
APLAC RF Design Tool

Release Notes &
Installation Guide

for Windows and Unix

www.aplac.com

Circuit simulation and design tool

Version 8.10

APLAC Version 8.10 Installation Guide for Windows and UNIX

c© 2005 APLAC Solutions Corporation . All Rights Reserved.

APLAC documentation assumes that you have a working knowledge
of your operating system and any non-APLAC CAD framework you
choose to use, as well as related conventions. For additional informa-
tion, please refer to the documentation that came with your computer
system or your CAD framework. Procedures and applications are pre-
sented for their instructional value. They have been carefully tested,
but are not guaranteed for any specific computer system application.
Complete manuals are delivered in PDF format. Release Notes sup-
plement each APLAC software revision and manual update.

Sales, distribution and support:

APLAC Solutions Corporation APLAC Solutions, Inc.
P.O. Box 284 320 Decker Drive, Suite 100
FIN-02600 Espoo Irving, Texas 75062
Finland USA
Tel. +358-9-5404 5000 (GMT +2) Tel. +1 (972) 719-2562 (Central Time, GMT-6)
Fax. +358-9-5404 5040 Fax. +1 (972) 719-2568

Email: sales@aplac.com
support@aplac.com
publications@aplac.com

For a list of international distributors, please see http://www.aplac.com

Acrobatr and PostScriptr are registered trademarks of Adobe Sys-
tems Incorporated. APLAC r is a registered trademark of the APLAC

mailto:sales@aplac.com
mailto:support@aplac.com
mailto:publications@aplac.com
http://www.aplac.com

Solutions Corporation . FLEXlmr is a registered trademark of Macro-
vision Corporation. Hardlockr is a registered trademark of Aladdin
Knowledge Systems. HP-UXr is a registered trademark of Hewlett-
Packard Company. LINUXr is a registered trademark of Linus Tor-
valds. MATLABr is a registered trademark of The MathWorks, Inc.
Microsoftr, Windowsr and Windows NTr are registered trademarks of
Microsoft Corporation. SunTM and SolarisTM are trademarks of Sun Mi-
crosystems, Inc. TEXTM is a trademark of the American Mathematical
Society. Unixr is a registered trademark of The Open Group. X Win-
dow SystemTM is a trademark of the X Consortium, Inc. Other brand
or product names are the trademarks or registered trademarks of their
respective holders. Where known by the publisher, these are indicated
in this book by printing in initial caps or all caps.

This manual was typeset April 2005

Contents page i

APLAC includes a rich collection of basic linear and non-
linear models, semiconductor models, and much more.
APLAC modules Fast RF-IC and RF Board are empow-
ered by application-optimized algorithms. A versatile col-
lection of system-level blocks are available for the sim-
ulation and design of analog and digital communication
systems, including Micro-Electromechanical Systems. An
FDTD-based electromagnetic simulator and radio access
modules Bluetooth and WLAN contribute further simula-
tion functionality.

New and customized models can be created, by the user
or by the APLAC support team, using the C-model Inter-
face or the Artificial Neural Network model generator.

Contents

1 What’s New in APLAC 8.10 INRN-1.1

1.1 Introduction . INRN-1.1

1.2 New Features in APLAC Simulator INRN-1.2

1.3 Changes in APLAC Simulator INRN-1.3

1.4 Bug Fixes in APLAC Simulator INRN-1.5

General Index Examples Main Page

Contents page ii

2 APLAC Simulator 8.10 Enhancements INRN-2.1

2.1 New Features . INRN-2.1

2.2 Changes . INRN-2.10

2.3 Bug Fixes . INRN-2.15

3 The APLAC Software Package INRN-3.1

3.1 APLAC License Types INRN-3.2

3.2 License File and HostID INRN-3.2

4 Installing APLAC in Windows INRN-4.1

4.1 Floating License Installation INRN-4.1

4.2 Portable License Installation INRN-4.4

5 Running APLAC in Windows INRN-5.1

5.1 Launching APLAC in Windows INRN-5.1

6 Installing APLAC in UNIX INRN-6.1

6.1 Installing and Updating APLAC INRN-6.2

6.2 Starting The License Server INRN-6.5

6.3 Configuring APLAC Program Resources INRN-6.7

7 Running APLAC in UNIX INRN-7.1

7.1 Launching APLAC in UNIX INRN-7.1

General Index Examples Main Page

Contents page iii

7.2 Resource files: .Xresources and APLAC INRN-7.2

7.3 User defaults: .aplac . INRN-7.4

7.4 Font Scaling . INRN-7.9

7.5 Examples . INRN-7.11

8 FLEXlm License Administration INRN-8.1

8.1 License File Location . INRN-8.2

8.2 License Management Tools INRN-8.3

8.3 Advanced Licensing Features INRN-8.4

General Index Examples Main Page

Introduction page INRN-1.1

1. What’s New in APLAC
8.10

1.1 Introduction

The APLAC RF Design Tool version 8.10 is now released. The new
version includes several improvements and enhancements that will
benefit RF design engineers.

New features include

• Memory Consumption Reduced in RFIC Simulations

– VCCS parallel sampling method improved

– Reduced memory requirement for many transistor models

– Reduced internal variable memory usage

• New and Improved Circuit Models

– PindiodeRC improved

– HICUML0 model implemented

– BSIM3SOI model implemented

– ANN improved

• Philipsr SiMKit Model Support

– Several SiMKit models supported

• DC Convergence Improved

– New Dog-Leg iteration method implemented

– DC convergence strategy control improved

General Index Examples Main Page

New Features in APLAC Simulator page INRN-1.2

• New Discrete Libraries

– Murata capacitor library

– Freescale LDMOS library

These and all other improvements are explained in more detail in the
following sections.

1.2 New Features in APLAC Simulator

Analysis

• New convergence strategy #6 in DC analysis.

• Sampling of a group of VCCSs in HB analysis requires consider-
ably less memory

• Norm reduction has been implemented in the transient analysis

• Internal update of device currents in DC and TRAN analyses

Functions

• PolyFit-function for polynomial fitting

Graphics

• Dot-type MARKER

• Pasterecolor (Edit menu)

General Index Examples Main Page

Changes in APLAC Simulator page INRN-1.3

Models

• Public DCOP has been added to IBIS model

• Models BSIM3, MOS9, BJT, and STBJT require less memory in
HB analysis

• Improvements in STBJT model

• Internal model specific defaults

• New parameter DIOMOD in BSIM3

• New model level for PinDiodeRC

• Support for Philips SiMKit models

• Periodical saving of the best ANN-model in ANN training

• HICUM Level 0 implemented

• BSIM3SOI implemented

EM Simulation

• FDTD-lumped element cosimulation implemented

Miscellaneous

• Functional Vars that are changed to CONST require less memory

• Parameter IBIS WARNING LEVEL added to Prepare

• TeXMode switchable at runtime

1.3 Changes in APLAC Simulator

Analysis

• Default DC strategy after strategy change

General Index Examples Main Page

Bug Fixes in APLAC Simulator page INRN-1.4

• The nonlinear equation solver improved

• Speed-up of ANN training with Gradient optimization

• Further speed-up of ANN training with Gradient optimization

• Speed-up of automatic ANN-model generation

Models

• Faster automatic ANN-model generation in ANNModelGenerator

• BSIM3 VERSION/LEVEL warning removed

• HICUM convergence has improved

• HICUM creates less internal nodes in electrothermal analysis

• Some parameter restrictions removed from VBIC

• The NQS-model of HICUM has been rewritten

• RTH=0 ignores thermal network and all other self-heating param-
eters

• ANNModelGenerator and ANN training using Gradient

• Added parameter for PinDiodeRC junction parallel resistance

System Simulation

• New parameter TIMESTEP added for WLANOffsetCorrector

EM Simulation

• The MUR1 ABC code partly rewritten

Miscellaneous

• Preprocessor directives can be defined more than once

General Index Examples Main Page

Bug Fixes in APLAC Simulator page INRN-1.5

1.4 Bug Fixes in APLAC Simulator

Analysis

• Loading of old HB guess file failed

• Analyze REDU sometimes caused memory fault

• Analyze REDU + user-defined Gyrators or IdealTransformers

• Analyze REDU caused floating point exception in HP-UX 11

• Internal device currents and DogLeg algorithm

• DC, TRAN, or HB iteration was sometimes terminated prematurely

Functions

• HBIndex gives internal error when used after TRANsient analysis

• Interpol1Dxxxx functions with bad data

• MDLPolyFit did not find solution

Graphics

• Identical PEN assigned automatically

• Pen 0 incorrectly changed to Pen 15

Models

• ModelSet bug fixes

• Initial condition for a dynamic VCCS/VCVS/CCCS/CCVS in case
of multiple controlling voltages

• ANNModelGenerator and unspecified optimization method

General Index Examples Main Page

Bug Fixes in APLAC Simulator page INRN-1.6

• ANNModelGenerator and INIT FILE with zero-valued ANN weight(s)

• MOS9 noise was sometimes incorrect

• Differential IBIS model ignored [Model Selector] data

• Complex CSource gave sometimes incorrect results

• ANNModelGenerator and global activation-function definition

• ModelSet with binning caused sometimes an error

• BSIM4 gave an unnecessary warning

• Some parameters of VBIC had incorrect AREA and temperature
scaling

• HICUM caused sometimes memory fault

• Default MOSFET .MODELs were sometimes missing

• Hicum caused sometimes a floating point error

• dynamic VCVS, CCCS, and CCVS and initial condition (UO/IO)

• ANNModelGenerator with NEURONS and AUTO GENER speci-
fied

• BSIM3 noise was sometimes incorrect

• Curr and NoiseSource between the same nodes caused an error

• Sharing a variable for VCCS or NoiseSource caused sometimes
an error

• Incorrectly loaded dynamic library caused sometimes a memory
fault

EM Simulation

• EM simulation sometimes got stuck

• MUR1 ABC corrected the Ey field erroneously

General Index Examples Main Page

Bug Fixes in APLAC Simulator page INRN-1.7

Miscellaneous

• Disabling statistical variable from optimization caused sometimes
a memory fault

• Selecting ”Report|Info|Variables” caused memory fault

• Saving contents of text window

• Functional Var sometimes produces an internal error

• eldo2a gave an error when there was blank space after ’=’

• spi2a/eldo2a/hspice2a did not work with vswitch

General Index Examples Main Page

New Features page INRN-2.1

2. APLAC Simulator 8.10
Enhancements
2.1 New Features

Analysis

• New convergence strategy #6 in DC analysis.
New convergence strategy #6 uses the Dog-Leg iteration method
for nonlinear DC analysis. It is combined with the source-stepping
and model-damping methods as in strategy #1.
The strategy order is such that strategy #5 (piecewise-linear solu-
tion algorithm DC refinement) is called only when all other strate-
gies fail, e.g.:
1 → 2 → 3 → 4 → 6 → 5
or
3 → 4 → 6 → 1 → 2 → 5.

