.  With the right 
combination25 of parameters and angles, cross-polarization may be reduced to an extremely 
low level.   
 



 
The Gregorian configuration is more suitable for DSS offset dishes, since one side of the 
elliptical subreflector illuminates the opposite side of the main reflector, as shown in the 
sketch in Figure 32.  Thus, there is no subreflector blockage anywhere above the vertex.  
Granet also covers this configuration. 

 
 
With either offset configuration, if the subreflector position causes no blockage, then the 
subreflector can be large enough to minimize diffraction loss as well as spillover.  Thus, three 
of the major loss factors are removed, so the potential efficiency can be much higher. 
 



For an example, G3PHO provided the 
photograph of an offset DSS dish with a 
subreflector in Figure 33.  We are still 
working on reverse-engineering the details. 
 
 
 
 
 
 
 
 
 
 
 
 
ADE Antenna 
 
A clever extension of the offset Gregorian is the ADE, Axially Displaced Ellipse, described 
by Rotman and Lee26.  Starting from the Gregorian antenna sketch in Figure 29, the two 
halves of the cross section, shown as light and dark halves, are separated by the subreflector 
diameter in Figure 34.  Since the subreflector halves follow the opposite sides of the parabola, 
the subreflector is turned inside out while maintaining the elliptical curve, so that it comes to a 
point in the center. 

 
Understanding this antenna in three 
dimensions takes a bit of imagination, 
rotating the sketch around the axially 
line.  One half of the parabolic curve is 
rotated not around an axial line at the 
vertex, but rather with the vertex 
traveling in a ring around a cylinder 
with the same diameter as the 
subreflector.  The focus is also a ring, 
rather than a point, separated from the 
vertex ring by the focal length of the 
parabola.  Thus, the parabola is axially 
displaced, leaving a hole in the center, 

not part of the parabolic curve, for the feed.   The subreflector only shadows the hole, so there 
is no blockage from either the feedhorn or subreflector.  Figure 35 is a photo of the 
subreflector of an ADE antenna27, 28. 
 
The other advantage of the ADE system may be seen in Figure 34 — the rays from the center 
of the feedhorn, where intensity is maximum, are reflected by the subreflector to the edge of 
the dish, while the edges of the feed beam are reflected to the center of the dish.  The resulting 
dish illumination is more uniform than the normal taper, so the efficiency can be very high.   



Figure 34. ADE (Axially-Displaced Ellipse) Antenna



 
Dielguide Antenna  
 
Another variation, this time of the Cassegrain antenna, is the Dielguide antenna29, 30.  A 
dielectric cone fills the space between the feed and the subreflector.  The subreflector shape 
may be molded or turned into the end of the dielectric, then plated or covered with foil to 
form the reflecting surface.  Since the dielectric fixes the subreflector position, no other 
support is required, so blockage is minimized.  The feed illumination travels inside the 
dielectric, and potential spillover is reflected back to the subreflector if the cone angle is less 
than the critical angle for total internal reflection — for a good dielectric like Rexolite, a feed 
f/D greater than 0.7 satisfies this condition. 
 
The Dielguide antenna is sketched in Figure 36.  Each incoming ray focused by the parabola 
is reflected from the subreflector, then subject to refraction at the interface between dielectric 
and air.  The refracted rays no longer arrive at a point at the prime focus of the parabola, but 
are spread out and closer to the dish.  Since the rays must all appear to radiate from the prime 
focus of the parabola for the dish to work, the subreflector must be reshaped.  All rays must 
also have equal electrical path lengths, including slower propagation in the dielectric.  The 
subreflector shape and location must meet all these conditions simultaneously, making design 
of the subreflector even more challenging. 
 

 
A version of the dielguide antenna has been made available to hams by NW1B31.  Figure 37 is 
a photo of a 340mm version for 24 GHz. 
 



Figure  36. Dielguide Antenna Sketch showing Refraction

Dielectric



Shaped Reflector Antenna  
 
One of the advantages of the multiple-reflector antenna is the ability to reshape the feed 
illumination.  The shaped reflector32, 33 takes this further, calculating a subreflector shape to 
provide optimum illumination to the main reflector.  Since all rays must still have identical 
path lengths, the main reflector must also be reshaped to compensate, so neither reflector is a 
conic section.  Now many solutions are possible, with the opportunity to spend lots of 
computer time on optimization. 
 
The shaped reflector can provide significantly increased efficiency.   However, the reflector 
shaping creates unequal ray spacing which causes poor imaging34, a potential problem in 
radio astronomy, but not for communications.   
 
Beam Waveguide Antenna 
 
The ultimate multiple reflector antenna is the beam waveguide antenna, where the feedline is 
replaced by a series of focusing reflectors guiding the beam from the underground source to 
the dish.  Figure 38 is a sketch of the JPL35 beam waveguide system.  Since each reflector 
must be large enough for diffraction loss to be small, this is only feasible for a very large dish, 
like the 34-meter Goldstone36 antenna at X-band.  The photos in Figure 39 give some idea of 
the size of the dish and of two of the underground focusing reflectors.  Each reflector appears 
to be quite large, many wavelengths in diameter to avoid diffraction effects. 
 

 
Figure 38 



 
Figure 39 

 
 
Measured efficiency37 is outstanding, 71% at 8.4 GHz and 57% at 32 GHz, including the 
entire beam waveguide to the underground equipment. 
 
 
Conclusion 
 
Multiple-reflector antennas have the potential to provide higher performance, particularly for 
large, deep dishes.  This is especially true at the higher microwave frequencies, where the 
choices for suitable dishes are limited, and feedline losses quickly become intolerable. 
 
We have described a design procedure for Cassegrain and Gregorian antennas which includes 
performance estimates so that informed tradeoffs may be made.  For smaller dishes, the 
performance benefits are also small, so it is important to evaluate tradeoffs.  In some cases, 
the additional complexity of a multiple-reflector antenna may not be justified. 
 
More esoteric types are less likely to be designed by hams, but descriptions and references 
should be enough to allow the surplus scrounger to understand and utilize his lucky find. 
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