• Sampling of a group of VCCSs in HB analysis requires consider-
ably less memory
A method internally known as ”sampling of a group parallel VCCSs
inside one nonlinear device” was initially introduced in version
7.51i. This method speeds up the analysis such that it stores
during the HB analysis sampling the current and derivatives (or
charge and derivatives) of all VCCSs belonging into a special
group, and later the data is fetched from the memory when the
other VCCSs of this group are sampled. Typically the group is
equivalent to all, or most, nonlinear VCCSs inside one nonlin-
ear model, such as BSIM3, or BJT. All temporary data, i.e., cur-
rent/charges and derivatives, needed during HB sampling are stored
into memory simultaneously.
Version 8.00d improves this ”parallel sampling” - method such that
only temporary working data is kept in memory at a time - this
causes considerable savings in memory consumption, when the

General Index Examples Main Page

New Features page INRN-2.2

number of harmonics is large. This new method is available for
both HB MODE=0 and HB MODE=1, and is supported also with
multi-thread HB analysis.
The new method is the new default (can also be selected using
command-line argument -newpv), the old method is selectable us-
ing command-line argument -oldpv, and both these methods can
be disabled, if -npv is specified on the command line.

• Norm reduction has been implemented in the transient analysis
Norm reduction technique to improve convergence has been im-
plemented in the transient analysis. The method may be invoked
by specifying

Prepare TRANNORMREDUCTION=1

Other options are 0 (no norm reduction as previously) and 2 (use
norm reduction in the case of poor convergence). The default
value is 2. The property may also be invoked by command-line ar-
gument -tnr=(0|1|2) or -trannormreduction=(0|1|2). The command-
line argument overrides the specification in Prepare.

• Internal update of device currents in DC and TRAN analyses
In the previous versions, after each iteration cycle in the DC and
TRANsient analyses, the internal device currents were automati-
cally updated. Now, the device currents are updated only, when
the solution is a good candidate for accepting the analysis result.
In general, this results in faster computation in DC and TRANsient
analyses. If the status of the internal currents are found to be in-
consistent, then a warning is issued (this actually means a bug
in the iteration code, and users should contact support whenever
they see this warning message).
Users can change the method for updating the internal currents
in DC and TRANsient analyses as follows using command line
option ’-upc’ (long form is ’-updatecurrents’):

– upc=0: compute the internal device currents only when the
result of that iteration cycle is good enough (this is the new de-
fault). A warning message is issued, when the internal device
current data is found to be inconsistent

General Index Examples Main Page

New Features page INRN-2.3

– upc=1: compute the internal device currents at every iteration
cycle, this was the behaviour in the previous versions

– upc=2: the same as ’-upc=0’, but terminate the simulation with
an error instead of issuing a warning message

Functions

• PolyFit-function for polynomial fitting

A new PolyFit has been created similar to the MDLPolyFit function.
PolyFit will fit the nth degree polynomial to the given set of x-y
data, where n is a user given parameter. Other parameters to
PolyFit function are similar to MDLPolyFit (See the manual page
of MDLPolyFit). Example:

#define SAMPLES 7

Declare VECTOR k REAL SAMPLES

+ VECTOR r REAL 2

+ VAR myx myf

$ data to be modelled (7 samples)

Vector x 2 4 6 10 14 17 18

Vector y 0 4 5 0 -5 -3 0

Vector s 0 0 0 0 0 0 0

$ find a polynomial of degree 3 that fits the data

Call r=PolyFit(x,y,SAMPLES,s,0,1,3,k)

PRINT S "The coefficients of 3rd order polynomial fit" LF

For i 0 r[0]-1

PRINT S "a_" INT i S " = " REAL k[i] LF

EndFor

Sweep "Polynomial fit" NO_ANALYSIS

+ LOOP 101 VAR myx LIN 0 20

General Index Examples Main Page

New Features page INRN-2.4

$ draw the fitting function

Call myf=k[0]+k[1]*myx+k[2]*pow(myx,2)+k[3]*pow(myx,3)

Show W 0 XY myx myf NAME="model"

$ draw the specified data points

If (LoopIndex==0) Then

Show W 0 VECTOR SAMPLES XY x y NAME="data" MARKER_ONLY=3

EndIf

EndSweep

Graphics

• Dot-type MARKER

A new dot-type MARKER, number 20, has been added. It is very
small and should be useful in cases where the other, larger mark-
ers would obscure graphic data.

• Pasterecolor (Edit menu)

A new Edit menu item has been added. PASTERECOLOR is like
PASTE, but an attempt is made to recolor curves pasted with pens
different from those already in use.

Models

• Public DCOP has been added to IBIS model

A new public, DCOP, has been added to IBIS model. It contains
the values of the die capacitance(s), package paracitics C pkg,
L pkg, and R pkg, and the values of the reference voltage sources.

• Models BSIM3, MOS9, BJT, and STBJT require less memory in
HB analysis

Models BSIM3, MOS9, BJT, and STBJT require less memory in
HB analysis. The amount of saved memory is dependent on the
number of sampling points in HB analysis.

General Index Examples Main Page

New Features page INRN-2.5

• Improvements in STBJT model

Parameter MODEL LEVEL can be used to select the behavior of
STBJT as follows.

– MODEL LEVEL=1: specifies the model as it is in versions ≤
8.00b

– MODEL LEVEL=2: two BE (BC) static diodes are internally
combined into one BE (BC) diode

– MODEL LEVEL=3: in addition to MODEL LEVEL=2, the BE
(BC) dynamic diode capacitances are internally combined with
nonlinear QDE (QDC) charge sources

MODEL LEVEL=3 is the new default, as it results in smaller mem-
ory requirements and faster computation than MODEL LEVEL=1.

A test with a real simulation example (2200 nodes, about 200 BJTs
and MOS9s, HB TONE2=3 MULTIDIM) using new memory saving
improvements introduced in versions 8.00b and 8.00c resulted in
11% and 30% savings in memory consumption, and function calls,
respectively, when compared with version 8.00a.

• Internal model specific defaults

Memory requirement has been reduced such that all instances of
a model use the same global default variables instead of private
copy of a default variable.

• New parameter DIOMOD in BSIM3

Parameter DIOMOD can be specified to BSIM3. DIOMOD can
have two values, 0 and 1 (default). When DIOMOD is set to 0,
BSIM3 type of internal Source-Bulk and Drain-Bulk diodes will not
be created (neither current nor charge). DIOMOD=0 has no effect
if any of the common mosfet parameters (ALEV, DIOLEV, RLEV,
DCAPLEV, TLEVI, TLEVR, TLEVC, TLEV, or ACM) have been de-
fined as in this case the diodes will not be those of the original
BSIM3 model.

Default setting DIOMOD=1 has no effect to the model operation.

• New model level for PinDiodeRC

New MODEL LEVEL=2 has been added for PinDiodeRC. This
level brings frequency and bias dependent junction capacitance
to this model. New parameters WD for depletion area width, EPS

General Index Examples Main Page

New Features page INRN-2.6

for diode permittivity and RHO for i-region resistivity have been
added for this level.

• Support for Philips SiMKit models

SiMKit is a library of nonlinear semiconductor device models de-
veloped and maintained by Philips. The source code, and the
documentation of the device models can be found at
http://www.semiconductors.philips.com/Philips Models.

SiMKit models can be used, if either ”RFIC” or ”simkit” licensing
option is available. Version 8.10a supports the following Philips
SiMKit models:

– simkit mos3100 MOS31
– simkit mos3100et MOS31 (electrothermal)
– simkit mos1100elect MOS11, electrical model
– simkit mos1100geom MOS11, geometrical model
– simkit mos1101elect MOS1101, electrical model
– simkit mos1101electet MOS1101, electrical model

(electrothermal)
– simkit mos1101geom MOS1101, geometrical model
– simkit mos1101geomet MOS1101, geometrical model

(electrothermal)
– simkit mos1101geombinn MOS1101, geometrical (binning)

model
– simkit mos1101geombinnet MOS1101, geometrical (binning)

model (electrothermal)
– simkit mos1102elect MOS1102, electrical model
– simkit mos1102electet MOS1102, electrical model

(electrothermal)
– simkit mos1102geom MOS1102, geometrical model
– simkit mos1102geomet MOS1102, geometrical model

(electrothermal)

General Index Examples Main Page

New Features page INRN-2.7

– simkit mos1102geombinn MOS1102, geometrical (binning)
model

– simkit mos1102geombinnet MOS1102, geometrical (binning)
model (electrothermal)

These models are based on SiMKit version 1.3. General issues:

– the models accept only parameters listed in the original docu-
mentation available from the Philips (www.semiconductors.philips.
com/Philips Models).

– MOS models have no support for parasitic resistors, diodes
etc.

– reference temperature should be specified using model-dependent
parameter, usually named as TR or TREF. APLACs TNOM/TNOMC
does not change the nominal temperature of the SiMKit model

• Periodical saving of the best ANN-model in ANN training

During ANN training, ANNModelGenerator saves the best ANN-
model file (”params.ann”) obtained so far at every 100th optimiza-
tion cycle. If VALID FILE (ANN validation file) has been specified,
the saving of the best ANN-model file is done at every 10th cy-
cle; this way a ”back-to-history kind of” cross validation can be
performed to detect overlearning (a situation where the training
error, Etr, still, decreases, while the validation error, Eva, starts to
increase).

In both cases, without or with VALID FILE, when ANN training ter-
minates normally, a relevant message is printed on the screen if
the best ANN-model file (with the lowest Etr or Max(Etr,Eva), re-
spectively) was obtained before the last optimization cycle.

• HICUM Level 0 implemented

A new model, HICUML0, has been implemented. HICUML0 is
a simplified version of the HICUM BJT model. When compared
to HICUM, the main differences are the lack of the BE tunneling
current source, the NQS model, the substrate transistor and the
substrate coupling network.

• BSIM3SOI implemented

BSIM3SOI model implemented. Available versions are 3.1, 3.11,
and 3.2 (default).

General Index Examples Main Page

New Features page INRN-2.8

EM Simulation

• FDTD-lumped element cosimulation implemented

Lumped element-FDTD cosimulation has been implemented. The
lumped-element circuit must be specified before the ElectroMag-
netics block. The interface between the circuit simulator and the
FDTD simulator is EMConnector, specified within the ElectroMag-
netics block. Cosimulation currently works only with a fixed time
step, i.e., FIXED must be specified in Sweep.

The following netlist example shows how to run a cosimulation:

Volt Eg 1 0 TRAN=sin(2*PI*freq*(t)) R=50

Res R1 2 0 50

ElectroMagnetics RES_TEST

+ HARMONIC freq

+ MARGIN 99.9%

+ DIV 64 50 12

+ CELLSIZE 0.4064mm 0.4233mm 0.265mm

+ LOOPS 1500

+ MUR1

+ ABCTRIM X 1.8697 1.8697

+ ABCTRIM Y 1.8697 1.8697

EMConnector le_volt 0 1

+ SPAN 32 10 0 32 10 3

+ DIR Z

Slab substrate1

+ SPAN 0 0 0 64 50 3

+ ER 2.2

EMConnector le_res 0 2

+ SPAN 32 25 0 32 25 3

+ DIR Z

Patch ground_plane

+ SPAN 0 0 0 64 50 0

General Index Examples Main Page

New Features page INRN-2.9

Patch y_directed_strip

+ SPAN 29 10 3 35 40 3

EndElectroMagnetics

Call TT = EMSimTime("RES_TEST")

Call NL = EMSimLoops("RES_TEST")

Var dt TT/NL

Sweep "Vin and Vres in time domain"

+ FIXED

+ LOOP NL TIME LIN 0 TT

Show Y Vem("RES_TEST", 32, 10, 0, 32, 10, 3) NAME="Vg"

Show Y2 Vem("RES_TEST", 32, 25, 0, 32, 25, 3) NAME="Vr"

Show Y2 Vtran(2)

EndSweep

The output voltage at node ”2” is the same as the voltage calcu-
lated across points (32,25,3) and (32,25,0) using the FDTD output
function Vem.

Miscellaneous

• Functional Vars that are changed to CONST require less memory

Functional variables, that are automatically changed to CONSTant,
require less memory when compared to the situation where the
functionality is preserved.

• Parameter IBIS WARNING LEVEL added to Prepare

Parameter IBIS WARNING LEVEL, which controls the output of
the warnings generated by the IBIS parser, has been added to
Prepare. Possible values are:

0: The warnings are suppressed 1: The warnings are printed to
the text output (default setting) 2: The warnings are printed into a

General Index Examples Main Page

Changes page INRN-2.10

file ’ibis file.log’, where ibis file is the name of the parsed IBIS file
without the .ibs extension

• TeXMode switchable at runtime

A checkbox was added to the Edit|Title/axes dialog to allow switch-
ing TeXMode on/off at runtime.

2.2 Changes

Analysis

• Default DC strategy after strategy change

If, during a DC sweep, APLAC is forced to change the conver-
gence strategy, say from #1 to #4, then strategy #4 is used as
a first strategy to the next sweep point. However, if strategy #5
(PWL DC analysis and refinement) has found the convergence,
then APLAC continues with the original default or user-defined
strategy. Previously in such a case DC sweep continued with PWL
DC analysis.

• The nonlinear equation solver improved

The nonlinear equation solver has been improved. It uses now
less norm reduction steps and causes less problems with conver-
gence.

• Speed-up of ANN training with Gradient optimization

The well-known Error Back Propagation (EBP) algorithm has been
implemented to speed up ANN training using the (conjugate) Gra-
dient optimization method. In short, the EBP algorithm replaces
both the slow numerical gradient evaluations and the fast gradient
updates (with Broyden’s updating formula) by very fast analytical
evaluations. In ANN training using Gradient, the EBP algorithm is
automatically invoked. Furthermore, the parameter DERIV has no
more meaning.

The following table demonstrates the speed-up obtained. In the
table, Nw is the number of ANN weights (optimization variables),

General Index Examples Main Page

Changes page INRN-2.11

Ntr that of training-set samples (resulting in Ntr*OUTPUTS opti-
mization goals), and Etr is the value of MAX ERR that was used
to stop ANN training. In the table, each number of optimization cy-
cles, CPU/s, and speed-up is the average of 10 successive runs
(with weights randomly initialized).

OLD NEW
NEURONS Nw Ntr Etr/% cycles CPU/s cycles CPU/s speed-up

[3,5,2] 33 306 1.0 589 2.76 163 0.62 4.45
0.5 1526 6.97 392 1.43 4.87

[3,10,2] 62 50 1.0 1687 1.75 459 0.39 4.49
0.5 8353 8.18 1327 1.08 7.57

[5,10,5] 115 486 1.0 1506 62.21 784 8.77 7.09
0.5 - - - - -

• Further speed-up of ANN training with Gradient optimization

About 1.5X speed-up of ANN training has been obtained by reor-
ganizing and fine tuning the internal ANNModelGenerator ↔ Gra-
dient C-code interface.

Below, an attempt has been made to demonstrate the total im-
provement of ANN training, which results from the speed and
convergence improvements in APLAC versions 8.00d, 8.00e, and
8.10a. First, consider the following three ANN-modeling problems:

ANN Ni Nh No Ntr Nw Ng
1 3 10 2 50 62 100
2 3 5 2 306 33 612
3 5 10 5 486 115 2430

where

ANN = ANN-modeling problem
Ni = # of ANN inputs
Nh = # of hidden-layer neurons
No = # of ANN outputs
Ntr = # of training-set samples
Nw = # of ANN weights (opt. vars)
Ng = # of optimization goals

For each problem, the following values of ANN training error (Etr)

General Index Examples Main Page

Changes page INRN-2.12

were used (by setting MAX ERR) to stop ANN training: 4.0, 3.0,
2.0, 1.0, 0.5 %. The table below demonstrates the speed-up ob-
tained. In the table, each ANN test error (Ete), the number of
optimization cycles, CPU/s, and speed-up is the average of 10
successive runs (with weights randomly initialized). In the table,
”8.00c” and ”8.10a” mean APLAC versions 8.00c and 8.10a, while
”-” and ”oo” mean ”Etr not reached” and ”infinite”, respectively.

ANN Etr/% Ete/% cycles CPU/s speed-up
8.00c 8.10a 8.00c 8.10a 8.00c 8.10a

1 4.0 2.643 2.600 144 40 0.23 0.04 6
3.0 1.958 2.040 294 57 0.43 0.05 9
2.0 1.704 1.524 14127 164 16.81 0.09 187
1.0 - 0.946 - 577 - 0.27 oo
0.5 - 0.794 - 3280 - 1.45 oo

2 4.0 3.839 3.907 245 26 1.41 0.08 18
3.0 2.868 2.879 981 65 5.43 0.15 36
2.0 1.929 1.902 1576 87 8.38 0.19 44
1.0 0.979 0.984 24535 217 125.31 0.43 291
0.5 - 0.485 - 634 - 1.19 oo

3 4.0 2.436 2.552 305 42 16.85 0.30 56
3.0 1.892 1.730 5404 56 304.80 0.39 782
2.0 - 1.269 - 122 - 0.81 oo
1.0 - 0.766 - 504 - 3.15 oo
0.5 - - - - - - -

Based on the table above, we can safely say that a 1...2 order(s) of
magnitude speed-up of ANN training has been obtained between
APLAC versions 8.00c and 8.10a.

• Speed-up of automatic ANN-model generation

The automatic ANN-model generation algorithm of ANNModel-
Generator (invoked by parameter AUTO GENER) has been speeded
up by adopting the accelerated Gradient-based ANN training and,
especially, by changing the number and calling order of optimiza-
tion methods tried.

Models

• Faster automatic ANN-model generation in ANNModelGenerator

General Index Examples Main Page

Changes page INRN-2.13

The automatic ANN-model generation (specified by parameter
AUTO GENER) has been speeded up. The speed-up is based on
a more intelligent control of internal operations. Practically speak-
ing, the message ”Reinitializing ANN weights” should not appear
on the screen as frequently as before.

• BSIM3 VERSION/LEVEL warning removed

Since version 7.92e, BSIM3 produced a warning if VERSION and
LEVEL were both specified. This warning has been removed.

• HICUM convergence has improved

HICUM convergence has improved in transient analysis

• HICUM creates less internal nodes in electrothermal analysis

HICUM creates less internal nodes in electrothermal analysis, i.e.,
when self-heating is activated.

• Some parameter restrictions removed from VBIC

The following error messages, which resulted in termination of the
simulation, have been removed from VBIC:

”NEN must be greater than NEI” ”NCN must be greater than NCI”
”NCNP must be greater than NCIP”

• The NQS-model of HICUM has been rewritten

The NQS-model of HICUM has been rewritten such that it creates
less internal nodes in AC and HB analyses.

• RTH=0 ignores thermal network and all other self-heating param-
eters

If RTH=0 is specified to a self-heating model then the thermal
network is not created and all other thermal parameters specified
will be ignored. Previously RTH=0 created a thermal network and
used RTH=RMin.

• ANNModelGenerator and ANN training using Gradient

The range used for random initialization of ANN weights has been
changed from [-1,1] to [-0.5,0.5]. Also, the internal optimization-
variable windowing method, which is used for ANN training us-
ing Gradient, has been changed from ”ContinuousWindowing” to
”NoWindowing”. These changes resulted, using OPT CYCLES=1000

General Index Examples Main Page

Changes page INRN-2.14

OLD NEW
problem Etr/% Ete/% Etr/% Ete/%

1 3.386 2.163 1.864 1.314
2 2.540 1.795 1.413 1.244
3 2.076 2.008 0.770 0.757

with three relevant ANN-training problems, in the following im-
provements:
In the table, each training error (Etr) and test error (Ete) shown is
the average of 10 successive runs.

• Added parameter for PinDiodeRC junction parallel resistance
New parameter RP for the parallel resistance of PinDiodeRC’s
junction capacitance has been added. Previously this value was
constant.

System Simulation

• New parameter TIMESTEP added for WLANOffsetCorrector
The input vector sampling time step of DT-system block WLANOff-
setCorrector can now be changed via optional parameter TIMESTEP.
Default value is 50ns.

EM Simulation

• The MUR1 ABC code partly rewritten
The code for the MUR1 type ABC is partly written using macros
that automatically decide whether to use vectorized data structure
and looping or not.

Miscellaneous

• Preprocessor directives can be defined more than once
If a preprocessor directive is defined twice as in the netlist below

General Index Examples Main Page

Bug Fixes page INRN-2.15

#define xyz 1.25

print TEXT "xyz = " REAL xyz LF

#define xyz -20.8

print TEXT "xyz = " REAL xyz LF

a warning is issued:

APLAC 8.10 WARNING: xyz already defined at line 1, using

new definition starting from line 3

The latest definition is always used - this behavior is the same
as with C-compilers. Previous versions gave an error, when a
preprocessor directive was defined more than once.

2.3 Bug Fixes

Analysis

• Loading of old HB guess file failed
An internal change of components DCBlock/DCFeed, introduced
in version 7.92d, made useless the HB guess files which were
created with any version ≤ 7.92c.
The guess file loading code has been changed such, that even if
the number of nodes in the circuit is the same as in the guess file,
the node names are matched between the circuit and the guess
file. This may sometimes cause a minor slowdown when a large
file is loaded, but also makes the guess file insensitive for future
internal changes.

• Analyze REDU sometimes caused memory fault
Analyze REDU caused memory fault if the file in which the poles
and residues were tried to be stored could not be opened for writ-
ing. This could have resulted from the user specifying a non-

General Index Examples Main Page

Bug Fixes page INRN-2.16

existing path or the working directory or an existing file with the
same name being write protected.

• Analyze REDU + user-defined Gyrators or IdealTransformers
Analyze REDU sometimes produced incorrect results, if the circuit
contained user-defined Gyrators (with G specified) or IdealTrans-
formers. In some cases, when the previously mentioned com-
ponents were used, the simulation terminated in a strange error
message: ”ERROR: NaN or Inf prevents convergence.”

• Analyze REDU caused floating point exception in HP-UX 11
Analyze REDU caused floating point exception in HP-UX11.

• Internal device currents and DogLeg algorithm
If the DC iteration converged with the DogLeg method, then the
internal device DC currents were not automatically updated.

• DC, TRAN, or HB iteration was sometimes terminated prematurely
DC, TRAN, or HB iteration was sometimes terminated before the
convergence had been reached. This happened if the change in
the controlling voltages of nonlinear VCCSes was below RELERR,
even if the change in all voltages was not.

Functions

• HBIndex gives internal error when used after TRANsient analysis
Function HBIndex caused internal error if called after TRANsient
analysis.

• Interpol1Dxxxx functions with bad data
Interpol1Dxxxx with several data points having the same x coordi-
nate resulted in a floating-point error. Now APLAC either issues a
warning and sets the interpolation values and derivatives to zero
or results in an error message.

• MDLPolyFit did not find solution
If the x-axis values for MDLPolyFit fitting tool where larger than
one, the function could not find the correct solution. Now the x-
axis values are internally scaled so that the solution will be found
more precisely.

General Index Examples Main Page

Bug Fixes page INRN-2.17

Graphics

• Identical PEN assigned automatically

If more than 16 curves were displayed in one sweep step and
PENs were assigned automatically, curves numbered above 16
were assigned the same PEN.

• Pen 0 incorrectly changed to Pen 15

If a pen number of 0 was assigned to a curve in the input file, the
number was incorrectly changed to 15.

Models

• ModelSet bug fixes

The following problems with ModelSet have been fixed:

– The Models passed to ModelSet can now have a different num-
ber of parameters. This property can be used, for example,
to initialize all Models with some default values and override
the parameters within the same Model statement as needed.
Note, that all Models must specify all parameters at least once.

– ModelSet with BINNING property could not be used inside Def-
Model.

– The memory requirements of ModelSet has been reduced in
the case, when the binning and corner variables are constant,
i.e., the ModelSet actually uses one fixed Model.

• Initial condition for a dynamic VCCS/VCVS/CCCS/CCVS in case
of multiple controlling voltages

An attempt to specify the initial condition using parameter UO (or
IO) for a dynamic VCCS/VCVS/CCCS/CCVS resulted always in
an error, when there were more than one controlling voltage (or
branch). The syntax of UO (and IO) has been changed to

VCCS ... UO=initialcondition

General Index Examples Main Page

Bug Fixes page INRN-2.18

where initialconditional is an n-dimensional Var and n is the num-
ber of controlling voltages (or branches). Note, that the new syn-
tax above is compatible with old versions, when there is only one
controlling voltage (or branch). For example,

VCCS v1 1 0 2 2 0 3 0 [cv(0)^3+cv(1), 3*cv(0)^2, 1]

+ C NONLINEAR DERIV

+ UO=[2,5]

defines a dynamic VCCS with two controlling voltages having ini-
tial conditions 2V and 5V, respectively.

• ANNModelGenerator and unspecified optimization method

The internal default optimization-method specification of ANNMod-
elGenerator, being equal to

OptimMethod Gradient OPT_CYCLES=10000 OPT_XTOL=0.0

+ OPT_FTOL=0.0

did not work; if ”OptimMethod ...” was not specified, the following
odd error message was shown on the screen:

APLAC 8.00 ERROR: STACK2 is invalid argument

for BuildStack

• ANNModelGenerator and INIT FILE with zero-valued ANN weight(s)

If INIT FILE was specified and one or more ANN weights in the
file were equal to 0.0, an error occurred.

• MOS9 noise was sometimes incorrect

MOS9 noise was incorrect if the model parameters were constant,
model level 903 was used, and the noise equation selection pa-
rameter NFMOD=1.

This bug exists only in version 8.00a.

General Index Examples Main Page

Bug Fixes page INRN-2.19

• Differential IBIS model ignored [Model Selector] data
If the model for the inverting pin of a differential IBIS model corre-
sponded to a [Model Selector] entry, the model was not found and
the simulation terminated in an error.

• Complex CSource gave sometimes incorrect results
If both the value and the scaling factor of the CSource were com-
plex constants, then the CSource gave incorrect results.

• ANNModelGenerator and global activation-function definition
If NEURONS was specified to an ANN with more than three layers,
the global hidden-layer activation-function definition (e.g., ”MLP ATAN
= 0 0.9”) only worked for the first hidden layer (that is, for the sec-
ond ANN layer). For example, the definition

ANNModelGenerator "JfetModGen"

+ ...

+ NEURONS = [2,6,4,3]

+ MLP_ATAN = 0 0.9

resulted in the following ANN structure

layer neurons act. func. slope param.
1 2 NO ACT 0.000
2 6 MLP ATAN 0.900
3 4 MLP TANH 0.500
4 3 LINEAR 1.000

while the ”act. func.” and ”slope param.” for ANN layer 3 (with 4
neurons) should be ”MLP ATAN” and ”0.900”, respectively.

• ModelSet with binning caused sometimes an error
If binning limits did not obey a regular rectangular grid, an error
occurred. One such situation was with definition like

Model M1 WMIN a WMAX b ...

Model M2 WMIN b WMAX c ...

Model M3 WMIN a WMAX c ...

General Index Examples Main Page

Bug Fixes page INRN-2.20

ModelSet Mx MODEL=M1 ...

• BSIM4 gave an unnecessary warning

BSIM4 gave occasionally a warning about setting source and drain
conductances to 1.0E3 mho even though the resistors were not
included in the equivalent circuit.

• Some parameters of VBIC had incorrect AREA and temperature
scaling

VBIC parameters IKR, IKP, and ITF were not scaled by AREA.
Temperature scaling of parameters PC, PE, and PS was incorrect.

• HICUM caused sometimes memory fault

HICUM caused memory fault in HB analysis if LSSS and NOISE
were specified in Prepare and the NQS parameter ALIT was spec-
ified to HICUM.

• Default MOSFET .MODELs were sometimes missing

The definitions of automatically added default MOSFET .MOD-
ELs for levels 1-3 (named as MosfetLevelOne,...) were sometimes
missing from the converted netlist.

• Hicum caused sometimes a floating point error

Hicum caused sometimes a floating point error in HB analysis.

• dynamic VCVS, CCCS, and CCVS and initial condition (UO/IO)

Dynamic VCVS, CCCS, and CCVS caused an error, when there
were more than one controlling voltage (or current), and the initial
condition was specified using UO (IO).

• ANNModelGenerator with NEURONS and AUTO GENER speci-
fied

If automatic ANN-model generation (”AUTO GENER”) and more
than three ANN layers (e.g., four layers by ”NEURONS [3,8,6,2]”)
were specified, automatic ANN-model generation was carried out
with this large number of ANN layers, instead of the desired ANN
structure with three layers (and internally varied number of hidden-
layer neurons).

• BSIM3 noise was sometimes incorrect

General Index Examples Main Page

Bug Fixes page INRN-2.21

BSIM3 noise was calculated erronously if device multiplier (pa-
rameter M) was specified and it was not equal to 1.

• Curr and NoiseSource between the same nodes caused an error
Current source Curr, and noise source defined using Curr, Volt,
or NoiseSource caused an error, if the external nodes n1 and n2
were same. Now a warning is issued and the component is auto-
matically eliminated from the circuit.

• Sharing a variable for VCCS or NoiseSource caused sometimes
an error
In the following netlist

Var x 3 const

vccs v1 1 2 1 1 2 x $ G=x=3 (linear)

vccs v2 3 0 1 3 0 x g nonlinear $ J=x=3 (nonlinear)

vccs v3 1 2 1 1 2 x $ J=x=3 (bug: this

$ was nonlinear also)

VCCS v2 is a nonlinear element because of keyword ’nonlinear’.
The simulator internally marks variable ’x’ (’x’ computes the value
of v2) to be a voltage-dependent variable. This causes VCCS
v3 to be created as a nonlinear VCCS because ’x’ now depends
on voltages. The code has been fixed such that in certain cases
variable ’x’ is not marked to be voltage dependent, and VCCS v3
is created as a linear VCCS.

• Incorrectly loaded dynamic library caused sometimes a memory
fault
If a dynamic library was loaded using command #LOAD such that
the type was incorrect (i.e., TYPE=FUNCTION when loading a
model library, or TYPE=MODEL when loading a function library),
then a memory fault occurred sometimes. The C-interface API file,
aplacexternapi.h, has been changed to check, if the type of the
loaded library is incorrect. This change has no effect on the binary
compatibility between old and new versions, but the checking code
is included in the library only if compiled with the newest version
of aplacexternapi.h. Also only simulator versions ≥ 8.10a include
this check.

General Index Examples Main Page

Bug Fixes page INRN-2.22

EM Simulation

• EM simulation sometimes got stuck

EM simulations got ”stuck” sometimes when there were more than
one EM output functions used in conjunction with one or more
Show statements within a Sweep statement. This happened due
to the following reason.

The internal function controlling an EM simulation was invoked
from the EM output functions. In some situations, when invoked
more than once at the same time point, the internal controlling
function would decide (for numerical reasons) to end the ongoing
simulation, reset all field values to zero, and restart the simulation.
This gave the impression that the simulation was ”stuck”.

The simulation is no longer triggerred from the EM output func-
tions. It now starts (and continues to the end if no output function
is specified in the Sweep statement) at the end of the (dummy)
transient analysis performed at each time point.

• MUR1 ABC corrected the Ey field erroneously

The Ey field correction made by the MUR1 ABC was wrong at
planes x=0 and x=xmax. The for looping was done upto ymax
instead of ymax-1 when correcting for Ey.

Miscellaneous

• Disabling statistical variable from optimization caused sometimes
a memory fault

If statistical variable x was disabled from optimization using com-
mand

SetVar x OPT=0

a memory fault occurred, if the statistical variable had never been
included in the optimization.

General Index Examples Main Page

Bug Fixes page INRN-2.23

• Selecting ”Report|Info|Variables” caused memory fault
Selecting ”Report|Info|Variables” in a graphics window caused mem-
ory fault in version 8.00c.

• Saving contents of text window
If text windows were used and an attempt was made to save such
a window’s contents in an existing file, nothing happened on HP-
UX, while there was a segfault on Linux.

• Functional Var sometimes produces an internal error
The following file caused an internal error:

*function func1

*+ 3.0

Var Var1 FUNCN func1 1 TIME_DEPENDENT

If TIME DEPENDENT was missing, then the error message was
correct saying

APLAC 8.00 ERROR: Function "func1" not found,

if this is an expression,

please add parentheses around it

• eldo2a gave an error when there was blank space after ’=’
spi2a/eldo2a/hspice2a gave an error for the following netlist:

D1 n1 n2 dxx area= ’3*101/1k’ tc=0

.model dxx d(cjo=2p is=1n)

The error was caused by a space character after device parameter
”area=”. Fixed in spi2a/eldo2a/hspice2a version 1.47.

• spi2a/eldo2a/hspice2a did not work with vswitch
Voltage-controlled switch was not translated correctly (”MODEL=”
was not added before model statement name). spi2a/eldo2a/

General Index Examples Main Page

Bug Fixes page INRN-2.24

hspice2a has been changed such that LEVEL=1 or LEVEL=2 is
added automatically to the translated Switch statement, because
the default Switch (without LEVEL) is not compatible with the spice/
eldo switch.

General Index Examples Main Page

The APLAC Software Package page INRN-3.1

3. The APLAC Software
Package
The APLAC Installation CD-ROM contains installation pack-
ages for the APLAC Simulator and APLAC Editor , for
Windows and UNIX platforms. The installation packages
also include simulation examples, installation scripts, utility
programs and on-line manuals.

This Installation Guide gives detailed instructions for APLAC
installations on Windows and UNIX systems, with illus-
trated examples.

The APLAC Installation CD contains installation media for all sup-
ported licensing methods and platforms. APLAC user guides are pro-
vided along with Acrobat Reader software for each platform.

General Index Examples Main Page

License File and HostID page INRN-3.2

3.1 APLAC License Types

Floating license - APLAC Solutions Corporation uses the popular FLEXlm
license management framework developed by GLOBEtrotter Soft-
ware Inc. (http://www.globetrotter.com). The FLEXlm License
Server manages the usage of APLAC Simulator and APLAC
Editor licenses. License Server software is used to administer li-
censes centrally for multiple clients, concurrently, with valid license
files. Clients are permanently connected to the server and have
access to the license file, which contains host identification and is
read by the license server. A new license file can be combined
with existing license files.

Typically a stable network node such as UNIX workstation or NT
Server are chosen for license management. FLEXlm works trans-
parently on both UNIX and Windows platforms and the compo-
nents of the framework are essentially the same for both platforms.

We recommend that you nominate a license administrator. Soft-
ware licenses are usually in high demand, and technical support
can be useful at the site to resolve error conditions and disputes
over license usage. APLAC licensing makes this as effortless as
possible.

Portable license - Only supported in Windows machines, the portable
license is tied to a Hardlock key that is connected to the computer’s
parallel port. This commercial portable license and Hardlock can
be moved from one computer to another. No network connection
is needed.

3.2 License File and HostID

You need to have access to a valid license file or a FLEXlm License
Server with valid APLAC licenses before using APLAC , because the
full-featured APLAC version will not run without a license.

A machine-dependent license file can be ordered from APLAC Solu-
tions Corporation, using the hostID of your computer. You can order

General Index Examples Main Page

http://www.globetrotter.com

License File and HostID page INRN-3.3

the license file using the following license application form:

Commercial License Order Form - com/docs/licorder.txt
(send to licenses@aplac.com for Portable and Floating Licenses)

You can get the internal hostIDs of your computer by using following
commands:

Platform Type this command Example HostID
Windows NT/2000/XP ipconfig /all or 01-20-5a-b8-6f-b7

Physical address of ethernet adapter lmhostid or 01205ab86fb7

Pentium III+ hostID lmhostid -CPU 95D2-1D3D

HP-UX uname -i or 2005771344

32-bit hostID lmhostid 778DA450

Linux /sbin/ifconfig eth0 or 00:40:53:34:e4:35

HW address of network card lmhostid 00405334e435

Sun hostid or 170a3472

32-bit hostid lmhostid 170a3472

License data will be sent to you by email. Copy the license data from
the email message to a file and save the file as license.dat in ascii
(text only) format.

With the portable license, the hostID appears in the hardlock key.

NOTE: If you need to transfer your license service to a new com-
puter, contact support@aplac.com . New license creation and han-
dling may require a written certificate and handling fee.

General Index Examples Main Page

Floating License Installation page INRN-4.1

4. Installing APLAC in
Windows
APLAC can be installed in Microsoft operating systems Windows 2000,
NT 4.0 and Windows XP, using all supported forms of licensing. Net-
work based FLEXlm licensing requires that the computer running the
License Server must have an ethernet card or adapter installed for
network access.

4.1 Floating License Installation

When installing the centrally administered Floating License to a Win-
dows computer, you need to be logged into the machine as an ad-
ministrator, and you must have access to the license file, and know
its name and location before installing or know a server and the port
that is used to offer licenses at your site.

The centrally administered licenses are typically provided by a Win-
dows or UNIX server, permanently accessible through your network.
Your system administrator can give you more details.

For best results, exit all other applications before running the installa-
tion.

APLAC Client Software

1. Start the APLAC Installation Launcher and select the APLAC Full
Version installation, or start the installation from
com \windows \aplacflx \setup.exe .

You will see the standard Welcome and License Information di-
alogs. Press Next and Yes to proceed.

General Index Examples Main Page

Floating License Installation page INRN-4.2

2. Select the directory where APLAC is to be installed (Default: C:\Program
Files \APLAC \APLAC <version + type >) and press Next .

3. Enter the name of the license file (Default: license.dat).

You can define the ’license file’ as port@host , where port is the
number of the TCP/IP port at which the license server runs, and
host is the DNS name of the computer, such as 27000@licserver

NOTE: It is possible to store the license file itself at the client,
using only the server name and port number, as shown in the first
lines of the license file. This approach is not recommended.

4. Select the directory in which the license file is stored, and press
Next .

This directory can be in a local drive, or in a network volume.

5. Confirm the name of the license file. Make sure that the filename
ends in .dat, such as license.dat , not license.dat.txt .

6. The installation proceeds with files copied and configured. You
may be asked to rename old INI files for backup purposes, and you
will be given an opportunity to create associations for .i (APLAC
Simulator) and .n (APLAC Editor) files.

Persistent setup-related data is stored in APLAC32.INI (APLAC
Simulator), APLACED.INI (APLAC Editor) and APLACSRV.INI
(License Server information), located in the Windows system di-
rectory, such as C:\WINNT.

7. Reboot your computer.

After you reboot, you should be able to get started using APLAC from
the Start menu. APLAC will be able to checkout the license if you
have a network connection to the license server, and the server is
running with valid APLAC licenses.

FLEXlm License Server

1. For best results, exit all other applications before running the in-
stallation.

General Index Examples Main Page

Floating License Installation page INRN-4.3

2. Start the FLEXlm License Server installer, using the APLAC In-
stallation Launcher, or from com \windows \flexlsi \setup.exe .

3. If you already have FLEXlm-based licensing installed, the Installa-
tion Wizard detects this and stops. In these cases you must install
the FLEXlm license server with the LMTools utility or use the ex-
isting license server by combining APLAC’s license file with the
existing one. You must also install the APLAC vendor daemon.
For more information, see the FLEXlm End User Manual.

4. You will see standard Welcome and Information dialogs, contain-
ing useful information. Read the information carefully and press
Next to proceed.

5. Select the directory where the License Server is to be installed,
such as C:\flexlm and press Next .

6. Again, choose the name of the license file (Default: license.dat)
and press Next .

7. Select the directory in which the license file is stored (Default:
C:\flexlm) and press OK.

8. Before the system starts copying files, you will see a summary of
the installation.
Contents of the summary may vary according to the parameters
of the installation and the target operating system. This data is
saved as an instlog.txt file (Default: C:\flexlm \instlog.txt), and
is very important in case of installation problems.

9. The installation proceeds with files copied.

10. In Windows NT/2000/XP, the License Server runs as a Service.

• To start it,

From the Start menu, choose Settings ⇒ Control Panel ⇒
Administrative Tools in Win2000/XP ⇒ Services . Its startup
status should be Automatic so that it will start every time the
computer is rebooted.

11. Reboot your computer.

After you reboot, the computer should be usable as License Server
for Floating Licenses immediately. The flexlog.txt file contains useful

General Index Examples Main Page

Portable License Installation page INRN-4.4

startup information for the license server at its installation directory as
well as information on license checkouts - in case of problems, consult
this file.

APLAC Vendor Daemon

If you already run the FLEXlm system on Windows in your organiza-
tion, and the license files use the same hostID, then you only need the
vendor daemon (lm aplac.exe) and the license file.

The vendor daemon can be installed using the Installation Launcher,
or from com \windows \vendordm . Before the new licenses take ef-
fect, you should restart the license service, or perform a license file
reread.

4.2 Portable License Installation

Portable Licensing is also based on FLEXlm technology starting from
release 7.70. The hardlock key (usually a green hardlock device,
FLEXID6 dongle) is connected to the parallel port of the computer and
acts as a FLEXlm host identifier (hostID) that validates the license
file . From version 8.00 onwards, FLEXID9 dongle, an USB-device,
can be used also to tie the portable license.

Before starting the installation, save the license file somewhere. We
suggest the usage of the C:\flexlm directory, but any folder that is
always accessible is suitable.

If you have not obtained the license file, please contact support@aplac.com
or licenses@aplac.com.

1. Connect the hardlock key into the parallel port.

General Index Examples Main Page

Portable License Installation page INRN-4.5

2. Start the APLAC Installation Launcher and select the APLAC Full
Version installation.

You will see the standard ”Welcome” and ”License” Information
dialogs. Press Next and Yes to proceed.

3. Select the directory where APLAC is to be installed (Default: C:\program
files \aplac \aplac <version + type >) and press Next .

4. Indicate the name and the location of the license file.

5. You will be given an opportunity to create associations for .i (APLAC
Simulator input) and .n (APLAC Editor simulation schematic)
files.

6. Hardlock drivers are automatically installed after Portable Instal-
lation by default. You may also access the driver installer via the
Installation Launcher.

(In case you choose to postpone hardlock driver installation, the
hardlock installer is also available at com \windows \flexid6installer .)

7. When you have completed installation you should be able to get
started using APLAC immediately, from the Start menu.

General Index Examples Main Page

Launching APLAC in Windows page INRN-5.1

5. Running APLAC in
Windows

5.1 Launching APLAC in Windows

After installation, to start APLAC From the Start menu, choose
Programs ⇒ APLAC 8.10 FLEXlm ⇒ APLAC

You will find menu items for APLAC software and user documentation.
In FLEXlm licensed versions, the FLEXlm User Guide and LMTOOLS
application can be accessed through this menu.

General Index Examples Main Page

Installing APLAC in UNIX page INRN-6.1

6. Installing APLAC in
UNIX
APLAC can be installed on the following UNIX platforms:

Processor Operating System
PA-RISC HP-UX 11
SPARC SUN Solaris 8 and above
Intel x86 LINUX/ELF 2.x.x kernel, glibc-version

(e.g. recent Linux distributions such as Redhat 8.0 or Debian 3.0)

APLAC binaries are installed in a tree structure, created in a base
directory. This base directory can be located at any point in the direc-
tory hierarchy accessible to all users. The APLACPATH environment
variable must be set to point at this directory.

�
�

�
�APLACPATH

bin

examples

install

lib

manual

pkgs

scripts

flexlm

OS-dependent directories

Figure 6.1: APLAC directory structure, UNIX

The APLAC software tree includes the following directories.

bin contains symbolic links to the APLAC launch scripts. This direc-
tory should be in the PATH of APLAC users.

examples contains APLAC examples, which can be used in building
simulations. The measurements subdirectory contains APLAC
Editor measurement templates.

install contains scripts used during the installation process.

lib is dedicated to the model libraries.

manual contains manuals and other documentation in PDF format.

General Index Examples Main Page

Installing and Updating APLAC page INRN-6.2

pkgs contains utility files for various software packages, including the
aplaced directory for platform-independent APLAC Editor files.

scripts contains the platform-independent scripts (such as runall.aplac)
for launching the platform-specific binaries as well as the exam-
ple aplac.conf file for setting environment variables for the license
server. Application-specific scripts are also included.

flexlm contains license server and vendor daemon binaries for each
supported UNIX operating system.

OS-dependent directories contain APLAC binaries and resource files
for each supported UNIX operating system.

Example: HPUX HPPA contains binaries for PA-RISC machines
using the HP-UX operating system.

6.1 Installing and Updating APLAC

APLAC software can be installed either using an installation script
setup.sh or manually. The full installation of the APLAC Simulator
and APLAC Editor takes approximately 250 MB with binaries for all
supported platforms. On-line user documentation is included.

Installation using setup.sh

1. Mount the CD-ROM device (on HP-UX systems, use mount option
-o cdcase)

2. Run the setup script setup.sh found on the APLAC Installation
CD-ROM:

• com/unix/setup.sh

3. Select the directory where APLAC is to be installed (Default: /usr/local/aplac-
<version >).

4. The installation script starts to copy program files. The script will
ask you which platforms are to be used. The installation script
uses the following codes for different platforms:

General Index Examples Main Page

Installing and Updating APLAC page INRN-6.3

Code Processor Operating System
HPUX HPPA PA-RISC HP-UX 11
SOLARIS SPARC SPARC SUN Solaris 8 and above
LINUX X86 GLIBC Intel x86 LINUX/ELF 2.x.x kernel, glibc

(eg. Redhat 8.0, Debian 3.0)

5. The FLEXlm License Server software is installed in the $APLAC-
PATH/flexlm directory. The license file should be placed in this
directory and named as license.dat .

6. APLAC uses environment variables to locate installed binaries
and utility programs. Set the APLACPATH variable and add the
directory $APLACPATH/bin into the application search path.

Example: In the /etc/profile file specify:

APLACPATH=/usr/local/aplac-8.10a
PATH=”$PATH:$APLACPATH/bin”
export APLACPATH PATH

and in the /etc/csh.cshrc file:

setenv APLACPATH /usr/local/aplac-8.10a
setenv PATH $ {PATH}:$APLACPATH/bin

7. If you have installed the Floating License version, you can now
start the License Server and set the license file path.

Updating using setup.sh

You can use the same installation script setup.sh to update your cur-
rent APLAC installation. Use the following checklist to assure the
smoothest transition.

• The APLAC installation script will ask whether you want update
APLAC in the existing APLAC tree. If you are installing the up-
dated version in another directory, indicate the appropriate direc-
tory name.

NOTE: The structure of the examples directory $APLACPATH/examples
has changed in APLAC 8.10 . If you install over an earlier APLAC

General Index Examples Main Page

Installing and Updating APLAC page INRN-6.4

version, the installation script will rename your previous examples
directory $APLACPATH/examples old . If you do not need the old
example files, the examples old directory can be removed.

• Many users find it advantageous to keep past versions of APLAC
software for optional use.

• A number of APLAC binaries are named according the version
number, so that old executables remain.

Example: APLAC release 7.92a is installed and the simulator
binary is named aplac.run-7.92a . The symbolic link aplac.run
points to this file. When APLAC release 8.10a is installed, the
symbolic link is updated to point to aplac.run-8.10a , the new bi-
nary.

• Other binaries (spi2a etc.) and scripts are updated to new ver-
sions. If you have edited APLAC scripts, rename them before
updating. The installation program will overwrite all scripts except
install/aplac.conf and APLAC resourcefiles (Aplac) in binary di-
rectories.

• If setup.sh locates binaries which do not follow the new version’s
naming convention, it will change the original name of binaries
to original name-old , such as aplac.run to aplac.run-old . You
can rename old binaries according their version number, such as
aplac.run-7.50 .

You can check the version number of renamed binaries using the
command original name-old -ver or aplac -rel old -ver .

Installing APLAC Manually

1. Create the base directory for the APLAC software tree.
mkdir /usr/local/aplac

2. Set the APLACPATH environment variable.
setenv APLACPATH /usr/local/aplac (csh shell)

3. Copy base.tar into the base directory.
cp /mnt/cdrom/unix/base.tar /usr/local/aplac

General Index Examples Main Page

Starting The License Server page INRN-6.5

4. Untar the base.tar file.
cd /usr/local/aplac
tar xvf base.tar

5. Uncompress and untar the os.*.tar.Z files in the base directory.
uncompress os.*.tar.Z
tar xvf os.*.tar
If you do not want to install support for all platforms, uncompress
only the relevant files.

6. Add the directory $APLACPATH/bin in the PATH variable.

7. Run the script $APLACPATH/install/install.aplac.
cd install
./install.aplac

8. If you are installing the commercial version (with Floating or Node-
locked licensing), install FLEXlm License Server software, found
in the server.tar archive:
cd $APLACPATH
tar xvf server.tar

The License Server software will be placed in the directory $APLAC-
PATH/flexlm .

9. After installing License Server software, you can start the License
Server and set the license file path.

6.2 Starting The License Server

The default location for License Server software is $APLACPATH/flexlm .
This directory is divided into the following platform-specific subdirecto-
ries, which contain license manager daemons, vendor daemons and
utility software:

General Index Examples Main Page

Configuring APLAC Program Resources page INRN-6.6

Code Processor Operating System
HPUX HPPA PA-RISC HP-UX 10.20 & 11
SOLARIS SPARC SPARC SUN Solaris 8 and above
LINUX X86 GLIBC Intel x86 LINUX/ELF 2.x.x kernel, glibc (libc6)

If the license file is stored in another directory, the location must be
indicated using using one of two environment variables:

• APLAC LM LICENSE FILE is APLAC-specific and can be defined
in $APLACPATH/scripts/aplac.conf.

• LM LICENSE FILE is FLEXlm-specific and recognized by all clients
using FLEXlm licensing.

The location can also be port@host setting, where port and host de-
fine the network location of the license server in network.

Example: setenv APLAC LM LICENSE FILE 27000@host (C shell)

The License Server lmgrd can be started using the command:
<lmgrd path>/lmgrd -c license file -l log file.

cd $APLACPATH/flexlm/v9.2/LINUX X86 GLIBC/
lmgrd -c ../license.dat -l ../log.txt

• The License Server can also be started at system start-up.

• You can combine a new license file with existing ones.

• With an Options file for the Vendor daemon, you can fine-tune
the license checking process (enable/disable the access for the
licenses for some user, etc.).

• For more information concerning license management, see the
FLEXlm End User Manual
(com/docs/flexlm.pdf in the Installation CD).

General Index Examples Main Page

Configuring APLAC Program Resources page INRN-6.7

6.3 Configuring APLAC Program Resources

After installing the APLAC Simulator and APLAC Editor client soft-
ware or License Server software, characteristics of the interface and
functionality can be configured by manipulating parameters within re-
source files.

The APLAC Simulator

APLAC Simulator ’s interface parameters are defined using an appli-
cation resource file Aplac , located in the APLAC directory tree.

The application resource file’s search priority is:

1. $HOME/Aplac

2. $APLACRESDIR/Aplac

3. /usr/lib/X11/app-defaults/Aplac

The search location can be changed with the $APLACRESDIR vari-
able.

Some resources are platform-dependent, so APLAC resource files
are located in platform-specific binary directories.

Example: The platform-dependent resource file for Linux/glibc is lo-
cated in the directory APLACPATH/LINUX X86 GLIBC .

Usually, only the printing commands APLAC*printHpglToPrinter: and
APLAC*printPsToPrinter: need editing.

The following parameters in the resource file correspond to command-
line parameters listed in the User’s Manual:

General Index Examples Main Page

Configuring APLAC Program Resources page INRN-6.8

APLAC*defsize: geom

APLAC*font: font

APLAC*fontMath: font

APLAC*bg: color

APLAC*fg: color

APLAC*cursor: cn

APLAC*cursorfg: color

APLAC*cursorbg: color

APLAC*prompt: string

APLAC*epsOptions: string

APLAC*blackAndWhiteMode: boolean

NOTE: Command-line arguments always override resource parame-
ters.

The following entries are only supported in the resource file:

Dialog background color NOTE: Default dialog background color is
white

APLAC*dialogBackground: color

Printing Commands APLAC*messagePsToPrinter: MessageString

APLAC*printPsToPrinter: CommandString

APLAC*messageHpglToPrinter: MessageString

APLAC*printHpglToPrinter: CommandString

Message strings appear in the File/Print dialog box as button texts.
If you select an option (PostScript or HPGL), APLAC patches the
accompanying command string and runs it. Patching means that
’%src’ in the commands is replaced by the name of a temporary
output file that is automatically created and deleted by APLAC .

NOTE: Platform-specific configurations are defined using the environ-
ment variable $APLACRESDIR, which is handled by the runall.aplac
script. If $APLACRESDIR is set in system files, runall.aplac will not
reset it.

General Index Examples Main Page

Configuring APLAC Program Resources page INRN-6.9

The APLAC Editor

APLAC Editor resource parameters are not system-wide, but user-
controlled using the Options menu. These user-specific parameters
are saved in the file $HOME/.aplacedini .

The APLAC Editor and HP-UX

Users running the APLAC Editor on HP-UX have found that zooming
and other view editing commands can behave slowly. Performance
can be improved by editing the Xserver’s font path, according to the
following considerations:

• Keep font paths as short in length as possible.

• List often-used fonts directories/servers first in the font path

• List non-standard fonts directories/servers last

If you are running the HP-UX version of the APLAC Editor from an
X-terminal, using XFree86 server, then you will also need to set up a
font server in an HP-UX machine and add it to the X-terminal’s font
path.

General Index Examples Main Page

Launching APLAC in UNIX page INRN-7.1

7. Running APLAC in
UNIX

The pd ctrls.dat file
On startup you may encounter a dialog box informing you about errors
in the pd ctrls.dat file. This file contains the APLAC Editor control
object data. Since users can customize the control object data, the
user-specific file is stored as .pd ctrls.dat in the user home directory.
The APLAC Editor launch script checks whether the user-specific
file exists or not. If it doesn’t, it is created as a copy of the master
file $APLACPATH/pkgs/aplaced/pd ctrls.dat.base . If you haven’t
edited the .pd ctrls.dat file in your home directory, the most straight-
forward way to eliminate the errors is to simply delete it and restart
APLAC Editor .

7.1 Launching APLAC in UNIX

After installation the environment variable APLACPATH should point
to the directory under which APLAC software is installed and the di-
rectory $APLACPATH/bin should be on the search path pointed out
by the environment variable PATH; all the executable files of APLAC
are located in the bin directory. You can set up a Bourne or Korn shell
as follows (the installation directory is assumed to be /usr/local/aplac):

APLACPATH=/usr/local/aplac

PATH=$APLACPATH/bin:$PATH

export APLACPATH PATH

For C shell, the syntax is:

General Index Examples Main Page

Resource files: .Xresources and APLAC page INRN-7.2

setenv APLACPATH /usr/local/aplac

set path=($APLACPATH/bin $path)

You may also want to set the PATH environment variable in your .pro-
file, .login , .cshrc or .kshrc file to include $APLACPATH .

APLAC is started via the script file called aplac . If you do not give
any file as an argument for the aplac script then the APLAC Editor is
started. If you give a file as the argument it is assumed to be APLAC
netlist and APLAC Simulator is invoked. This enables batch mode
APLAC simulations from some other software.

The APLAC Editor window is open constantly when using APLAC
in a UNIX environment. The APLAC Editor invokes a batch mode
APLAC Simulator process each time you do a new simulation. The
simulator can be closed by the user when simulation and graphic post-
processing are done.

Text output (stdout) and errors and warnings (stderr) are, by default,
directed to text output window that is opened automatically.

After successful execution the program returns the exit code 0; on
error, the exit code is 1. Note that graphic output files are created
relatively starting from the same directory where the input file is unless
an absolute pathname is specified.

7.2 Resource files: .Xresources and APLAC

The X11 resource files define several parameters that affect APLAC
program behavior and appearance. The basic system resource files
should not contain any APLAC -related parameters. If the system
reads the file $HOME/.Xresources , the APLAC parameters can be
defined in that file. If it is desired to keep APLAC ’s resources sepa-
rate, they can be put in the file Aplac .

General Index Examples Main Page

Resource files: .Xresources and APLAC page INRN-7.3

If a specified resource is not found in $HOME/.Xresources , an at-
tempt is made to find it in the application defaults file Aplac . This file
can be in several places, the precedence being

1. $HOME/Aplac

2. $APLACRESDIR/Aplac

3. /usr/lib/X11/app-defaults/Aplac

The following APLAC -related parameters in the resource file(s) corre-
spond to the command-line parameters listed in the preceding section
(note that the command-line arguments always override the resource
settings)

APLAC*defsize: geom

APLAC*font: font

APLAC*fontMath: font

APLAC*fontTextOutput: font

APLAC*bg: color

APLAC*fg: color

APLAC*cursor: cn

APLAC*cursorfg: color

APLAC*cursorbg: color

APLAC*prompt: string

APLAC*epsOptions: string

APLAC*blackAndWhiteMode: boolean

The following entries are only supported in the resource file(s):

Dialog backgrounds

APLAC*dialogBackground: Color
where Color is an X11 color name. The default is white .

Printing commands

APLAC*messagePsToPrinter: MessageString
APLAC*printPsToPrinter: CommandString

General Index Examples Main Page

User defaults: .aplac page INRN-7.4

APLAC*messageHpglToPrinter: MessageString
APLAC*printHpglToPrinter: CommandString
The message strings appear in the File/Print dialog box as button
texts. When you select an option (PostScript or HPGL), APLAC
patches the accompanying command string and runs it. Patching
simply means that %src in the commands is replaced by the name
of a temporary file that is created (and deleted) by APLAC to store
the output; you normally do not specify it.

A typical .Xresources or Aplac file might look as follows:

.

.

APLAC*defsize: 600x400

APLAC*fg: red

APLAC*bg: cyan

APLAC*font: 6x10

(comment) cursor number 62 = heart

APLAC*cursor: 62

APLAC*epsOptions: landscape

APLAC*messagePsToPrinter: Print plotter output with PS printer

APLAC*printPsToPrinter: /usr/bin/lp%src

APLAC*messageHpglToPrinter: Print plotter output with HPGL printer

APLAC*printHpglToPrinter: /usr/bin/lp -ohpgl2%src

.

.

7.3 User defaults: .aplac

Information about APLAC graphics windows is stored in the file $HOME/.aplac.
These are user defaults - there is no system-wide $HOME/.aplac file.
If the file does not exist, it will be automatically created. The following
entries are supported in the .aplac file:

Window geometry information

General Index Examples Main Page

User defaults: .aplac page INRN-7.5

Window <n>: <width > x<height > +<xoffset > +<yoffset >

where
<n> window number, starting from 0
<width> window width in pixels
<height> window height in pixels
<xoffset> x coordinate in pixels
<yoffset> y coordinate in pixels

The upper left corner of the window is located at (<xoffset>,<yoffset>)
relative to the screen coordinates. The origin (0,0) is at the upper
left corner of the screen; x coordinates increase to the right, y
coordinates, downwards. Negative offsets are allowed. Window
width and height must be non-negative.

WindowText <n>: <width > x<height > +<xoffset > +<yoffset >

WindowVerbose <n>: <width > x<height > +<xoffset > +<yoffset >

These apply to the text output and verbose windows.

Enabling/Disabling saving of configuration

APLAC*SaveOnExit: Boolean

where Boolean is either true or false . Setting SaveOnExit to
false will disable saving of the configuration, otherwise .aplac is
updated before exiting APLAC . SaveOnExit is true by default.

Hard vs. Soft limits
APLAC*hardLimitsX: Boolean
APLAC*hardLimitsY: Boolean
APLAC*hardLimitsY2: Boolean

where Boolean is either true or false . If any of these is true ,
APLAC will use exact limits on the corresponding axis if autoscal-
ing is requested. Otherwise, soft, that is, rounded, limits will be
used.

Clipping markers

APLAC*clipMarkers: Boolean

where Boolean is either true or false . If this item is true , APLAC
will clip markers at the edges of the drawing area. If the item is
false , markers are not clipped. The default is false .

General Index Examples Main Page

User defaults: .aplac page INRN-7.6

Removing trailing zeroes

APLAC*removeTrailingZeroes: Boolean
where Boolean is either true or false . If this item is true (the
default), APLAC will remove trailing zeroes from axis texts, that is,
instead of 4.00’, ‘4 will be written.

Dense log grid

APLAC*denseLogGrid: Boolean
where Boolean is either true or false . If this item is true , APLAC
will use long lines inside the drawing area for logarithmic axes if,
additionally, the window grid is on. If the item is false , short ticks
outside the drawing area are drawn. The default is true .

Tuning window size

APLAC*tuneVisible: Integer
where Integer is between 2 and 20. This is the maximum number
of tuning variables that will be shown in the dialog box. The default
is 5.

Differential clipboard

APLAC*differentialClipboard: Boolean
where Boolean is either true or false . If this item is true , APLAC
will write curves to the clipboard as midpoints and differences
(+/−). Thus, the number of digits saved is greater than if the curve
numbers themselves were stored. However, importing/exporting
curves is harder. It should be noted that not all digits saved are
necessarily significant. The default is false .

Cursors

APLAC*startWithCursors: Boolean
where Boolean is either true or false . If this item is true , APLAC
will put cursors on initially (they can be turned off later). If the item
is false , cursors are only turned on through the Options/Cursors
menu item. The default is false .

Vertical-axis text direction

APLAC*axisTextYDirection: Setting
where Setting is either automatic , vertical or horizontal . If the
setting is automatic , APLAC will display short texts horizontally,

General Index Examples Main Page

User defaults: .aplac page INRN-7.7

while longer texts are displayed vertically. Setting the direction to
vertical or horizontal turns off the automatism. The default is
automatic .

TeX mode

APLAC*TeXmode: Boolean

where Boolean is either true or false . If this item is true , APLAC
will interpret text to be output to a window - say, curve names -
according to (basic) TeX syntax. In other words, an underscore
starts a subscript; an up-arrow, a superscript. Math symbols, too,
are supported (SIGMA produces a Σ, etc.). The default is false .

MonteCarlo averaging

APLAC*monteCarloAverage: Boolean

where Boolean is either true or false . If this item is true , all
MonteCarlo curves will be, by default, averaged at the end of the
analysis and only the maximum, minimum and average points will
be plotted. This can be circumvented for any window by specifying
MC DRAW ALL for that window in the input file. The default for
MonteCarlo averaging is false , that is, MC DRAW ALL holds for
every window unless otherwise specified.

XOR

APLAC*xorDiamond: Boolean

where Boolean is either true or false . This item may help if cur-
sors are invisible. The background is that X11 servers appear to
implement XOR drawing in slightly different ways and the XFree86
Diamond server’s implementation is different from other XFree86
servers. Thus, only Linux users with Diamond display adapters
may actually need this resource. The default value is false .

Version-specific warnings

APLAC*versionWarning: Boolean major.minor

where Boolean is either true or false . This item’s function is
to enable/disable version-specific warnings. true enables, false
disables. The version (major.minor, an example: 7.62) sets the
limit. true 7.62’ would enable warnings specific to 7.62 and later
versions, whereas false 7.92 would disable warnings specific to
7.92 and earlier versions. The default is true x.yy’, where x.yy is

General Index Examples Main Page

Font Scaling page INRN-7.8

APLAC ’s current version, that is, all warnings specific to the cur-
rent version (or above, if any) are printed. Warnings specific to
earlier versions are disabled.

Saving memory

APLAC*saveMemory: Boolean

where Boolean is either true or false . To speed up redraws,
APLAC normally draws graphics both on screen and into mem-
ory (RAM). This limits the number of number windows available if
there is little RAM, as on some X11 terminals. Setting this item
true disables drawing into RAM, that is, allows more windows, but
results in slower redraws.

Marking Phase/Y2 curves

APLAC*markPY2Curves: Boolean

where Boolean is either true or false . This option makes APLAC
mark Phase/Y2 curves in the legend (below the drawing area) with
a small dot.

Text buffer sizes
APLAC*textBufferSize: 2853
APLAC*verboseBufferSize: 144

Size and location of text windows
WindowText 672x350+5+2
WindowVerbose 672x350+4+391

Before APLAC graphics windows are created, geometry information
is read from the file .aplac. If no information is available, settings in
.Xresources will be used instead. If no settings are found, behavior
will depend on the window manager used.

Here is an example of an .aplac file:

APLAC*hardLimitsY: false

Window0: 400x400+600+1

Window1: 600x400+600+400

APLAC*saveOnExit: false

General Index Examples Main Page

Font Scaling page INRN-7.9

7.4 Font Scaling

The text fonts in APLAC ’s graphics windows can be scaled automat-
ically according to the window’s size. In other words, the smaller the
window, the smaller the font, and vice versa. This feature is based on
X11’s ability to use font aliases.

A regular X11 font name is long and convoluted, as it is also a short-
hand description of the font. Consider an example:

-adobe-new century

schoolbook-medium-r-normal--14-100-100-100-p-82-iso8859-1

This font name includes the foundry (Adobe), the typeface name (New
Century Schoolbook), the point size (14), the weight, the slant, the
encoding (ISO8859-1), and various other specifications.

A font name like the above is, obviously, not really usable by humans, a
problem that is addressed by aliases. Aliasing a font means attaching
another, shorter, name. X11 looks for these in a file called fonts.alias.
This file will be found somewhere in X11’s font path; unfortunately, the
exact location depends on the particular X11 implementation.

Assuming the fonts.alias file has been found, making an alias means
adding lines to the file by hand:

ncenr14 -adobe-new century

schoolbook-medium-r-normal--14-100-100-100-p-82-iso8859-1

After X11 is restarted, the new, short alias ncenr14 can be used any-
where the long name can.

APLAC ’s ability to rescale a font depends on a number of hard-coded
font aliases. These aliases consist of two parts; the first, letter, part
identifies the typeface together with weight (normal/bold) and slant
(normal/italic), the second (2 digits), the size in points. One example:

General Index Examples Main Page

Examples page INRN-7.10

timbi08

is the Times-Roman, bold, italic, font; the size is 8 points.

The letter parts of the aliases are (the corresponding typefaces are
Charter, Courier, Helvetica, Lucida Bright, New Century Schoolbook,
Times Roman, and Symbol, respectively):

charb, charbi, chari, charr

courb, courbo, couro, courr

helvb, helvbo, helvo, helvr

lubb, lubbi, lubi, lubis, lubr, lubs

ncenb, ncenbi, nceni, ncenr

timb, timbi, timi, timr

symb

The point-size parts are

08,10,12,14,18,24

Now, let us assume you want to use the New Century Schoolbook bold
font. The corresponding ncenb aliases might already be available;
xlsfonts will tell you whether they are.

If they are not, you must edit the fonts.alias file and add rows for
“ncenb08”, “ncenb10”, and so forth (see above). Then, restart X11.

Once the ncenb aliases are available, one can be selected from APLAC ’s
menu (Edit—Font), or APLAC can be started with a command line:

aplac -font ncenb file.i

Depending on the window size, APLAC will then make up a font alias
by appending a likely point size (08, 10, etc.) to the ncenb specifica-
tion and use the combination ncenb14 to load a font.

General Index Examples Main Page

Examples page INRN-7.11

7.5 Examples

Request of the APLAC version:

aplac -ver

Quick syntax reference of Res:

aplac -syntax Res

Start APLAC file chebysh.i (note that extension .i may be omitted)
and redirect the text output to the file chebysh.out (the -ntw flag sup-
presses the normal text output window):

aplac -ntw chebysh > chebysh.out

Run APLAC file tlsweep.i and create the window on the display de-
fined by the DISPLAY environment variable. All other graphics related
parameters are system defaults unless they are specified in the file
.Xresources . In addition all displayed results are printed to text out-
put window. An example command line follows:

aplac tlsweep -p

The graphics output is redirected host wks.domain.com (if the user
is allowed to do so !). In the UNIX system a blue window appears on
the top left corner of the display (horizontal size 480 pixels and vertical
size 400 pixels).

aplac tlsweep -geometry 480x400+1+1 -bg blue -display wks.domain.com:0

NOTE: The following command-line arguments are not used in the
Windows version:

General Index Examples Main Page

Examples page INRN-7.12

• -bg

• -blackandwhite

• -cursor

• -cursorbg

• -cursorfg

• -display

• -fg

• -font

• -fontmath

• -geometry

• -help

• -loadsweep

• -mcassemble

• -nodisplay

• -option

• -prompt

• -silent

• -users

• -verbose

• -windowplaces

General Index Examples Main Page

FLEXlm License Administration page INRN-8.1

8. FLEXlm License
Administration
Using a License Server, FLEXlm licensing technology makes multiple
licenses available to member workstations within a network. Typically
a stable network node such as a UNIX workstation or NT Server is
used for this task. Each workstation can check out an available li-
cense, making that license unavailable to other workstations. A stand-
alone installation makes it possible to create licenses for computers
not permanently connected to the network.

Sites using electronic design automation software are typically equipped
with FLEXlm license management. APLAC conforms closely to stan-
dard conventions of the FLEXlm system. Following the detailed in-
structions given in this manual for Windows and UNIX installation will
help assure a smooth beginning.

The FLEXlm license management system incorporates the following
components:

License Manager daemon (lmgrd) - background process requiring no
direct intervention, the License Manager daemon handles the ini-
tial contact with APLAC and the Vendor daemon. The License
Manager binary is provided by Globetrotter Inc.

Vendor daemon - Another background process, the application-specific
Vendor daemon grants licenses for the licensed application, keep-
ing track of licenses as they are checked out, and who has them.
APLAC Solutions Vendor daemon is called lm aplac .

Vendor Applications - (APLAC Simulator , APLAC Editor , ...)

The Vendor application software may be located on the same net-
work node as the vendor daemon, or it may be located elsewhere,
as it communicates through a network communications protocol.
Usage of a standard network protocol assures that APLAC soft-
ware and License Server software can be installed in completely

General Index Examples Main Page

License File Location page INRN-8.2

different operating systems, guaranteeing a completely heteroge-
neous design environment across a range of workstations.

License file - The License file holds all licensing data in a human-
readable format. It contains data about server nodes and vendor
daemons, with a feature line for each licensed product, including
software version data. Feature lines are designed so that edit-
ing the contents of the License file will make the license invalid.
For more information concerning license management, see the
FLEXlm End User Manual (com/docs/flexlm.pdf in the Installa-
tion CD).

8.1 License File Location

The license file appears as a plain text file that resides in a default
location. If the license file is stored in another directory, the location
must be indicated.

Windows versions search first for a reference to the license file from
the aplacsrv.ini file. This reference variable is defined at installation
and defaults to C:\flexlm\license.dat. If this link variable fails, Win-
dows will look at C:\flexlm \license.dat to find a license.

UNIX versions search first for a link to the license file using the
APLAC LM LICENSE FILE environment variable. This environment
variable may be set in $APLACPATH/scripts/aplac.conf , in system
wide configuration files or in personal configuration files.

If the APLAC LM LICENSE FILE is not set or the license file is not
found from the location indicated, then the search priority is:

1. $APLACPATH/flexlm/license.dat

2. LM_LICENSE_FILE

3. /usr/local/flexlm/licenses/license.dat

NOTE: APLAC LM LICENSE FILE and/or LM LICENSE FILE can con-
tain a colon-separated list of License Servers in port@host format. If

General Index Examples Main Page

License Management Tools page INRN-8.3

the License Server running at one host becomes unavailable, the Li-
cense Server at the next host takes over, if it has valid APLAC licenses
available.

This is a very important feature enabling APLAC software to enhance
the fault tolerance of long simulations by changing License Servers on
the fly.

A port number can also be assigned for the license file, telling the
License Server to assign license calls to that port.

8.2 License Management Tools

FLEXlm provides several utility programs, some for the end user of the
licensed product, and others used only by the license administrator of
the site. In UNIX, license management tools are installed in platform
binary directories. In Windows, you can also use the LMTools inter-
face accessible from the Start menu, to manage the functionality of
the License Server.

These tools are valuable for both end users and license administra-
tors:

lmdiag - This tool will diagnose the problem when you cannot check
out a suitable license. You can specify a license file explicitly with
command line option -c.

lmstat - This tool helps you monitor the entire network’s licensing sys-
tem.

These tools are valuable for license administrators:

lmcksum - This tool can be used to verify that the license file format
is correct.

lmdown - This is the primary method for shutting down the entire
FLEXlm license system (lmgrd and vendor daemons).

General Index Examples Main Page

Advanced Licensing Features page INRN-8.4

lmhostid - This tool reports the hostID of the system.

lmremove - This tool allows you to remove a single user’s license for
a specified feature. This may be needed if an individual client
node crashes or when APLAC has swapped the License Server
because of a fault in the first License Server.

lmreread - This tool causes the license daemon to reread the license
file and start any new vendor daemons that have been added.
With this utility, you do not have to shut down the entire License
Server framework to add software products (indicating a new ven-
dor daemon).

lmver - This tool determines the version of the FLEXlm system used,
inside any binary that supports FLEXlm.

For more information concerning license management tools, see the
FLEXlm End User Manual (com/docs/flexlm.pdf in the Installation
CD).

8.3 Advanced Licensing Features

Options File

The Options File allows the network’s license administrator to man-
age a variety of FLEXlm parameters. The administrator can reserve
licenses for specific designers, control access to features, control the
flow of information to log files, etc. The Options File can be used
without Overdraft Access, but it makes Overdraft Access possible, by
launching report logging. For more information concerning license ad-
ministration, see the FLEXlm End User Manual (com/docs/flexlm.pdf
in the Installation CD).

To implement the Options File,

1. Create the file, typically C:\flexlm \options \lm aplac.opt (Win-
dows) or
/usr/local/flexlm/options/lm aplac.opt (UNIX)

General Index Examples Main Page

Advanced Licensing Features page INRN-8.5

2. Add the Options File’s pathname to the license file, as the fourth
field in the APLAC vendor daemon.

Troubleshooting and Diagnostics

If you are trying to use APLAC client software but no license seems
to be available, the following techniques can be used to locate the
problem and offer a solution:

• Make sure that the license file is accessible, at the location defined
using the installation instructions given.

• If you are using a Floating license, make sure that your worksta-
tion’s connection to the License Server is active. To test this, use
ping [servername] at the command prompt.

• Make sure that processes lmgrd and lm aplac are running (at the
License Server node):

– In Windows NT, use the Task Manager to assure that pro-
cesses lmgrd.exe and lm aplac.exe are running.

– In UNIX, use the ps command to print all running processes
and make sure that lmgrd is running.

Example:
ps -e | grep lmgrd in HP-UX, Solaris
ps a | grep lmgrd in Linux

In case you are a license administrator, APLAC recommends the fol-
lowing preventive and diagnostic techniques for use with FLEXlm:

• Always use a log file when running the License Server. The con-
tents of a log file can be very helpful in diagnosing a problem, and
if you contact APLAC or FLEXlm support, you will be asked about
the contents of this file.

The log file used in Windows installations is flexlog.txt , typically
located in C:\flexlm .

General Index Examples Main Page

Advanced Licensing Features page INRN-8.6

• If the log file flexlog.txt does not exist in the License Server, then
the lmgrd process has not started. Most probably you have a
faulty or tampered license file. Check especially that the SERVER
and VENDOR lines are intact.

• If lmgrd has started correctly (indicated by a log file with no alarm-
ing entries), see if lmstat -a or lmdiag offer any clues.

• You can also set the FLEXlm FLEXLM DIAGNOSTICS environ-
ment variable to launch diagnostics for the entire licensing system.

• If the FLEXlm license server is running on the local host, and the
host is not connected to a network, make sure the path to your
local license file comes before any other license paths in the reg-
istry key
HKEY LOCAL MACHINE\SOFTWARE
\FLEXlm License Manager\LM APLAC LICENSE FILE.

• Be sure that you have implemented the correct version of the
FLEXlm vendor daemon.

For more information concerning license management, see the FLEXlm
End User Manual
(com/docs/flexlm.pdf in the Installation CD).

General Index Examples Main Page

	1 What's New in APLAC 8.10
	1.1 Introduction
	1.2 New Features in APLAC Simulator
	1.3 Changes in APLAC Simulator
	1.4 Bug Fixes in APLAC Simulator

	2 APLAC Simulator 8.10 Enhancements
	2.1 New Features
	2.2 Changes
	2.3 Bug Fixes

	3 The APLAC Software Package
	3.1 APLAC License Types
	3.2 License File and HostID

	4 Installing APLAC in Windows
	4.1 Floating License Installation
	4.2 Portable License Installation

	5 Running APLAC in Windows
	5.1 Launching APLAC in Windows

	6 Installing APLAC in UNIX
	6.1 Installing and Updating APLAC
	6.2 Starting The License Server
	6.3 Configuring APLAC Program Resources

	7 Running APLAC in UNIX
	7.1 Launching APLAC in UNIX
	7.2 Resource files: .Xresources and APLAC
	7.3 User defaults: .aplac
	7.4 Font Scaling
	7.5 Examples

	8 FLEXlm License Administration
	8.1 License File Location
	8.2 License Management Tools
	8.3 Advanced Licensing Features

